Hochschild homology of some quantum algebras ${ }^{1}$

Jorge A. Guccione*, Juan J. Guccione
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 -Ciudad Universitaria, (1428) Buenos Aires, Argentina

Communicated by C.A. Weibel; received 12 March 1996; received in revised form 14 March 1997

Abstract

For a type of quantum algebras we obtain a chain complex, simpler than the canonical one, whose homology is the Hochschild homology of the algebra. We applied this result to some concrete examples, as $U_{q}(s l(2, k))$ and $\mathcal{O}_{q}(M(2, k))$. (C) 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: 16E40; 18G99

0. Introduction

Let k be an arbitrary commutative ring and $0 \leq r \leq n$ be two integers. Every pair of families of parameters \mathbf{P} and \mathbf{Q} verifying suitable hypothesis has associated a k-algebra $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$, which is a quantum deformation of $k\left[x_{1}, \ldots, x_{r}, x_{r+1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. For instance, when \mathbf{P} is null we obtain, taking $r=n$, the quantum multiparametric affine space, and taking $r=0$, the quantum multiparametric torus. On the other hand, taking n even and \mathbf{P} appropriate, we obtain a quantum version of the Weyl algebra, which can be considered as an algebra of differential operators on the quantum multiparametric affine space. The Hochschild homology of this type of algebras has been studied in several papers, such as $[1,2,4,7-9]$. Many algebras related to quantum groups, for instance $U_{q}(s l(2, k)), \mathcal{O}_{q}(M(2, k))$ and $\mathcal{O}_{q^{2}}\left(s o k^{3}\right)$, are Ore extensions of an algebra $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$. Other examples can be found in $[3,5,6]$, etc. The main purpose of this work is to study the Hochschild homology and cohomology of this type of algebras.

[^0]In the first section, for every $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$-module M we build up complexes $X_{*}(M)$ and $X^{*}(M)$, simpler than the canonical ones, whose homologies are respectively the Hochschild homology and cohomology of $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$ with coefficients in M. This result was also obtained (at least when k is a characteristic zero field) in $[8,9]$. Our method is close to Wambst's method in his work on quantization of the Koszul complex. The main difference is that we give explicit quasi-isomorphisms

$$
\begin{equation*}
\theta_{*}: X_{*}(M) \rightarrow\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right) \quad \text { and } \quad \tau_{*}:\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right) \rightarrow X_{*}(M) \tag{*}
\end{equation*}
$$

and also for cohomology. This allows us to compute the De Rham cohomology of these algebras.

In Section 2, by using the quasi-isomorphisms (*) we obtain complexes simpler than the canonical ones, whose homologies are respectively the Hochschild homolugy and cohomology of an Ore extension of $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$. We finish our paper studying some concrete examples.

1. The Hochschild (co)homology of $S_{\mathrm{Q}, \mathbf{P}}^{r}(\mathbf{X})$

Let k be an arbitrary commutative ring and $0 \leq r \leq n$ be two integers, $\mathbf{Q}=\left(q_{i j}\right)_{1 \leq i, j \leq n}$ and $\mathbf{P}=\left(p_{i j}\right)_{1 \leq i<j \leq n}$ two families of elements of k verifying $q_{i i}=1, q_{i j} q_{j i}=1$ for all $i<j$ and $p_{i j}=0$ for all $j>r$. Let us denote $A=S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$ the k-algebra generated by $x_{1}, \ldots, x_{n}, x_{r \mid 1}^{-1}, \ldots, x_{n}^{-1}$ and the relations $x_{j} x_{j}^{-1}=1=x_{j}^{-1} x_{j}(r<j \leq n)$ and $x_{j} x_{i}=q_{i j} x_{i} x_{j}+$ $p_{i j}(1 \leq i<j \leq n)$ and $A^{e}=A \otimes A^{\mathrm{Op}}$ the enveloping algebra of A. As usual, we consider A as a left and a right A^{e}-module with the actions given by $\left(P_{0} \otimes P_{1}\right) \cdot P=P_{0} P P_{1}$ and $P .\left(P_{0} \otimes P_{1}\right)=P_{1} P P_{0}$, respectively. In this section we find a free resolution $X_{*}^{\prime}(A)$ of A as a left A^{e}-module, simpler than the Hochschild resolution $\left(A \otimes \bar{A}^{\otimes^{*}} \otimes A, b_{*}^{\prime}\right)$ and homotopy equivalence maps $\theta_{*}^{\prime}: X_{*}^{\prime}(A) \rightarrow\left(A \otimes \bar{A}^{\otimes^{*}} \otimes A, b_{*}^{\prime}\right)$ and $\tau_{*}^{\prime}:\left(A \otimes \bar{A}^{\otimes^{*}} \otimes\right.$ $\left.A, b_{*}^{\prime}\right) \rightarrow X_{*}^{\prime}(A)$. By applying these results we obtain, for every A-bimodule M, a complex $X_{*}(M)$ whose homology is the Hochschild homology of A with coefficients in M, and quasi-isomorphisms $\theta_{*}: X_{*}(M) \rightarrow\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right)$ and $\tau_{*}:\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right) \rightarrow$ $X_{*}(M)$. We use these explicit construction in the following section. When $r=0$ and k is a characteristic zero field, the complexes $X_{*}^{\prime}(A)$ and $X_{*}(M)$ and the morphisms θ_{*}^{\prime} and θ_{*} were found in [8].

The resolution $X_{*}^{\prime}(A)$. Let V be the graded k-module freely generated by the homogeneous elements

$$
y_{1}, \ldots, y_{n}, \quad y_{r+1}^{-1}, \ldots, y_{n}^{-1}, \quad z_{1}, \ldots, z_{n}, \quad z_{r+1}^{-1}, \ldots, z_{n}^{-1}, \quad e_{1}, \ldots, e_{n},
$$

where the degree of the e_{i} 's is 1 and the degree of other elements is 0 . Let us consider the free graded differential k-algebra $X_{*}^{\prime}(A)=\left(X_{*}^{\prime}, \partial_{*}^{\prime}\right)$ generated by V and the relations

$$
\begin{aligned}
& y_{j} y_{i}=q_{i j} y_{i} y_{j}+p_{i j}, \quad z_{j} z_{i}=q_{i j} z_{i} z_{j}+p_{i j}, \quad z_{j} y_{i}=q_{i j} y_{i} z_{j}+p_{i j}, \\
& y_{i}^{-1} y_{i}=y_{i} y_{i}^{-1}=z_{i}^{-1} z_{i}=z_{i} z_{i}^{-1}=1 \\
& e_{j} e_{i}=-q_{i j} e_{i} e_{j}, \quad e_{i}^{2}=0, \quad e_{j} y_{i}=q_{i j} y_{i} e_{j}, \quad e_{j} z_{i}=q_{i j} z_{i} e_{j},
\end{aligned}
$$

for $i<j$, and boundary map defined by $\partial_{1}^{\prime}\left(e_{i}\right)=z_{i}-y_{i}$. The action of A^{e} in $X_{*}^{\prime}(A)$ given by $\left(x_{i} \otimes 1\right) \cdot P=y_{i} P$ and $\left(1 \otimes x_{i}\right) \cdot P=P z_{i}$ for all $P \in X_{*}^{\prime}$, gives $X_{*}^{\prime}(A)$ the structure a left graded differential A^{e}-module.

Note. In Theorem 1.6 we show that the complex $X_{*}(A)=A \otimes_{A^{*}} X_{*}^{\prime}(A)$ gives the Hochschild homology of A. In this complex the e_{i} 's play the role of the differentials forms $\mathrm{d} x_{i}$'s. This is particularly true in the classical case $A=k\left[x_{1}, \ldots, x_{n}\right]$.

Notations 1.1. We use the following notations:
(1) Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ be an n-tuple built up of non-negative integers m_{1}, \ldots, m_{r} and arbitrary integers m_{r+1}, \ldots, m_{n}. For every integer j between 1 and n we set

$$
\begin{array}{lc}
\mathbf{Y}^{\mathbf{m}}=y_{1}^{m_{1}} \ldots y_{n}^{m_{n}}, \quad \mathbf{Y}_{<i}^{\mathbf{m}}=y_{1}^{m_{1}} \ldots y_{i-1}^{m_{i}-1} \\
\mathbf{Y}_{>i}^{\mathrm{m}}=y_{i+1}^{m_{i+1}} \ldots y_{n}^{m_{n}}, \quad \mathbf{Y}_{\leq i}^{\mathbf{m}}=\mathbf{Y}_{<i}^{\mathbf{m}} y_{i}^{m_{i}}, \quad \mathbf{Y}_{\geq i}^{\mathbf{m}}=y_{i}^{m_{i}} \mathbf{Y}_{>i}^{\mathbf{m}} .
\end{array}
$$

Similarly we define $\mathbf{X}^{\mathbf{m}}, \mathbf{Z}^{\mathbf{m}}, \mathbf{X}_{<i}^{\mathbf{m}}, \mathbf{Z}_{<i}^{\mathbf{m}}$, etc.
(2) Given $1 \leq i_{j}<\cdots<i_{s} \leq n$ we set $e_{i_{s} \ldots i_{j}}=e_{i_{s}} \ldots e_{i_{j}}$.

Lemma 1.2. Let

$$
\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right)= \begin{cases}\sum_{l=0}^{m_{i}-1} \mathbf{Y}_{<i}^{\mathbf{m}} y_{i}^{l} e_{i} z_{i}^{m_{i}-l-1} \mathbf{Z}_{>i}^{\mathrm{m}} & \text { if } m_{i}>0 \\ 0 & \text { if } m_{i}=0 \\ -\sum_{l=m_{i}}^{-1} \mathbf{Y}_{<i}^{\mathrm{m}} y_{i}^{l} e_{i} z_{i}^{m_{i}-l-1} \mathbf{Z}_{>i}^{\mathrm{m}} & \text { if } m_{i}<0\end{cases}
$$

The following results hold:
(1) $\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}} y_{j}\right)=\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right) z_{j} \quad$ if $i<j$,
(2) $\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}} y_{i}\right)=\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right) z_{i}+\mathbf{Y}_{\leq i}^{\mathrm{m}} \mathbf{Z}_{>i}^{\mathrm{m}} e_{i}$,
(3) $\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}} y_{j}\right)=\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right) y_{j} \quad$ if $i>j$,
(4) $\partial_{1}^{\prime}\left(\sum_{j>i} \widetilde{\mathrm{~T}}_{j}\left(\mathbf{Y}^{\mathbf{m}}\right)\right)=\mathbf{Y}^{\mathbf{m}}-\mathbf{Y}_{\leq i}^{\mathbf{m}} \mathbf{Z}_{>i}^{\mathrm{m}}$.

Proof. The first and fourth equality are easily checked. We prove the second by induction on $s=\left|m_{i+1}\right|+\cdots+\left|m_{n}\right|$ and leave the third to the reader. When $s=0$ the result can be easily proved by a direct computation. Suppose that $s>0$ and write $\mathbf{Y}^{m}=y_{1}^{m_{1}} \ldots y_{u}^{m_{u}}$ with $m_{u} \neq 0$. First of all consider the case $m_{u}>0$. Let $\mathbf{Y}^{\mathbf{m}^{\prime}}=y_{1}^{m_{1}} \ldots y_{u}^{m_{u}-1}$. Because of (1) and the inductive hypothesis we have

$$
\begin{aligned}
\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}} y_{i}\right) & =\widetilde{\mathrm{T}}_{i}\left(q_{i u} \mathbf{Y}^{\mathbf{m}^{\prime}} y_{i} y_{u}+p_{i u} \mathbf{Y}^{\mathbf{m}^{\prime}}\right) \\
& =q_{i u} \widetilde{\mathrm{~T}}_{i}\left(\mathbf{Y}^{\mathbf{m}^{\prime}} y_{i}\right) z_{u}+p_{i u} \widetilde{\mathrm{~T}}_{i}\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right) \\
& =q_{i u} \widetilde{\mathrm{~T}}_{i}\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right) z_{i} z_{u}+q_{i u} \mathbf{Y}_{\leq \leq i}^{\mathrm{m}^{\prime}} \mathbf{Z}_{>i}^{\mathbf{m}_{i}^{\prime}} e_{i} z_{u}+p_{i u} \widetilde{\mathrm{~T}}_{i}\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right) \\
& =\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right) z_{u} z_{i}+\mathbf{Y}_{\leq i}^{\mathrm{m}^{\prime}} \mathbf{Z}_{>i}^{\mathbf{m}^{\prime}} z_{u} e_{i} \\
& =\widetilde{\mathrm{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right) z_{i}+\mathbf{Y}_{\leq i}^{\mathbf{m}} \mathbf{Z}_{>i}^{\mathbf{m}} e_{i} .
\end{aligned}
$$

The case $m_{u}<0$ is similar.

Proposition 1.3. Let $X_{*}^{\prime}(A)$ be as defined above and $\mu: X_{0}^{\prime} \rightarrow A$ the morphism of algebras given by $\mu\left(y_{i}\right)=\mu\left(z_{i}\right)=x_{i}$. The complex

$$
A \stackrel{\mu}{\longleftarrow} X_{0}^{\prime} \stackrel{\partial_{1}^{\prime}}{\leftrightarrows} X_{1}^{\prime} \stackrel{\partial_{2}^{\prime}}{\leftarrow} X_{2}^{\prime} \stackrel{\partial_{3}^{\prime}}{\leftrightarrows} X_{3}^{\prime} \stackrel{\partial_{4}^{\prime}}{\leftrightarrows} \ldots
$$

is contractible as a complex of left $A^{\mathrm{Op}_{-}}$modules, with contracting homotopy $\varepsilon_{0}: A \rightarrow X_{0}^{\prime}$ and $\varepsilon_{s}: X_{s-1}^{\prime} \rightarrow X_{s}^{\prime}(s>0)$, given by

$$
\begin{aligned}
& \varepsilon_{0}(1)=1, \quad s_{1}\left(\mathbf{Y}^{\mathbf{m}}\right)-\sum_{i=1}^{n} \widetilde{\mathbf{T}}_{i}\left(\mathbf{Y}^{\mathbf{m}}\right) \\
& \varepsilon_{s+1}\left(\mathbf{Y}^{\mathbf{m}} e_{i_{s, \ldots}, i_{1}}\right)=\sum_{i_{\mathrm{c}+1}>i_{s}} \widetilde{\mathrm{~T}}_{i_{s+1}}\left(\mathbf{Y}^{\mathbf{m}}\right) e_{i_{s, \ldots}, i_{1}} \quad\left(s \geq 1,1 \leq i_{1}<\cdots<i_{s} \leq n\right) .
\end{aligned}
$$

Proof. We must prove that $\mu \circ \varepsilon_{0}=i d, \varepsilon_{0} \circ \mu+\partial_{1}^{\prime} \circ \varepsilon_{1}$ and $\varepsilon_{s} \circ \partial_{s}^{\prime}=\partial_{s+1}^{\prime} \circ \varepsilon_{s+1}$. We prove the last one and leave the other to the reader. In order to simplify notation we set $\mathbf{E}_{j}=e_{i_{c} \ldots i_{i+1}}\left(z_{i_{j}}-y_{i_{j}}\right) e_{i_{j-1} \ldots i_{1}}$. By the above lemma we have

$$
\begin{aligned}
\varepsilon_{s} \circ \partial_{s}^{\prime}\left(\mathbf{Y}^{\mathbf{m}} e_{i_{s} . . i_{1}}\right) & =\varepsilon_{s}\left(\sum_{j=1}^{s}(-1)^{s-j} \mathbf{Y}^{\mathbf{m}} \mathbf{E}_{j}\right) \\
& =\sum_{j=1}^{s}(-1)^{s-j} \sum_{i_{s+1}>i_{s}} \widetilde{\mathbf{T}}_{i_{s+1}}\left(\mathbf{Y}^{\mathbf{m}}\right) \mathbf{E}_{j}+\mathbf{Y}_{\leq i_{s}}^{\mathbf{m}} \mathbf{Z}_{>i_{s}}^{\mathbf{m}} e_{i_{s, \ldots i_{1}}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{s+1}^{\prime} \circ \varepsilon_{s+1}\left(\mathbf{Y}^{\mathbf{m}} e_{i_{s} \ldots i_{l}}\right)=\hat{\partial}_{s+1}^{\prime}\left(\sum_{i_{s+1}>i_{s}} \widetilde{\mathrm{~T}}_{i_{s+1}}\left(\mathbf{Y}^{\mathbf{m}}\right) e_{i_{s} \ldots i_{1}}\right) \\
& \quad=\left(\mathbf{Y}^{\mathbf{m}}-\mathbf{Y}_{\leq i_{s}}^{\mathbf{m}} \mathbf{Z}_{>i_{s}}^{\mathbf{m}}\right) e_{i_{s, \ldots, i}}-\sum_{i_{s+1}>i_{s}} \sum_{j=1}^{s}(-1)^{s-j} \widetilde{\mathbf{T}}_{i_{s+1}}\left(\mathbf{Y}^{\mathbf{m}}\right) \mathbf{E}_{j} .
\end{aligned}
$$

Let us consider the families of morphisms of left A^{e}-modules

$$
\theta_{*}^{\prime}: X_{*}^{\prime} \rightarrow A \otimes \bar{A}^{\otimes^{\prime \prime}} \otimes A \quad \text { and } \quad \tau_{*}^{\prime}: A \otimes \bar{A}^{\otimes^{*}} \otimes A \rightarrow X_{*}^{\prime}
$$

recursively defined by

$$
\begin{aligned}
& \theta_{0}^{\prime}(1 \otimes 1)=1 \otimes 1 \\
& \theta_{s+1}^{\prime}\left(e_{i_{s+1} \ldots i_{1}}\right)=1 \otimes\left(\theta_{s}^{\prime} \circ \partial_{s+1}^{\prime}\left(e_{i_{s+1} \ldots i_{1}}\right)\right) \\
& \tau_{0}^{\prime}(1 \otimes 1)=1 \otimes 1 \\
& \tau_{s+1}^{\prime}\left(1 \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(s+1)} \otimes 1\right) \\
& \quad=\varepsilon_{s+1} \circ \tau_{s}^{\prime} \circ b_{s+1}^{\prime}\left(1 \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m (s + 1)}} \otimes 1\right)
\end{aligned}
$$

By induction we can show that

$$
\theta_{*}^{\prime}: X_{*}^{\prime}(A) \rightarrow\left(A \otimes \bar{A}^{\otimes *} \otimes A, b_{*}^{\prime}\right) \quad \text { and } \quad \tau_{*}^{\prime}:\left(A \otimes \bar{A}^{\otimes^{*}} \otimes A, b_{*}^{\prime}\right) \rightarrow X_{*}^{\prime}(A)
$$

are chain homomorphisms.
Proposition 1.4. Given a permutation $\sigma \in S_{s}$ let us write $\operatorname{sg}_{q}(\sigma)=\prod_{h>j, \sigma(h)<\sigma(j)} \times$ $\left(-q_{i_{\sigma(h)} i_{\sigma(i)}}\right)$. We have:
(1) $\theta_{s}^{\prime}\left(e_{i_{s} \ldots i_{1}}\right)=\sum_{\sigma \in S_{s}} \operatorname{sg}_{q}(\sigma) \otimes x_{i_{\sigma s,} \mid} \otimes \cdots \otimes x_{i_{\sigma(1)}} \otimes 1 \quad\left(1 \leq i_{1}<\cdots<i_{s} \leq n\right)$,
(2) $\tau_{s}^{\prime}\left(1 \otimes \mathbf{X}^{\mathbf{m}(s)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right)=\sum_{1 \leq i_{1}<\cdots<i_{s} \leq n} \widetilde{\mathrm{~T}}_{i_{s}}\left(\mathbf{Y}^{\mathbf{m}(s)}\right) \ldots \widetilde{\mathbf{T}}_{i_{1}}\left(\mathbf{Y}^{\mathbf{m}(1)}\right)$.

Proof. (1) Assuming the equation valid for θ_{s}^{\prime} we conclude that $1 \otimes \theta_{s}^{\prime}\left(e_{i_{s} \ldots i_{1}} \mathbf{Z}^{\mathbf{m}}\right)=0$ for every $\mathbf{Z}^{\mathbf{m}}$. Using this fact we obtain

$$
\begin{aligned}
\theta_{s+1}^{\prime}\left(e_{i_{s+1} \ldots i_{1}}\right)= & \sum_{j=1}^{s+1} 1 \otimes\left(\theta_{s}^{\prime}\left((-1)^{s-j} e_{i_{s+1} \ldots i_{i+1}}\left(y_{i_{j}}-z_{i_{j}}\right) e_{i_{j-1} \ldots i_{1}}\right)\right) \\
= & \sum_{j=1}^{s+1} 1 \otimes\left(\prod_{l=j+1}^{s+1}\left(-q_{i i_{l}}\right) \theta_{s}^{\prime}\left(y_{i j} e_{i_{s+1}, \hat{i}_{j}, i_{1}}\right)\right) \\
& -\sum_{j=1}^{s+1} 1 \otimes\left((-1)^{s-l} \prod_{l=1}^{j-1} q_{i l j} \theta_{s}^{\prime}\left(e_{i_{s+1} \ldots \hat{j}, \ldots, i_{1}} z_{i_{j}}\right)\right) \\
= & \sum_{\sigma \in S_{s+1}} \operatorname{sg}_{q}(\sigma) \otimes x_{i_{\sigma(s+1)}} \otimes \cdots \otimes x_{i_{\sigma(1)}} \otimes 1
\end{aligned}
$$

(2) Assuming that the equation is valid for τ_{s}^{\prime} it is easy to show that $\varepsilon_{s+1} \circ \tau_{s}^{\prime}(1 \otimes$ $\left.\mathbf{X}^{\mathbf{m}(s)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right)=0$, for all $\mathbf{X}^{\mathbf{m}(1)}, \ldots, \mathbf{X}^{\mathbf{m}(s)}$. Using this fact and the equation (3) of Lemma 1.2 we obtain that

$$
\begin{aligned}
& \tau_{s+1}^{\prime}\left(1 \otimes \mathbf{X}^{\mathbf{m}(s+1)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right) \\
& \quad=\varepsilon_{s+1} \circ \tau_{s}^{\prime} \circ b_{s+1}^{\prime}\left(1 \otimes \mathbf{X}^{\mathbf{m}(s+1)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right) \\
& \quad=\varepsilon_{s+1} \circ \tau_{s}^{\prime}\left(\mathbf{X}^{\mathbf{m}(s+1)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right) \\
& =\varepsilon_{s+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{s} \leq n} \mathbf{Y}^{\mathbf{m}(s+1)} \widetilde{T}_{i_{\mathrm{s}}}\left(\mathbf{Y}^{\mathbf{m}(s)}\right) \ldots{\widetilde{T_{i}}}^{(}\left(\mathbf{Y}^{\mathbf{m}(1)}\right)\right) \\
& =\sum_{1 \leq i_{1}<\cdots<i_{s+1} \leq n} \widetilde{\mathbf{T}}_{i_{s+1}}\left(\mathbf{Y}^{\mathbf{m}(s+1)}\right) \ldots \widetilde{\mathbf{T}}_{i_{1}}\left(\mathbf{Y}^{\mathbf{m}(1)}\right) .
\end{aligned}
$$

1.1. The Hochschild (co)homology of A

Remark 1.5. Let M be an A-bimodule. We consider the complexes $X *(M)=M \otimes_{A^{e}}$ $X_{*}^{\prime}(A)$ and $X^{*}(M)=\operatorname{Hom}_{A^{e}}\left(X_{*}^{\prime}(A), M\right)$ and the morphisms

$$
\begin{aligned}
\theta_{*} & =i d_{M} \otimes_{A^{e}} \theta_{*}^{\prime}, \quad \tau_{*}=i d_{M} \otimes_{A^{e}} \tau_{*}^{\prime}, \quad \theta^{*}=\operatorname{Hom}_{A^{e}}\left(\theta_{*}^{\prime}, M\right) \quad \text { and } \\
\tau^{*} & =\operatorname{Hom}_{A^{e}}\left(\tau_{*}^{\prime}, M\right)
\end{aligned}
$$

An easy computation shows that
(1) $X_{*}(M): \quad M \stackrel{\partial_{1}}{\longleftarrow} X_{1} \stackrel{\partial_{2}}{\longleftarrow} X_{2} \stackrel{\partial_{3}}{\longleftarrow} \cdots \stackrel{\partial_{n}}{\longleftarrow} X_{n} \longleftarrow 0$, where

$$
\begin{aligned}
& X_{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M e_{i_{s} \ldots i_{1}}, \\
& \partial_{s}\left(m e_{i_{s} \ldots i_{1}}\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\prod_{l=1}^{j-1} q_{i i_{j}} x_{i j} m-\prod_{l=j+1}^{s} q_{i i_{l}} m x_{i_{j}}\right) e_{i_{s, \ldots} \ldots \ldots i_{1}},
\end{aligned}
$$

(2) $X^{*}(M): M \xrightarrow{\partial^{1}} X^{1} \xrightarrow{\partial^{2}} X^{2} \xrightarrow{\partial^{3}} \cdots \xrightarrow{\partial^{n}} X^{n} \longrightarrow 0$, where

$$
\begin{aligned}
& X^{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M i_{i_{s, \ldots}, i_{1}}, \\
& \partial^{s \mid 1}\left(m e_{i_{s} \ldots i_{1}}\right)=\sum_{j=0}^{s} \sum_{h=i_{j}+1}^{i_{i+i}-1}(-1)^{s-j}\left(\prod_{l=1}^{j} q_{i / h} m x_{h}-\prod_{l=j+1}^{s} q_{h, i_{l}} x_{h} m\right) e_{i_{s, \ldots}, i_{j+1} h h_{j} \ldots i_{1}}
\end{aligned}
$$

(3) $\theta_{*}: X_{*}(M) \rightarrow\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right), \tau_{*}:\left(M \otimes \bar{A}^{\otimes^{*}}, b_{*}\right) \rightarrow X_{*}(M), \theta^{*}: \operatorname{Hom}_{A^{e}}((A \otimes$ $\left.\left.\bar{A}^{\otimes} \otimes A, b_{*}^{\prime}\right), M\right) \rightarrow X^{*}(M)$ and $\tau^{*}: X^{*}(M) \rightarrow \operatorname{Hom}_{A^{e}}\left(\left(A \otimes \bar{A}^{\otimes^{*}} \otimes A, b_{*}^{\prime}\right), M\right)$ are given by

$$
\begin{aligned}
& \theta_{s}\left(m e_{i_{s, \ldots}, i_{1}}\right)=\sum_{\sigma \in S_{s}} \operatorname{sg}_{q}(\sigma) m \otimes x_{i_{\sigma(s)}} \otimes \cdots \otimes x_{i_{\sigma}(1)} \\
& \theta^{s}(f)=\sum_{1 \leq i_{1}<\cdots<i_{s} \leq n}\left(\sum_{\sigma \in S_{s}} f\left(\operatorname{sg}_{q}(\sigma) \otimes x_{i_{\sigma(s)}} \otimes \cdots \otimes x_{i_{\sigma(1)}} \otimes 1\right)\right) e_{i_{s} \ldots i_{1}} \\
& \tau_{s}\left(m \otimes \mathbf{X}^{\mathbf{m}(s)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)}\right)=\sum_{1 \leq i_{1}<\cdots<i_{s} \leq n} \gamma_{s}\left(m \otimes \widetilde{T}_{i_{s}}\left(\mathbf{Y}^{\mathbf{m}(s)}\right) \ldots{\widetilde{T_{i}}}_{i_{1}}\left(\mathbf{Y}^{\mathbf{m}(1)}\right)\right), \\
& \tau^{s}\left(m e_{i_{s, \ldots}}\right)\left(1 \otimes \mathbf{X}^{\mathbf{m}(s)} \otimes \cdots \otimes \mathbf{X}^{\mathbf{m}(1)} \otimes 1\right)=\gamma^{s}(m)\left(\widetilde{T}_{i_{s}}\left(\mathbf{Y}^{\mathbf{m}(s)}\right) \ldots \widetilde{T}_{i_{1}}\left(\mathbf{Y}^{\mathrm{m}(1)}\right)\right),
\end{aligned}
$$

where $\gamma_{s}: M \otimes X_{s}^{\prime}(A) \rightarrow X_{s}(M)$ is the morphism sending the element $m \otimes \mathbf{Y}^{\mathbf{m}_{1}} e_{i_{1} \ldots i_{s}} \mathbf{Z}^{\mathbf{m}_{2}}$ to $\mathbf{X}^{\mathbf{m}_{2}} m \mathbf{X}^{\mathbf{m}_{1}} e_{i_{1} \ldots i_{c}}$ and $\gamma^{s}(m): X_{s}^{\prime}(A) \rightarrow M$ is the morphism of A^{e}-modules sending the element $e_{i_{s} \ldots i_{1}}$ to m and $e_{i_{s}^{\prime} \ldots i_{1}^{\prime}}$ to 0 if some i_{j}^{\prime} is different from i_{j}.

Theorem 1.6. Let M be an A-bimodule and let $X_{*}(M), X^{*}(M), \theta_{*}, \theta^{*}, \tau_{*}$ and τ^{*} be as defined above. We have:
(1) The Hochschild homology $\mathrm{H}_{*}(A, M)$ of A with coefficients in M is the homology of $X_{*}(M)$. Moreover, θ_{*} and τ_{*} are chain maps that induce isomorphisms in homology which are inverse of each other,
(2) The Hochschild cohomology $\mathrm{H}^{*}(A, M)$ of A with coefficients in M is the cohomology of $X^{*}(M)$. Moreover θ^{*} and τ^{*} are chain maps that induce isomorphisms in homology which are inverse of each other.

Proof. It is an immediate consequence of Propositions 1.3 and 1.4.

1.2. The De Rham cohomology of A

Let $\widetilde{B}_{*}: X_{*}(A) \rightarrow X_{*}(A)[-1]$ the morphism of complexes given by

$$
\widetilde{B}_{s}\left(X^{\mathbf{m}} e_{i_{s, \ldots}, i_{1}}\right)=\sum_{j=0}^{s}(-1)^{s-j} \prod_{l=1, h=j+1}^{j, s} q_{i, i_{h}} \sum_{v=i_{j}+1}^{i_{+1}-1} \overline{\mathrm{~T}}_{v}^{j_{j}, \ldots i_{1}}\left(\mathbf{X}^{\mathbf{m}}\right) e_{i_{s, \ldots j+1}} v j_{j, \ldots},
$$

where

$$
\overline{\mathrm{T}}_{v}^{i_{s}, i_{1}}\left(\mathbf{X}^{\mathbf{m}}\right)= \begin{cases}\sum_{l=0}^{m_{r}-l} Q_{v, l}^{i_{i} . i_{1}} x_{v}^{m_{v}-l-1} X_{>v}^{\mathbf{m}} X_{<v}^{\mathbf{m}} x_{v}^{l} & \text { if } m_{v}>0 \\ 0 & \text { if } m_{v}=0 \\ -\sum_{l=m_{v}}^{-1} Q_{v, l}^{i_{j, i}, i_{1}} x_{v}^{m_{r}-l-1} X_{>v}^{\mathbf{m}} X_{<v}^{\mathbf{m}} x_{v}^{l} & \text { if } m_{v}<0\end{cases}
$$

with

$$
Q_{v, l}^{i_{s, \ldots} \ldots i_{1}}=\prod_{i_{t}>v}\left(q_{v, i_{t}}^{l} \prod_{h=1}^{v-1} q_{h, i_{i}}^{m_{i}}\right) \prod_{i_{t}<v}\left(q_{i_{t}}^{m_{t}-l-1} \prod_{h=v+1}^{n} q_{i_{t} h}^{m_{h}}\right)
$$

Corollary 1.7. The De Rham cohomology $\mathrm{H}_{D R}^{*}(A)$ of A is the cohomology of the following complex:

$$
0 \rightarrow \mathrm{H}_{0}\left(X_{*}(A)\right) \xrightarrow{\tilde{B}_{0}} \mathrm{H}_{1}\left(X_{*}(A)\right) \xrightarrow{\tilde{B}_{1}} \mathrm{H}_{2}\left(X_{*}(A)\right) \xrightarrow{\tilde{B}_{2}} \cdots,
$$

where the map $\tilde{B}_{*}: \mathrm{H}_{*}\left(X_{*}(A)\right) \rightarrow \mathrm{H}_{*+1}\left(X_{*}(A)[-1]\right)$ is induced by $\tilde{B}_{*}: X_{*}(A) \rightarrow$ $X_{*}(A)[-1]$.

Proof. By definition, the De Rham cohomology of A is the cohomology of

$$
0 \rightarrow \mathrm{HH}_{0}(A) \xrightarrow{B_{0}} \mathrm{HH}_{1}(A) \xrightarrow{B_{1}} \mathrm{HH}_{2}(A) \xrightarrow{B_{2}} \cdots
$$

where $B_{*}: \mathrm{HH}_{*}(A) \rightarrow \mathrm{HH}_{*+1}(A)$ is induced by the map of complexes $B_{*}:\left(A \otimes \bar{A}^{\otimes^{*}}\right.$, $\left.b_{*}\right) \rightarrow\left(A \otimes \bar{A}^{\otimes^{*}}, b_{*}\right)[-1]$ given by

$$
B_{s}\left(a_{0} \otimes \cdots \otimes a_{s}\right)=\sum_{i=0}^{s}(-1)^{i s} \otimes a_{i} \otimes \cdots \otimes a_{s} \otimes a_{0} \otimes \cdots \otimes a_{i-1}
$$

The corollary follows then from the equality $\tilde{B}_{*}=\tau_{*+1} \circ B_{*} \circ \theta_{*}$.

Some concrete calculations. Now, we shall apply the results above to compute homology in the concrete examples below. The first example was studied in [8,9] under the hypothesis that k is a characteristic zero field and $r=0$ or $r=n$, and in [1] when k is an arbitrary field and $r=0$. Following the ideas of [8] we study here the case where k is an arbitrary field and $0 \leq r \leq n$. The second example was studied in [2].

Example 1.8. Let A be the k-algebra generated by the elements $x_{1}, \ldots, x_{n}, x_{r+1}^{-1}, \ldots, x_{n}^{-1}$ and the relations $x_{j} x_{j}^{-1}=1=x_{j}^{-1} x_{j}(r<j \leq n)$ and $x_{j} x_{i}=q_{i j} x_{i} x_{j} \quad(1 \leq i<j \leq n)$ (i.e. $p_{i j}=0$ for all i, j). Write C for the set of those n-tuples $\left(m_{1}, \ldots, m_{n}\right) \in(\mathbf{N} \cup\{0\})^{r} \times$ \mathbf{Z}^{n-r} satisfying the following two conditions:
(i) If $i \leq r$, then $m_{i}=0$ or $\prod_{l=1}^{n} q_{i l}^{m_{l}}=1$.
(ii) If $i>r$, then $\prod_{l=1}^{n} q_{i l}^{m \prime}=1$.

Proposition 1.9. Let A be as in the example above. Then:
(1) The Hochschild homology $\mathrm{HH}_{*}(A)$ of A is

$$
\mathrm{HH}_{s}(A)=\bigoplus_{\mathbf{m}_{i_{1}, \ldots s} \in C} k \cdot x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} e_{i_{s} \ldots i_{1}}
$$

where $\mathbf{m}_{i_{1} . . i_{s}}$ is the element of $(\mathbf{N} \cup\{0\})^{r} \times \mathbf{Z}^{n-r}$ whose jth coordinate is m_{j} if $j \notin\left\{i_{1}, \ldots, i_{s}\right\}$ and $m_{j}+1$ if $j \in\left\{i_{1}, \ldots, i_{s}\right\}$.
(2) Let $p \geq 0$ be the characteristic of k. Let us write $\bar{C}=\left\{\mathbf{m} \in C: p / m_{i}(i=1, \ldots, n)\right\}$. The De Rham cohomology $\mathrm{H}_{D R}^{*}(A)$ of A is

$$
\mathrm{H}_{D R}^{\mathrm{s}}(A)=\bigoplus_{\mathbf{m}_{i_{1}, \ldots s} \in \bar{C}} k \cdot x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} e_{i_{s} \ldots i_{l}} .
$$

Proof. (1) By Theorem $1.6 \mathrm{HH}_{*}(A)$ is the homology of the complex

$$
X_{*}(A): \quad A \stackrel{\hat{\omega}_{1}}{\longleftarrow} X_{1} \stackrel{\hat{\partial}_{2}}{\longleftarrow} X_{2} \stackrel{\hat{\partial}_{3}}{\leftrightarrows} \cdots \stackrel{\hat{\theta}_{n}}{\leftrightarrows} X_{n} \longleftarrow 0
$$

where

$$
\begin{aligned}
& X_{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} A e_{i_{s} \ldots i_{1}}, \\
& \partial_{s}\left(x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} e_{i_{s} \cdots i_{1}}\right)=\sum_{j=1}^{s} Q_{i_{j}}^{\mathbf{m}_{j}, i_{s}, \ldots, i_{1}} x_{1}^{m_{1}} \ldots x_{i_{j}}^{m_{j_{j}}+1} \ldots x_{n}^{m_{n}} e_{i_{s}, \ldots \hat{j}_{j} \ldots i_{l}},
\end{aligned}
$$

with

$$
Q_{i_{j}}^{\mathrm{m} . i_{s} \ldots . . i_{1}}=(-1)^{s-j}\left(\prod_{l=1}^{i_{j}-1} q_{l, i_{j}}^{m_{j}} \prod_{l=1}^{j-1} q_{i l j}-\prod_{l=i_{j}+1}^{n} q_{i_{j}}^{m} \prod_{l=j+1}^{s} q_{i_{j} i_{l}}\right)
$$

The complex $X_{*}(A)$ has a $(\mathbf{N} \cup\{0\})^{r} \times \mathbf{Z}^{n-r}$-gradation if we set $d g\left(x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} e_{i_{, ~}, \ldots i_{1}}\right)=$ $\mathbf{m}_{i_{1} \ldots i_{s}}$. For every multi-index $\bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbf{N} \cup\{0\})^{r} \times \mathbf{Z}^{n-r}$ let $X_{*}^{\bar{\alpha}}$ be the sub-
complex of $X_{*}(A)$ with gradation $\bar{\alpha}$. If $\bar{\alpha} \in C$, then the boundary map of $X_{*}^{\bar{\alpha}}$ is zero. If $\bar{\alpha} \notin C$, then $X_{*}^{\bar{x}}$ is exact. In fact, for every $1 \leq t \leq n$ we have $X_{*}(A)$ is the total complex of

where

$$
\begin{aligned}
& X_{0 s}^{t}=\bigoplus_{\substack{1 \leq i_{1}<\ldots<i_{s} \leq n \\
t \notin\left\{i_{1}, \ldots, i_{s}\right\}}} A e_{i_{s} \cdots i_{1}}, \quad X_{1 s}^{t}=\bigoplus_{\substack{1 \leq i_{1}<\ldots, i_{s} \leq n \\
t \in\left\{i_{1}, \ldots, i_{s}\right\}}} A i_{i_{s} \ldots i_{1}}, \\
& \partial_{0 s}^{t}\left(x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} e_{i_{s} \ldots i_{1}}\right)=\sum_{j=1}^{s} Q_{i_{j}}^{\mathbf{m}, i_{s}, \ldots, i_{1}} x_{1}^{m_{1}} \ldots x_{i_{j}}^{m_{i_{j}}+1} \ldots x_{n}^{m_{n}} e_{i_{, \ldots,}, \ldots i_{j}}, \\
& \partial_{1 s}^{t}\left(x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} e_{i_{s}, \ldots i_{1}}\right)=\sum_{\substack{j=1 \\
i_{j} \neq t}}^{s} Q_{i_{j}}^{\mathbf{m}, i_{s}, \ldots, i_{1}} x_{1}^{m_{1}} \ldots x_{i_{j}}^{m_{i_{j}}+1} \ldots x_{n}^{m_{n}} e_{i_{s} \ldots \hat{i}_{j} \ldots i_{1}}, \\
& \partial_{s}^{v}\left(x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} e_{i_{s} \ldots i_{1}}\right)=Q_{t}^{m, i_{s}, \ldots, i_{1}} x_{1}^{m_{1}} \ldots x_{t}^{m_{i}+1} \ldots x_{n}^{m_{n}} e_{i_{s} \ldots \hat{t} \ldots i_{1}} .
\end{aligned}
$$

Choosing t such that $\prod_{l=1}^{n} q_{t l}^{\alpha_{l}} \neq 1$ we obtain that the columns of $X_{* *}^{t}$ are exact. Now, the proof can be easily finished.
(2) A direct computation using Corollary 1.6 shows that the De Rham cohomology of A is the cohomology of

$$
0 \rightarrow \mathrm{HH}_{0}(A) \xrightarrow{\tilde{B}_{0}} \mathrm{H}_{1}(A) \xrightarrow{\tilde{B}_{1}} \mathrm{HH}_{2}(A) \xrightarrow{\tilde{B}_{2}} \cdots,
$$

where

$$
\tilde{B}_{s}\left(X^{\mathbf{m}} e_{i_{s} \ldots i_{1}}\right)=\sum_{j=0}^{s}(-1)^{s-j} \sum_{v=i_{j}+1}^{i_{j+1}-1} m_{v} \prod_{h<v} q_{v h}^{m_{h}} \prod_{i_{h}<v} q_{v, i_{h}} X_{<v}^{\mathbf{m}} x_{v}^{m_{\mathrm{t}}-1} X_{>v}^{\mathbf{m}} e_{i_{s} \ldots i_{j+1} v i_{j} \ldots i_{l}},
$$

for $\mathbf{m}_{i_{1} \ldots i_{s}} \in C$. The pronf follows as in part 1 .
Example 1.10. Let $m>1$ and q be an m th primitive root of unity. Let D_{q} be the k algebra generated by x_{1}, x_{1}^{-1}, x_{2} and the relations $x_{1} x_{1}^{-1}=x_{1}^{-1} x_{1}=1$ and $x_{2} x_{1}-q x_{1} x_{2}=1$. By Theorem 1.2 of [2], we have:

$$
\begin{aligned}
& \mathrm{HI}_{0}\left(D_{q}\right)=\bigoplus_{i \in \mathbf{Z}} k \cdot x_{1}^{i} \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k \cdot x_{1}^{u m} x_{2}^{v m}, \\
& \mathrm{III}_{1}\left(D_{q}\right)-\bigoplus_{i \in \mathbf{Z}} k \cdot x_{1}^{i} e_{1} \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k \cdot x_{1}^{u m-1} x_{2}^{v m} e_{1} \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k \cdot x_{1}^{u m} x_{2}^{v m-1} e_{2}, \\
& \mathrm{HH}_{2}\left(D_{q}\right)=\bigoplus_{u \in \mathbf{Z}, v>0} k \cdot \sum_{s=1}^{m} x_{1}^{u m-s} x_{2}^{v m-s} e_{2} e_{1} .
\end{aligned}
$$

Proposition 1.11. Let D_{q} be as in the above example. Then

$$
\begin{array}{lll}
\text { (1) } & B_{0}\left(x_{1}^{i}\right)=i x_{1}^{i-1} & (i \in \mathbf{Z}) \\
\text { (2) } & B_{0}\left(x_{1}^{u m} x_{2}^{v m}\right)=u m x_{1}^{u m-1} x_{2}^{v m} e_{1}+v m x_{1}^{u m} x_{2}^{v m-1} e_{2} & (u \in \mathbf{Z}, v>0) \\
\text { (3) } & B_{1}\left(x_{1}^{i} e_{1}\right)=0 & (i \in \mathbf{Z}) \tag{4}\\
\text { (4) } & B_{1}\left(x_{1}^{u m-1} x_{2}^{v m} e_{1}\right)=v m \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x_{1}^{u m-s} x_{2}^{v m-s} e_{2} e_{1} & (u \in \mathbf{Z}, v>0) \\
\text { (5) } & B_{1}\left(x_{1}^{u m} x_{2}^{v m-1} e_{2}\right)=u m \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x_{1}^{u m-s} x_{2}^{v m-s} e_{2} e_{1} & (u \in \mathbf{Z}, v>0)
\end{array}
$$

Proof. We prove (2) and (5), when $u>0$. The other equalities follow in a similar way. It results from the equalities $x_{2} x_{1}^{m}=x_{1}^{m} x_{2}$ and $x_{2}^{m} x_{1}=x_{1} x_{2}^{m}$ that

$$
\begin{aligned}
B_{0}\left(x_{1}^{u m} x_{2}^{v m}\right) & =\sum_{l=0}^{u m-1} x_{1}^{u m-l-1} x_{2}^{v m} x_{1}^{l} e_{1}+\sum_{l=0}^{v m-1} x_{2}^{v m-l-1} x_{1}^{u m} x_{2}^{l} e_{2} \\
& =u m x_{1}^{u m-1} x_{2}^{v m} e_{1}+v m x_{1}^{u m} x_{2}^{v m-1} e_{2}
\end{aligned}
$$

and

$$
B_{1}\left(x_{1}^{u m} x_{2}^{v m-1} e_{2}\right)=\sum_{l=0}^{u m-1} q^{l} x_{1}^{u m-l-1} x_{2}^{v m-1} x_{1}^{l} e_{2} e_{1}-u m x_{1}^{u m-1} x_{2}^{v m-1} e_{2} e_{1}+R,
$$

where R is a linear combination of terms of the type $x_{1}^{i} x_{2}^{j}$, with $i<u m-1$ and $j<$ $v m-1$. Now, using that $X_{3}\left(D_{q}\right)=0$ and $H_{2}\left(D_{q}\right)=\bigoplus_{u \in \mathbf{Z}, v>0} k . \sum_{s=1}^{m} x_{1}^{u m-s} x_{2}^{v m-s} e_{2} e_{1}$ we obtain that $B_{1}\left(x_{1}^{u m} x_{2}^{v m-1} e_{2}\right)=u m \sum_{s=1}^{m}(q /(1-q))^{s-1} x_{1}^{u m-s} x_{2}^{v m-s} e_{2} e_{1}$.

2. The Hochschild (co)homology of an Ore extension of $S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$

Let A be a k-algebra, $\alpha: A \rightarrow A$ a morphism of algebras and $\delta: A \rightarrow A$ an α-derivative (i.e. δ is a k-linear map verifying $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$ for each pair a, b of elements of A). The Ore extension $A[t, \alpha, \delta]$ associated to (A, α, δ) is the left A-module $A[t]$ consisting of polynomials in t with coefficients in A, with a structure of k-algebra given by $t a=\alpha(a) t+\delta(a)(a \in A)$. Now let $A=S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$ as in the previous section and $E=A[t, \alpha, \delta]$ be an Ore extension of A such that $\alpha\left(x_{i}\right)=\bar{q}_{i}^{-1} x_{i}$ with $\bar{q}_{i} \in k(1 \leq i \leq n)$. Given an E-bimodule M, positive integers $1 \leq i_{1}<\cdots<i_{s} \leq n$ and $I \leq v \leq n$, denote by $\overline{\mathrm{T}}_{v}^{i_{s} \ldots i_{1}}: M \times A \rightarrow M$ and $\overline{\mathrm{T}}_{v}^{i_{s} \ldots i_{1}}: A \times M \rightarrow M$ the bilinear maps defined by

$$
\overline{\mathrm{T}}_{v}^{i_{s} \ldots i_{1}}\left(m, \mathbf{X}^{\mathbf{m}}\right)= \begin{cases}\sum_{l=0}^{m_{v}-1} Q_{v, l}^{i_{s}, \ldots i_{1}} x_{v}^{m_{\mathrm{v}}-l-1} X_{>v}^{\mathrm{m}} m X_{<v}^{\mathbf{m}} x_{v}^{l} & \text { if } m_{v}>0 \\ 0 & \text { if } m_{v}=0, \\ -\sum_{l=m_{v}}^{-1} Q_{v, l}^{i_{s} \ldots i_{1}} x_{v}^{m_{v}-l-1} X_{>v}^{\mathbf{m}} m X_{<v}^{\mathbf{m}} x_{v}^{l} & \text { if } m_{v}<0\end{cases}
$$

and

$$
\overline{\mathrm{T}}_{v}^{i_{s} \ldots i_{1}}\left(\mathbf{X}^{\mathbf{m}}, m\right)= \begin{cases}\sum_{l=0}^{m_{v}-1} Q_{v, l}^{i_{s}, l_{1}} X_{<v}^{\mathbf{m}} x_{v}^{l} m x_{v}^{\boldsymbol{m}_{\mathrm{r}}-l-1} X_{>v}^{\mathbf{m}} & \text { if } m_{v}>0 \\ 0 & \text { if } m_{v}=0 \\ -\sum_{l=m_{v}}^{-1} Q_{v, l}^{t_{s} \ldots i_{1}} X_{<v}^{\mathbf{m}} x_{v}^{l} m x_{v}^{m_{v}-l-1} X_{>v}^{\mathbf{m}} & \text { if } m_{v}<0\end{cases}
$$

where

$$
Q_{v, l}^{i_{s, \ldots}, i_{i}}=\prod_{i_{t}>v}\left(q_{v, i_{t}}^{l} \prod_{h=1}^{v-1} q_{h, i_{t}}^{m_{h}}\right) \prod_{i_{i}<v}\left(q_{i_{i}}^{m_{r}-l-1} \prod_{h=v+1}^{n} q_{i_{t} h}^{m_{h}}\right)
$$

We obtain below complexes $X_{* *}(M)$ and $X^{* *}(M)$ whose homologies are, respectively, the Hochschild homology and cohomology of E with coefficients in M. Finally, using this result, we study the homology of some k-algebras, like $\mathcal{O}_{q}(M(2, k)), \mathcal{O}_{q^{2}}\left(s o k^{3}\right)$ and $U_{q}(s l(2, k))$, that appear naturally in the theory of quantum groups.

Notation 2.1. Let E and M be as above. We use the following notations:
(1) Let $X_{* *}(M)$ be the diagram
where

$$
\begin{aligned}
& X_{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M e_{i_{s} \ldots i_{1}}, \quad X_{s} w=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M e_{i_{s} \ldots i_{1}} w, \\
& \partial_{0 s}\left(m e_{i_{s} \ldots i_{1}}\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\prod_{l=1}^{j-1} q_{i i_{j}} x_{i_{j}} m-\prod_{l=j+1}^{s} q_{i_{j} i_{l}} m x_{i_{j}}\right) e_{i_{s} \ldots \hat{i}_{j} \ldots i_{1}}, \\
& \partial_{1 s}\left(m e_{i_{s . . i_{l}}} w\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\bar{q}_{i_{j}} \prod_{l=1}^{j-1} q_{i l i_{j}} x_{i_{j}} m-\prod_{l=j+1}^{s} q_{i_{i} i_{l}} m x_{i_{j}}\right) e_{i_{s} \ldots \hat{i}_{j} \ldots i_{1}} w, \\
& \varphi_{s}\left(m e_{i_{s} \ldots i_{1}} w\right)=(-1)^{s}\left(\left[\prod_{l=1}^{s} \bar{q}_{i_{l}} m t-t m\right] e_{i_{s} \ldots i_{1}}+\sum_{j=1}^{s} \sum_{u<j}(-1)^{j-u} \sum_{v=i_{j}+1}^{i_{j+1}-1}\right. \\
& \times \prod_{l=u+1}^{j} q_{i_{u} i_{l}} \overline{\mathrm{~T}}_{v}^{i_{s} \ldots \hat{i}_{u} \ldots i_{1}}\left(m, \delta\left(x_{i_{u}}\right)\right) e_{i_{s} \ldots i_{j+1} v i_{j} \ldots \hat{i}_{u} \ldots i_{1}} \\
& +\sum_{j=1}^{s} \sum_{v=i_{j-1}+1}^{i_{j+1}-1} \overline{\mathrm{~T}}_{v}^{i_{s} . . \hat{i}_{j \ldots i i_{1}}}\left(m, \delta\left(x_{i_{j}}\right)\right) e_{i_{s} \ldots i_{j+1} v i_{j-1} \ldots i_{1}}+\sum_{j=1}^{s} \sum_{u>j}(-1)^{u-j} \\
& \left.\times \sum_{v=i_{j-1}+1}^{i_{j}-1} \prod_{l=j}^{u-1} q_{i i_{i}} \overline{\mathrm{~T}}_{v}^{i_{j} \ldots \widehat{\hat{i}_{u}} \ldots i_{1}}\left(m, \delta\left(x_{i_{u}}\right)\right) e_{i_{s} \ldots \hat{i}_{u} \ldots i_{j} v i_{j-1} \ldots i_{1}}\right) .
\end{aligned}
$$

(2) Let $X^{* *}(M)$ be the diagram

where

$$
\begin{aligned}
& X^{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M e_{i_{s} \ldots i_{1}}, \quad X^{s} w=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} M e_{i_{s} \ldots i_{1}} w, \\
& \partial^{0 s}\left(m e_{i_{s} \ldots i_{1}}\right)=\sum_{j=0}^{s}(-1)^{s-j} \sum_{h=i_{j}+1}^{i_{j+1}-1}\left(\prod_{l=1}^{j} q_{i, h} m x_{h}-\prod_{l=j+1}^{s} q_{h, i_{l}} x_{h} m\right) e_{i_{s} . . i_{j+1} h i_{j} \ldots i_{l}}, \\
& \partial^{1 s}\left(m e_{i_{s} \ldots i_{1}} w\right)=\sum_{j=0}^{s}(-1)^{s-j} \sum_{h=i_{j}+1}^{i_{j+1}-1}\left(\bar{q}_{h} \prod_{l=1}^{j} q_{i, h} m x_{h}-\prod_{l=j+1}^{s} q_{h, i_{l}} x_{h} m\right) \\
& \times e_{i_{s} \ldots i_{j+1} h i_{j} \ldots i_{1}} w, \\
& \varphi^{s}\left(m e_{i_{s} \ldots i_{1}}\right)=(-1)^{s}\left(\left[\prod_{l=1}^{s} \bar{q}_{i_{l}} t m-m t\right] e_{i_{s} \ldots i_{1}} w+\sum_{j=1}^{s} \sum_{u<j}(-1)^{j-u}\right. \\
& \times \sum_{v=i_{u-1}+1}^{i_{u}-1} \prod_{l=u}^{j-1} q_{v, i_{l}} \overline{\mathrm{~T}}_{i_{j}}^{i_{s} \ldots i_{1}}\left(\delta\left(x_{v}\right), m\right) e_{i_{s} \ldots \widehat{i_{j}} \ldots i_{u} v i_{u-1} \ldots i_{l}} \\
& +\sum_{j=1}^{s} \sum_{v=i_{j-1}+1}^{i_{j+1}-1} \overline{\mathrm{~T}}_{i_{j}}^{i_{s} \ldots i_{1}}\left(\delta\left(x_{v}\right), m\right) e_{i_{s} \ldots i_{j+1}} v_{j-1} \ldots i_{1} \\
& +\sum_{j=1}^{s} \sum_{u>j}(-1)^{u-j} \sum_{v=i_{c}+1}^{i_{t+1}-1} \prod_{l=j+1}^{u} q_{i v} \overline{\mathrm{~T}}_{i_{j}}^{i_{s}, \ldots i_{1}}\left(\delta\left(x_{v}\right), m\right) \\
& \left.\times e_{i_{s} \ldots i_{u+} v i_{u} \ldots \hat{i}_{j} \ldots i_{1}}\right) .
\end{aligned}
$$

Theorem 2.2. Let $A=S_{\mathbf{Q}, \mathbf{P}}^{r}(\mathbf{X})$ as in the previous section, $E=A[t, \alpha, \delta]$ an Ore extension of A such that $\alpha\left(x_{i}\right)=\bar{q}_{i}^{-1} x_{i}$ with $\bar{q}_{i} \in k(1 \leq i \leq n)$ and M be an E-bimodule. The diagrams $X_{* *}(M)$ and $X^{* *}(M)$ are double complexes. Moreover the Hochschild homology $\mathrm{H}_{*}(E, M)$ of E with coefficients in M is the homology of $X_{* *}(M)$ and the Hochschild cohomology $\mathrm{H}^{*}(E, M)$ of E with coefficients in M is the cohomology of $X^{* *}(M)$.

Proof. By Theorem 1.4 of [1] the Hochschild homology $\mathrm{H}_{*}(E, M)$ of E with coefficients in M is the homology of the complex

where the vertical and horizontal maps are defined by

$$
\begin{aligned}
b_{0 s}\left(a_{0} \otimes \cdots \otimes a_{s}\right)= & \sum_{i=0}^{s-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{s} \\
& +(-1)^{s} a_{s} a_{0} \otimes a_{1} \otimes \cdots \otimes a_{s-1}, \\
b_{1 s}\left(a_{0} \otimes \cdots \otimes a_{s}\right)= & \sum_{i=0}^{s-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{s} \\
& +(-1)^{s} \alpha^{-1}\left(a_{s}\right) a_{0} \otimes a_{1} \otimes \cdots \otimes a_{s-1}, \\
\psi_{s}\left(a_{0} \otimes \cdots \otimes a_{s}\right)= & (-1)^{s}\left(a_{0} t \otimes \alpha^{-1}\left(a_{1}\right) \otimes \cdots \otimes \alpha^{-1}\left(a_{s}\right)-t a_{0} \otimes a_{1} \otimes \cdots \otimes a_{s}\right. \\
& -\sum_{j=1}^{s} a_{0} \otimes \cdots \otimes a_{j-1} \otimes \delta \circ \alpha^{-1}\left(a_{j}\right) \\
& \left.\otimes \alpha^{-1}\left(a_{j+1}\right) \otimes \cdots \otimes \alpha^{-1}\left(a_{s}\right)\right) .
\end{aligned}
$$

A direct computation shows that $\varphi_{*}=\tau_{*} \circ \psi_{*} \circ \theta_{*}$. To prove the assertion for Hochschild homology, note that there is a diagram of quasi-isomorphisms

$$
X_{* *}(M) \stackrel{\sim}{\sim} Z_{* *}(M) \stackrel{\sim}{\sim} Y_{* *}(M),
$$

where

To prove our cohomology assertion, proceed as follows: Note $X_{* *}\left(E^{e}\right)$ is a free resolution of E as a left E^{e}-module. Consequently, the Hochschild cohomology of E with coefficients in M is the cohomology of $\operatorname{Hom}_{E^{e}}\left(X_{* *}\left(E^{e}\right), M\right)$. One
checks that the latter complex is isomorphic to $X^{* *}(M)$. This concludes the proof.
2.3. A filtration of $X_{* *}(E)$. Now we consider a filtration of $X_{* *}(E)$ which can be useful for the computing. Let $E=A[t, \alpha, \delta]$ be as in Theorem 2.2. For each $v \geq 0$ denote $F_{* *}^{v}(E)$ the subcomplex of $X_{* *}(E)$ defined by

$$
F_{0 s}^{v}(E)=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n}\left(\bigoplus_{j=0}^{v} A t^{j}\right) e_{i_{s} \ldots i_{1}}
$$

and

$$
F_{1 s}^{v}(E)=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n}\left(\bigoplus_{j=0}^{\nu-1} A t^{j}\right) e_{i_{s} \ldots i_{1}} w .
$$

Remark 2.3.1. $F_{* *}^{0}(E) \subseteq F_{* *}^{1}(E) \subseteq \ldots$ is a filtration of $X_{* *}(E)$ verifying

$$
X_{* *}(E)=\bigcup_{v \geq 0} F_{* *}^{v}(E)
$$

The graded complex $G_{* *}(E)=\bigoplus_{v \geq 0} F_{* *}^{v}(E) / F_{* *}^{v-1}(E)$ associated to this filtration is $G_{* *}(E)=X_{* *}(\operatorname{Gr}(E))$, where $\operatorname{Gr}(E)=A[t, \alpha, 0]$. That is

$$
G_{*}^{0}(E)=A \stackrel{\partial_{1}^{0}}{\longleftarrow} Y_{1} \stackrel{\partial_{1}^{0}}{\longleftarrow} Y_{2} \stackrel{\partial_{3}}{\longleftarrow} \cdots \stackrel{\partial_{n}^{0}}{\leftrightarrows} Y_{n} \longleftarrow 0,
$$

where

$$
\begin{aligned}
& Y_{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} A e_{i_{s} . . i_{1},} \\
& \partial_{s}^{0}\left(\mathbf{X}^{\mathbf{m}} e_{i_{s} . i_{i}}\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\prod_{l=1}^{j-1} q_{i i_{j}} x_{i_{j}} \mathbf{X}^{\mathbf{m}}-\prod_{l=j+1}^{s} q_{i_{j} i_{l}} \mathbf{X}^{\mathbf{m}} x_{i_{j}}\right) e_{i_{s} . . i_{j} \ldots i_{1}}
\end{aligned}
$$

and for $v>0$,

where

$$
Y_{s}=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} A e_{i_{s} \ldots i_{1}}, \quad Y_{s} w=\bigoplus_{1 \leq i_{1}<\cdots<i_{s} \leq n} A e_{i_{s} \ldots i_{1}} w,
$$

$$
\begin{aligned}
& \partial_{0 s}^{v}\left(\mathbf{X}^{\mathbf{m}} e_{i_{s} \ldots i_{1}}\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\prod_{l=1}^{j-1} q_{i_{i} i_{j}} x_{i_{j}} \mathbf{X}^{\mathbf{m}}-\bar{q}_{i_{j}}^{-v} \prod_{l=j+1}^{s} q_{i_{j} i_{l}} \mathbf{X}^{\mathbf{m}} x_{i_{j}}\right) e_{i_{s, \ldots}, \ldots, i_{1}}, \\
& \partial_{1 s}^{v-1}\left(\mathbf{X}^{\mathbf{m}} e_{i_{s, \ldots}, i_{1}} w\right)=\sum_{j=1}^{s}(-1)^{s-j}\left(\bar{q}_{i_{j}} \prod_{l=1}^{j-1} q_{i l i_{j}} x_{i_{j}} \mathbf{X}^{\mathbf{m}}-\bar{q}_{i_{j}}^{-v-1} \prod_{l=j+1}^{s} q_{i_{j} i_{l}} \mathbf{X}^{\mathbf{m}} x_{i_{j}}\right) e_{i_{s} \ldots i_{j} \ldots i_{1}} w, \\
& \varphi_{s}^{v}\left(\mathbf{X}^{\mathbf{m}} e_{i_{s, \ldots, i_{l}}} w\right)=(-1)^{s}\left[\prod_{l=1}^{s} \bar{q}_{i_{l}}-\prod_{l=1}^{s} \bar{q}_{l}^{-m_{l}}\right] \mathbf{X}^{\mathbf{m}} e_{i_{s, \ldots} . i_{l} .}
\end{aligned}
$$

Remark 2.3.2. When A is as in Example 1.8, then $\operatorname{Gr}(E)=A[t, \alpha, 0]$ is the k-algebra generated by the elements $x_{1}, \ldots, x_{n}, x_{r+1}^{-1}, \ldots, x_{n}^{-1}, t$ and the relations $x_{j} x_{j}^{-1}=1=x_{j}^{-1} x_{j}$ $(r<j \leq n), x_{j} x_{i}=q_{i j} x_{i} x_{j}(1 \leq i<j \leq n)$ and $t x_{i}=\bar{q}_{i}^{-1} x_{i} t(1 \leq i \leq n)$. In this case, by Proposition 1.9, we have:

$$
\begin{aligned}
\operatorname{HH}_{s}(\operatorname{Gr}(E))= & \bigoplus_{\left(\mathbf{m}_{1, \ldots,}, m\right) \in C^{\prime}} k \cdot x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} t^{m} e_{i_{s} \ldots i_{i}} \\
& \oplus \bigoplus_{\left(m_{i} \ldots, i_{s-1}, m^{m+1}\right) \in C^{\prime}} k \cdot x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} t^{m} e_{i_{s} \ldots i_{1}} w,
\end{aligned}
$$

where $\mathbf{m}_{i_{1} \ldots i_{v}}$ is the element of $(\mathbf{N} \cup\{0\})^{r} \times \mathbf{Z}^{n-r}$ whose j th coordinate is m_{j} if $j \notin$ $\left\{i_{1}, \ldots, i_{u}\right\}$ and $m_{j}+1$ if $j \in\left\{i_{1}, \ldots, i_{u}\right\}$, and C^{\prime} is the set of those $(n+1)$-tuples $\left(m_{1}, \ldots, m_{n}, m\right) \in(\mathbf{N} \cup\{0\})^{r} \times \mathbf{Z}^{n-r} \times(\mathbf{N} \cup\{0\})$ satisfying the following three conditions:
(i) If $i \leq r$, then $m_{i}=0$ or ${\overline{q_{i}}}^{-m} \prod_{l=1}^{n} q_{i l}^{m_{l}}=1$,
(ii) If $r<i \leq n$, then ${\overline{q_{i}}}^{-m} \prod_{l=1}^{n} q_{i l}^{m_{i}}=1$,
(iii) $m=0$ or $\prod_{l-1}^{n} \vec{d}_{l}^{m_{l}}=1$.

We provide below some examples of Theorem 2.2.
Example 2.4. Let A be the k-algebra generated by x_{1}, x_{2}, x_{2}^{-1} and the relations $x_{1} x_{2}=$ $q^{2} x_{2} x_{1}$ and $x_{2} x_{2}^{-1}=1=x_{2}^{-1} x_{2}$ and let E be the Ore extension $E=A[t, \alpha, \delta]$, where $\alpha\left(x_{1}\right)=x_{1}, \alpha\left(x_{2}\right)=q^{-2} x_{2}, \delta\left(x_{1}\right)=\left(x_{2}-x_{2}^{-1}\right) /\left(q-q^{-1}\right)$ and $\delta\left(x_{2}\right)=0$. This algebra is the quantum group $U_{q}(s l(2, k))$. Let us write $D_{q}\left(m, x_{2}\right)=\left[(m)_{q^{-2}} x_{2}-(m)_{q^{2}} x_{2}^{-1}\right] /$ ($q-q^{-1}$). A simple computation shows that
(1) $t^{m} x_{2}^{n}=q^{-2 n m} x_{2}^{n} t^{m}$,
(2) $t^{m} x_{1}=x_{1} t^{m}+D_{q}\left(m, x_{2}\right) t^{m-1}$,
(3) $t x_{1}^{m}=x_{1}^{m} t+x_{1}^{m-1} D_{q}\left(m, x_{2}\right)$.

By Theorem 2.2 we have the following, where in order to abbreviate notations we set $\mathbf{X}^{\mathbf{m}}=x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}}, w^{0}=1$ and $w^{1}=w$.

Theorem 2.4.1. The Hochschild homology $\mathrm{HH}_{*}(E)$ is the homology of the double complex

where, for $v=0,1$

$$
\begin{aligned}
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{1} w^{v}\right)=\left(\left(1-q^{-2 m_{2}}\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} t^{m_{3}}-x_{1}^{m_{1}} x_{2}^{m_{2}} D_{q}\left(m_{3}, x_{2}\right) t^{m_{3}-1}\right) w^{v}, \\
& \partial_{v 1}\left(\mathbf{X}^{m} e_{2} w^{v}\right)=\left(q^{-2 m_{1}+2 v}-q^{-2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}} w^{v}, \\
& \partial_{v 2}\left(\mathbf{X}^{m} e_{21} w^{v}\right)=\left(q^{-2 m_{1}-2+2 v}-q^{-2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}} e_{1} w^{v} \\
&+\left(\left(q^{-2 m_{2}-2}-1\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} t^{m_{3}}+q^{-2} x_{1}^{m_{1}} x_{2}^{m_{2}} D_{q}\left(m_{3}, x_{2}\right) t^{m_{3}-1}\right) e_{2} w^{v}, \\
& \varphi_{0}\left(\mathbf{X}^{\mathbf{m}} w\right)=\left(1-q^{-2 m_{2}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}-x_{1}^{m_{1}-1} D_{q}\left(m_{1}, x_{2}\right) x_{2}^{m_{2}} t^{m_{3}}, \\
& \varphi_{1}\left(\mathbf{X}^{\mathbf{m}} e_{1} w\right)=\left(\left(q^{-2 m_{2}}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}+x_{1}^{m_{1}-1} D_{q}\left(m_{1}, x_{2}\right) x_{2}^{m_{2}} t^{m_{3}}\right) e_{1} \\
&+\frac{1}{q-q^{-1}}\left(x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}}+\left(q^{2 m_{1}}+q^{2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}-2} t^{m_{3}}\right) e_{2}, \\
& \varphi_{1}\left(\mathbf{X}^{m} e_{2} w\right)=\left(\left(q^{-2 m_{2}}-q^{2}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}+x_{1}^{m_{1}-1} D_{q}\left(m_{1}, x_{2}\right) x_{2}^{m_{2}} t^{m_{3}}\right) e_{2}, \\
& \varphi_{2}\left(\mathbf{X}^{\mathbf{m}} e_{21} w\right)=\left(\left(q^{2}-q^{-2 m_{2}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}-x_{1}^{m_{1}-1} D_{q}\left(m_{1}, x_{2}\right) x_{2}^{m_{2}} t^{m_{3}}\right) e_{21} .
\end{aligned}
$$

Remark 2.4.2. From Theorem 2.4 .1 it follows immediately that $\mathrm{HH}_{n}(E)=0$ for $n>3$.
Example 2.5. Let A be the k-algebra generated by x_{1}, x_{2}, and the relation $x_{2} x_{1}=q^{-2}$ $x_{1} x_{2}$ and let E be the Ore extension $E=A[t, \alpha, \delta]$, where $\alpha\left(x_{1}\right)=x_{1}, \alpha\left(x_{2}\right)=q^{-2} x_{2}$, $\delta\left(x_{1}\right)=\left(q^{-1}-q\right) x_{2}^{2}$ and $\delta\left(x_{2}\right)=0$. This algebra is the quantum group $\mathcal{O}_{q^{2}}\left(s o k^{3}\right)$. A simple computation shows that
(1) $t^{m} x_{2}^{n}=q^{-2 n m} x_{2}^{n} t^{m}$,
(2) $t^{m} x_{1}=x_{1} t^{m}+\left(q^{-1}-q\right)(m)_{q^{-4}} x_{2}^{2} t^{m-1}$,
(3) $t x_{1}^{m}=x_{1}^{m} t+\left(q^{-1}-q\right)(m)_{q^{-4}} x_{1}^{m-1} x_{2}^{2}$.

By Theorem 2.2 we have the following, where in order to abbreviate notations we set $\mathbf{X}^{\mathbf{m}}=x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}}, w^{0}=1$ and $w^{1}=w$.

Theorem 2.5.1. The Hochschild homology $\mathrm{HH}_{*}(E)$ is the homology of the double complex

where, for $v=0,1$

$$
\begin{aligned}
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{1} w^{v}\right)=\left(\left(1-q^{-2 m_{2}}\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} t^{m_{3}}+\left(q-q^{-1}\right)\left(m_{3}\right)_{q^{-4}} x_{1}^{m_{1}} x_{2}^{m_{2}+2} t^{m_{3}-1}\right) w^{v}, \\
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{2} w^{v}\right)=\left(q^{-2 m_{1}+2 v}-q^{-2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}} w^{v}, \\
& \partial_{v 2}\left(\mathbf{X}^{m} e_{21} w^{v}\right)=\left(q^{-2 m_{1}-2+2 v}-q^{-2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}} e_{1} w^{v} \\
& +\left(\left(q^{-2 m_{2}-2}-1\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} t^{m_{3}}\right. \\
& \left.+\left(q^{-3}-q^{-1}\right)\left(m_{3}\right)_{q^{-4}} x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}-1}\right) e_{2} w^{v}, \\
& \varphi_{0}\left(\mathbf{X}^{\mathbf{m}^{2}} w\right)=\left(1-q^{-2 m_{2}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}-\left(q^{-1}-q\right)\left(m_{1}\right)_{q^{-4}} x_{1}^{m_{1}-1} x_{2}^{m_{2}+2} t^{m_{3}}, \\
& \varphi_{1}\left(\mathbf{X}^{\mathbf{m}} e_{1} w\right)=\left(\left(q^{-2 m_{2}}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}+\left(q^{-1}-q\right)\left(m_{1}\right)_{q^{-4}} x_{1}^{m_{1}-1} x_{2}^{m_{2}+2} t^{m_{3}}\right) e_{1} \\
& +\left(q^{-1}-q\right)\left(q^{-2 m_{1}}+q^{-2 m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} t^{m_{3}} e_{2}, \\
& \varphi_{1}\left(\mathbf{X}^{\mathbf{m}} e_{2} w\right)=\left(\left(q^{-2 m_{2}}-q^{2}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}+\left(q^{-1}-q\right)\left(m_{1}\right)_{q^{-4}} x_{1}^{m_{1}-1} x_{2}^{m_{2}+2} t^{m_{3}}\right) e_{2}, \\
& \varphi_{2}\left(\mathbf{X}^{\mathbf{m}} e_{21} w\right)=\left(\left(q^{2}-q^{-2 m_{2}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} t^{m_{3}+1}-\left(q^{-1}-q\right)\left(m_{1}\right)_{q^{-4} x_{1}^{m_{1}-1}} x_{2}^{m_{2}+2} t^{m_{3}}\right) e_{21} .
\end{aligned}
$$

Remark 2.5.2. From Theorem 2.5 .1 it follows immediately that $\mathrm{HH}_{n}(E)=0$ for $n>3$. When q is not a root of unity, the study of the homology of $G_{* *}(E)$ shows that $\mathrm{HH}_{n}(E)=0$ for $n>2$.

Example 2.6. Let A be the k-algebra generated by x_{1}, x_{2}, x_{3} and the relations $x_{2} x_{1}=$ $q x_{1} x_{2}, x_{3} x_{1}=q x_{1} x_{3}, x_{3} x_{2}=x_{2} x_{3}$ and let E be the Ore extension $E=A[t, \alpha, \delta]$, where $\alpha\left(x_{1}\right)=x_{1}, \alpha\left(x_{2}\right)=q x_{2}, \alpha\left(x_{3}\right)=q x_{3}, \delta\left(x_{1}\right)=\left[\left(q^{2}-1\right) / q\right] x_{2} x_{3}, \delta\left(x_{2}\right)=0$ and $\delta\left(x_{3}\right)=0$. This algebra is the quantum group $\mathcal{O}_{q}(M(2, k))$. A simple computation shows that
(1) $t^{m} x_{2}^{n}=q^{n m} x_{2}^{n} t^{m}$,
(2) $t^{m} x_{3}^{n}=q^{n m} x_{3}^{n} t^{m}$,
(3) $t^{m} x_{1}=x_{1} t^{m}+\frac{q^{2 m}-1}{q} x_{2} x_{3} t^{m-1}$,
(4) $t x_{1}^{m}=x_{1}^{m} t+\frac{q^{2 m}-1}{q} x_{1}^{m-1} x_{2} x_{3}$.

By Theorem 2.2 we have the following result, where, in order to abbreviate notations, we set $\mathbf{X}^{\mathbf{m}}=x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}}, w^{0}=1$ and $w^{1}=w$.

Theorem 2.6.1. The Hochschild homology $\mathrm{HH}_{*}(E)$ is the homology of $X_{* *}(E)=$

where, for $v=0,1$

$$
\begin{aligned}
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{1} w^{v}\right)=\left(\left(1-q^{m_{2}+m_{3}}\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}}+\frac{1-q^{2 m_{4}}}{q} x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}-1}\right) w^{v}, \\
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{2} w^{v}\right)=\left(q^{m_{1}-v}-q^{m_{4}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} w^{v}, \\
& \partial_{v 1}\left(\mathbf{X}^{\mathbf{m}} e_{3} w^{v}\right)=\left(q^{m_{1}-v}-q^{m_{4}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} w^{v}, \\
& \partial_{v 2}\left(\mathbf{X}^{\mathbf{m}} e_{21} w^{v}\right)=\left(q^{m_{1}+1-v}-q^{m_{4}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} e_{1} w^{v} \\
& +\left(\left(q^{m_{2}+m_{3}+1}-1\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}}\right. \\
& \left.+\left(q^{2 m_{4}}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}-1}\right) e_{2} w^{v}, \\
& \partial_{v 2}\left(\mathbf{X}^{\mathbf{m}} e_{31} w^{v}\right)=\left(q^{m_{1}+1-v}-q^{m_{4}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} e_{1} w^{v} \\
& +\left(\left(q^{m_{2}+m_{3}+1}-1\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}}\right. \\
& \left.+\left(q^{2 m_{4}}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}-1}\right) e_{3} w^{v}, \\
& \partial_{v 2}\left(\mathbf{X}^{\mathbf{m}} e_{32} w^{v}\right)=\left(q^{m_{1}-v}-q^{m_{4}}\right)\left(x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} e_{2} w^{v}-x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} e_{3} w^{v}\right) \text {, } \\
& \partial_{v 3}\left(\mathbf{X}^{\mathbf{m}} e_{321} w^{v}\right)=\left(q^{m_{1}+1-v}-q^{m_{4}}\right)\left(x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} e_{21} w^{v}-x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} e_{31} w^{v}\right) \\
& +\left(\left(1-q^{m_{2}+m_{3}+2}\right) x_{1}^{m_{1}+1} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}}\right. \\
& \left.+q\left(1-q^{2 m_{4}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}-1}\right) e_{32} w^{v}, \\
& \varphi_{0}\left(\mathbf{X}^{\mathbf{m}} w\right)=\left(1-q^{m_{2}+m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}, \\
& \varphi_{1}\left(\mathbf{X}^{\mathbf{m}^{2}} e_{1} w\right)=\left(\left(q^{m_{2}+m_{3}}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{1} \\
& -\left(q-q^{-1}\right)\left(q^{m_{1}+m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} e_{2}-q^{m_{4}} x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} e_{3}\right), \\
& \varphi_{1}\left(\mathbf{X}^{m^{m}} e_{2} w\right)=\left(\left(q^{m_{2}+m_{3}}-q^{-1}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{2},
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{1}\left(\mathbf{X}^{\mathbf{m}} e_{3} w\right)= & \left(\left(q^{m_{2}+m_{3}}-q^{-1}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{3} \\
\varphi_{2}\left(\mathbf{X}^{\mathbf{m}} e_{21} w\right)= & \left(\left(q^{-1}-q^{m_{2}+m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{21} \\
& -q^{m_{3}+m_{4}}\left(q^{2}-1\right) x_{1}^{m_{1}} x_{2}^{m_{2}+1} x_{3}^{m_{3}} t^{m_{4}} e_{32} \\
\varphi_{2}\left(\mathbf{X}^{\mathbf{m}} e_{31} w\right)= & \left(\left(q^{-1}-q^{m_{2}+m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{31} \\
& -q^{m_{1}}\left(q-q^{-1}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}+1} t^{m_{4}} e_{32}, \\
\varphi_{2}\left(\mathbf{X}^{\mathbf{m}} e_{32} w\right)= & \left(\left(q^{-2}-q^{m_{2}+m_{3}}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}-\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{32} \\
\varphi_{3}\left(\mathbf{X}^{\mathbf{m}} e_{321} w\right)= & \left(\left(q^{m_{2}+m_{3}}-q^{-2}\right) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} t^{m_{4}+1}+\frac{q^{2 m_{1}}-1}{q} x_{1}^{m_{1}-1} x_{2}^{m_{2}+1} x_{3}^{m_{3}+1} t^{m_{4}}\right) e_{321} .
\end{aligned}
$$

Remark 2.6.2. From Theorem 2.6.1 it follows immediately that $\mathrm{HH}_{n}(E)=0$ for $n>4$. When q is not a root of unity, the study of the homology of $G_{* *}(E)$ shows that $\mathrm{HH}_{n}(E)=0$ for $n>2$.

References

[1] J.A. Guccione, J.J. Guccione, Hochschild and cyclic homology of Ore extensions and some quantum examples, K-theory, to appear.
[2] J.A. Guccione, J.J. Guccione, Hochschild and cyclic homology of Q-difference operators, J. Kyoto University 35 (3) (1995) 413-422.
[3] D. Jordan, Iterated skew polynomial rings and quantum groups, J. Algebra 156 (1993) 194-218.
[4] C. Kassel, Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Comm. Math. Phys. 146 (1992) 343-356.
[5] N. Reshetikhin, L. Takhtadzhyan, L. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989) 178-206; English translation: Leningrad Math. J. 1 (1990) 193-225.
[6] S. Smith, Quantum groups, an introduction and survey for ring theorists, in: S. Montgomery, L.W. Small (Eds.), Noncommutative Rings, MSRI Publ., vol. 24, Springer, Berlin, 1992, pp. 131-178.
[7] L. Takhtadjian, Noncommutative homology of quantum tori, Funkt. Anal. Pril. 24 (2) (1989) 75-76; English translation: Funk. Anal. Appl. 23 (1989) 147-149.
[8] M. Wambst, Complexes de Koszul Quantiques, Ann. Inst. Fourier, Grenoble 43 (4) (1993) 1089-1156.
[9] M. Wambst, Homologie de Hochschild et homologie cyclique du tore quantique multiparamétré, Preprint.

[^0]: * Corresponding author. E-mail: vander@mate.dm.uba.ar.
 ${ }^{1}$ This work was supported by UBACyT.

