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In this note is given an explicit computation method to decide about the minimality of a word in 
the free group of rank two. A cohomological use of this method is to yield words defining one 
relator duality groups. 

Let F be the free group on n generators x1, . . . , xn. 

Recall that a T-transformation of F is an automorphism 7 defined on the 
generators by putting T(x~) = & for a fixed index k, and T(Xi) = one Of Xi, XiXi, Xix; or 
x;xix;‘, for i # k, where e = *l. 

A reduced word w in F is called minimal when L(r(w)) AL for all T- 
transformation T, where L denotes the length. A minimal form of w is a minimal 
word obtained from w by applying a finite number of T-transformations. The 
existence of such a minimal form is clear. From Whitehead’s theorem [4, Theorem 
N2, p. 1661, Shenitzer has proved that any two minimal forms of w involve the same 
number of generators, and both have the same length [5, Corollary, p. 2761. 

From now on, we suppose n = 2. Let w be a word in F involving both generators. 
We consider the syllable expression w = fliGiG,,, XT, where bi # ui+i, Inil > 0 and 
m ~2 (m is called the syllable length of w). We can suppose that w is cyclically 
reduced, i.e., u1 # u,,, or u1 = u,,, and sg(ni) = sg(n,) (sg means sign). This allows us to 
suppose that m is even. Indeed, if m is odd, we must have u1 = urn and sg(ni) = 
sg(n,). Let r be the T-transformation of F, T(Z) = x;~(~~)zx:~(~~). Applying (ntl-times 

the transformation r to w, we get 

f- nl+“m w -x;*“lwx:: = ,<iI_* x:; x,, ( > , 

which has even syllable length m - 1, because ni + n, # 0. But w’ is minimal if, and 
only if, w is. For w being minimal, if w; is a minimal form of w’ we can write 

w’l = Ts * * * q(w)) = ,rs * * * 71&‘(w), 
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where TV,. . . , TV are T-transformation, which shows that w; is a minimal form of w, 
and since the minimal forms have the same length, we have L(bv)=L(w;). 
Moreover, taking into account that sg(ni) = sg(n,), 

Consequently, L(w ; ) = L( w’), so that w’ is minimal. The proof of the converse is 
entirely similar. 

If p = 1,2, we define 

(8 is the Kronecker symbol). 

Theorem. The word w is minimal if, and only if, 

L,(w)2t(m-11)+Icp(w)l+~lsg(n~)sg(c,(w))+sg(n,)l, 

for P f 4. 

Proof. To simplify the notation, we assume that u1 = p, so that cm = q, since m is 
even. 

Let T be a T-transformation satisfying xP ++x,, and xq *x&r, where e = 5.1. First, 
we calculate the length of T(W). Since T does not produce symbols x,, we verify 
immediately that L,(w) = J&(?(W)). We have to calculate then &,(7(w)). To thisend, 
we analyze the syllable expression of T(W): 

(a) If 1 <i<m and vi =p, the factor x~‘-~x~~x~‘+’ of IZ~ becomes 

~$4;~‘8-‘x;i(x>4) nltl in r(w). The possible reductions depend upon the signs of ni-1 
,+I. Explicitly, if ai- and ni+l are both positive, ni transforms into ni + e; when 

both of them are negative, into ni -e; and remains unchanged when one is positive 
and the other is negative. We summarize the three cases saying that ni transforms 
into Q + ff? Sg(ni_l)(Sg(ni_lni+l) + 1). 

(b) If i = 1, we have r(w) = x~~(x&)“* * * * . Arguing as in (a), nl transforms into 

nl+te(sg(n2)+1). 
(c) If 1< i < m and Vi = q, T(W) = * . * x~-‘(x&)~~x~*’ * - * . Reducing, it follows 

that 

and 

T(W) = * * * X~‘-‘+e(XqX~)ni-lXqX~‘*’ - * * for ni > 0, 

T(w) =. . . X~-‘X~l(Xp~Xql)-lni+‘)Xa”‘-e . . . for ni <()* 
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This means that, for each 1 < i < m verifying ui = q, the symbol xc’ appears Inil- 1 

times in the reduced form of 7(w). 

(d) If i = m, T(W) =. . * x~--~(x~x,)“-. As in the above case, we see that the 

symbol x,” appears In,,, -&g(n,) + 1) times in the reduced form of T(W). 

Now, we calculate &(T(w)) using that In + rI = In l + sg(n) . r for integers n # 0 and 

ItI 6 1. 

&(r(w))= 1 Ini+te Sg(~i-l)(Sg(~;-l~i+*)+l)l+In~+te(Sg(nz)+l)l 
lCl<rn 

c, =p 

+lcFcm (IniI-l)+(In~I-tfsg(n,)+l) 
u, =q 

= l<~cm Inil +te sg(ni-lni)(sg(ni-lni+~)+ 1) 

u,=LJ 

=L,(w)+L,(w)+e*c,(w)-t(m-l)+t(e*sg(ni)-sg(n,)). 

Analogously, if r’ is a T-transformation of the type X, -xP and X, wx,xz, e = 1t1, we 

have 

L,(r’(w))=L,(w)+L,(w)+e.c,(w)-t(m-1)+4(-e.sg(nI)+sg(n,)). 

Suppose, first, that w is minimal. Since L, remains unchanged when we apply 7 or 

r’, we have Lp(~(w))~Lp(w) and L,(T’(w))z=L,(w). Replacing in the expressions 

found for L,, we obtain 

L,(w)+e .c,(w)-t(m -1)=$(-e * sg(ni)+sg(n,,)) 

and 

Lq(w)+e*c,(w)-t(m-1)3i(e.sg(ni)-sg(n,)). 

Note that c,(w) f 0, since c,(w) is not an integer. Then, putting e = -sg(c,(w)), we 
get: 

L,(w)-Ic,(M’)I-_t(m-l)~:(sg(nI)sg(c,(w))+sg(n,)) 

and 

L,(W)-Icp(w)I-t(m-l)~-t(sg(nI)sg(c,(w))+sg(n,)). 

Thus, 

4(w)-lcp(w)I-t(m - l)~flsg(n,)sg(c,(w))+sg(n,)l, 

as was to be proved. 
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Conversely, let r be the T-transformation x, wx, and xq *x>x~x~~. Then 

T(W) =x ;‘+( *rim x::> xPC, 

and taking lengths 

L(r(w))=Jni+e]+l+ C ]ni] 
2sism 

=I~~l+e~sg(~~)+l+2~~~ml~il 

=L(w)+(l+e*sg(ni))Z=L(w). 

Then, it suffices to prove that the length of w does not decrease for T-trans- 
formations of the type xp wxp and x, “xCpxq or xq “xqxb 

Suppose that r(xq) = x2,. From the formula found for Lp(r( w)), we obtain 

Ur(w))-L(w)=Lp(r(w))-L(w) 

=L,(w)+e.c,(w)-$(m-l)+$(e*sg(ni)-sg(n,)) 

~Ic,(w)l+e.c,(w)+4lsg(nI)sg(c,(w))+sg(n,)l 

+)(e*sg(nt)--sg(n,)), by our assumption. 

If e = sg(c,(w)), we have 

L(7(W))-L(W)~21Cp(W)I+tlsg(nl)sg(c,(w))+sg(~,)l 
+h~ghMc,b4) -sgbd 2 0, 

because 

Ic,(w)lat and ~(sg(nI)sg(c,(w))-sg(n,))~-1. 

If e = -sg(c,(w)), 

UT(W)) -L(w) ~~lsg(~1)sg(c,(w)) +%(&Al 

-t(sg(ni)sg(c,(w))+sg(%A)~o. 

The case r(xq) =x4x; is similar. 

Example. The word w is minimal in each of the following cases: 
(i) Ini (lsism). 

(ii) sg(ni)=sg(ni)(lSi,jSm)andL,(w)dmforp=1,2. 
(iii) sg(ni)#sg(ni+i) (l~i~m-1) andL.,(w)am forp=l, 2. 

Minimality of words in free groups is related with the following question, posed by 
Johnson and Wall for PoincarC duality [2, Problem 4, p. 5971: which words define 
(one relator) duality groups? In fact, a one relator group defined by a minimal word, 
involving all generators, which is not a proper power, satisfies cohomological duality 
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in dimension two. This is merely the conjunction of the following two known facts: 
(i) ([l, Example 1, p. 1211). If G = (F, w) and w is not a proper power in F, then G 

is a two dimensional duality group if, and only if, G is freely indecomposable and 
non-cyclic. 

(ii) ([3, p. 1071). With the notation above, G is such a group if, and only if, any 
minimal form of w involves all generators. 

Therefore, we obtain: 

Corollary. Zf G = (x, y ; w (x, y )>, such that w is not a properpower in Fund satisfies the 
assumptions of the theorem, then G is a duality group of dimension two. 

Example. (cf. [l, example 2, p. 1211). The group 

G =(x, y; yxy-lx-*) 

is a two dimensional duality group, because the word x2x1x2 x1 -’ -* is minimal. For, in 
this case, we have m = 4, cl(w) = c*(w) =$, and then, 

4(m-1)+Icl(w)l+tlsg(nl)sg(cl(w))+sg(nr)l=t+t=2~L2(w)=2 

)(m-l)+Ic2(w)l+tlsg(nl)sg(c2(w))+sg(n4)1=2~Ll(w)=3. 
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