MINIMAL WORDS IN THE FREE GROUP OF RANK TWO

Carlos Marcelo SANCHEZ
Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

Communicated by K. Gruenberg
Received 27 November 1978
Revised 14 May 1979

Abstract

In this note is given an explicit computation method to decide about the minimality of a word in the free group of rank two. A cohomological use of this method is to yield words defining one relator duality groups.

Let F be the free group on n generators x_{1}, \ldots, x_{n}.
Recall that a T-transformation of F is an automorphism τ defined on the generators by putting $\tau\left(x_{k}\right)=x_{k}$, for a fixed index k, and $\tau\left(x_{i}\right)=$ one of $x_{i}, x_{k}^{e} x_{i}, x_{i} x_{k}^{e}$ or $x_{k}^{e} x_{i} x_{k}^{-e}$, for $i \neq k$, where $e= \pm 1$.

A reduced word w in F is called minimal when $L(\tau(w)) \geqslant L(w)$ for all T transformation τ, where L denotes the length. A minimal form of w is a minimal word obtained from w by applying a finite number of T-transformations. The existence of such a minimal form is clear. From Whitehead's theorem [4, Theorem $\mathrm{N} 2, \mathrm{p} .166$], Shenitzer has proved that any two minimal forms of w involve the same number of generators, and both have the same length [5, Corollary, p. 276].

From now on, we suppose $n=2$. Let w be a word in F involving both generators. We consider the syllable expression $w=\prod_{1 \leqslant i \leqslant m} x_{v_{i}}^{n_{i}}$, where $v_{i} \neq v_{i+1},\left|n_{i}\right|>0$ and $m \geqslant 2$ (m is called the syllable length of w). We can suppose that w is cyclically reduced, i.e., $v_{1} \neq v_{m}$ or $v_{1}=v_{m}$ and $\operatorname{sg}\left(n_{1}\right)=\operatorname{sg}\left(n_{m}\right)$ (sg means sign). This allows us to suppose that m is even. Indeed, if m is odd, we must have $v_{1}=v_{m}$ and $\operatorname{sg}\left(n_{1}\right)=$ $\operatorname{sg}\left(n_{m}\right)$. Let τ be the T-transformation of $F, \tau(z)=x_{v_{1}}^{-\mathrm{sg}\left(n_{1}\right)} z x_{v_{1}}^{\operatorname{sg}\left(n_{1}\right)}$. Applying $\left|n_{1}\right|$-times the transformation τ to w, we get

$$
w^{\prime}=x_{v_{1}}^{-n_{1}} w x_{v_{1}}^{n_{1}}=\left(\prod_{2 \leqslant i \leqslant m-1} x_{v_{i}}^{n_{i}}\right) x_{v_{1}}^{n_{1}+n_{m}},
$$

which has even syllable length $m-1$, because $n_{1}+n_{m} \neq 0$. But w^{\prime} is minimal if, and only if, w is. For w being minimal, if w_{1}^{\prime} is a minimal form of w^{\prime} we can write

$$
w_{1}^{\prime}=\tau_{s} \cdots \tau_{1}\left(w^{\prime}\right)=\tau_{s} \cdots \tau_{1} \tau^{\left|n_{1}\right|}(w)
$$

where $\tau_{1}, \ldots, \tau_{s}$ are T-transformation, which shows that w_{1}^{\prime} is a minimal form of w, and since the minimal forms have the same length, we have $L(w)=L\left(w_{1}^{\prime}\right)$. Moreover, taking into account that $\operatorname{sg}\left(n_{1}\right)=\operatorname{sg}\left(n_{m}\right)$,

$$
L\left(\dot{w}^{\prime}\right)=\sum_{2 \leqslant i \leqslant m-1}\left|n_{i}\right|+\left|n_{1}+n_{m}\right|=\sum_{2 \leqslant i \leqslant m-1}\left|n_{i}\right|+\left|n_{1}\right|+\left|n_{m}\right|=L(w) .
$$

Consequently, $L\left(w_{1}^{\prime}\right)=L\left(w^{\prime}\right)$, so that w^{\prime} is minimal. The proof of the converse is entirely similar.

If $p=1,2$, we define

$$
\begin{aligned}
& L_{p}(w)=\sum_{v_{i}=p}\left|n_{i}\right|, \\
& c_{p}^{+}(w)=\#\left\{1<i<m \mid v_{i}=p \text { and } \operatorname{sg}\left(n_{i-1}\right)=\operatorname{sn}\left(n_{i+1}\right)=\operatorname{sg}\left(n_{i}\right)\right\}, \\
& c_{p}^{-}(w)=\#\left\{1<i<m \mid v_{i}=p \text { and } \operatorname{sg}\left(n_{i-1}\right)=\operatorname{sg}\left(n_{i+1}\right) \neq \operatorname{sg}\left(n_{i}\right)\right\}, \\
& c_{p}(w)=c_{p}^{+}(w)-c_{p}^{-}(w)+\frac{1}{2}\left(\delta_{p v_{1}} \operatorname{sg}\left(n_{1} n_{2}\right)+\delta_{p v_{m}} \operatorname{sg}\left(n_{m-1} n_{m}\right)\right),
\end{aligned}
$$

(δ is the Kronecker symbol).
Theorem. The word w is minimal if, and only if,

$$
L_{q}(w) \geqslant \frac{1}{2}(m-1)+\left|c_{p}(w)\right|+\frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right|,
$$

for $p \neq q$.

Proof. To simplify the notation, we assume that $v_{1}=p$, so that $v_{m}=q$, since m is even.

Let τ be a T-transformation satisfying $x_{p} \mapsto x_{p}$ and $x_{q} \mapsto x_{p}^{e} x_{q}$, where $e= \pm 1$. First, we calculate the length of $\tau(w)$. Since τ does not produce symbols x_{q}, we verify immediately that $L_{q}(w)=L_{q}(\tau(w))$. We have to calculate then $L_{p}(\tau(w))$. To this end, we analyze the syllable expression of $\tau(w)$:
(a) If $1<i<m$ and $v_{i}=p$, the factor $x_{q}^{n_{i-1}} x_{p}^{n_{i}} x_{q}^{n_{i+1}}$ of w becomes $\left(x_{p}^{e} x_{q}\right)^{n_{i-1}} x_{p}^{n_{i}}\left(x_{p}^{e} x_{q}\right)^{n_{i+1}}$ in $\tau(w)$. The possible reductions depend upon the signs of n_{i-1} and n_{i+1}. Explicitly, if n_{i-1} and n_{i+1} are both positive, n_{i} transforms into $n_{i}+e$; when both of them are negative, into $n_{i}-e$; and remains unchanged when one is positive and the other is negative. We summarize the three cases saying that n_{i} transforms into $n_{i}+\frac{1}{2} e \operatorname{sg}\left(n_{i-1}\right)\left(\operatorname{sg}\left(n_{i-1} n_{i+1}\right)+1\right)$.
(b) If $i=1$, we have $\tau(w)=x_{p}^{n_{1}}\left(x_{p}^{e} x_{q}\right)^{n_{2}} \cdots$. Arguing as in (a), n_{1} transforms into $n_{1}+\frac{1}{2} e\left(\mathbf{s g}\left(n_{2}\right)+1\right)$.
(c) If $1<i<m$ and $v_{i}=q, \tau(w)=\cdots x_{p}^{n_{i-1}}\left(x_{p}^{e} x_{q}\right)^{n_{i}} x_{p}^{n_{i+1}} \cdots$. Reducing, it follows that

$$
\tau(w)=\cdots x_{p}^{n_{i}-1+e}\left(x_{q} x_{p}^{e}\right)^{n_{i}-1} x_{q} x_{p}^{n_{i+1}} \cdots \quad \text { for } n_{i}>0
$$

and

$$
\tau(w)=\cdots x_{p}^{n_{i}-1} x_{q}^{-1}\left(x_{p}^{-e} x_{q}^{-1}\right)^{-\left(n_{i}+1\right)} x_{p}^{n_{i-1}-e} \cdots \quad \text { for } n_{i}<0
$$

This means that, for each $1<i<m$ verifying $v_{i}=q$, the symbol $x_{p}^{ \pm e}$ appears $\left|n_{i}\right|-1$ times in the reduced form of $\tau(w)$.
(d) If $i=m, \tau(w)=\cdots x_{p}^{n_{m-1}}\left(x_{p}^{e} x_{q}\right)^{n_{m}}$. As in the above case, we see that the symbol $x_{p}^{ \pm e}$ appears $\left|n_{m}\right|-\frac{1}{2}\left(\operatorname{sg}\left(n_{m}\right)+1\right)$ times in the reduced form of $\tau(w)$.

Now, we calculate $L_{p}(\tau(w))$ using that $|n+t|=|n|+\operatorname{sg}(n) \cdot t$ for integers $n \neq 0$ and $|t| \leqslant 1$.

$$
\begin{aligned}
L_{p}(\tau(w))= & \sum_{\substack{1<i<m \\
v_{i}=p}}\left|n_{i}+\frac{1}{2} e \operatorname{sg}\left(n_{i-1}\right)\left(\operatorname{sg}\left(n_{i} \cdot 1 n_{i+1}\right)+1\right)\right|+\left|n_{1}+\frac{1}{2} e\left(\operatorname{sg}\left(n_{2}\right)+1\right)\right| \\
& +\sum_{\substack{1<i<m \\
v_{i}=q}}\left(\left|n_{i}\right|-1\right)+\left(\left|n_{m}\right|-\frac{1}{2}\left(\operatorname{sg}\left(n_{m}\right)+1\right)\right. \\
= & \sum_{\substack{1<i<m \\
v_{i}=p}}\left|n_{i}\right|+\frac{1}{2} e \operatorname{sg}\left(n_{i-1} n_{i}\right)\left(\operatorname{sg}\left(n_{i-1} n_{i+1}\right)+1\right) \\
& +\left|n_{1}\right|+\frac{1}{2} e \operatorname{sg}\left(n_{1}\right)\left(\operatorname{sg}\left(n_{2}\right)+1\right)+\sum_{\substack{1<i<m \\
v_{i}=q}}\left(\left|n_{i}\right|-1\right) \\
& +\left(\left|n_{m}\right|-\frac{1}{2}\left(\operatorname{sg}\left(n_{m}\right)+1\right)\right) \\
= & L_{p}(w)+L_{q}(w)+e \cdot c_{p}(w)-\frac{1}{2}(m-1)+\frac{1}{2}\left(e \cdot \operatorname{sg}\left(n_{1}\right)-\operatorname{sg}\left(n_{m}\right)\right) .
\end{aligned}
$$

Analogously, if τ^{\prime} is a T-transformation of the type $x_{p} \mapsto x_{p}$ and $x_{q} \mapsto x_{q} x_{p}^{e} e= \pm 1$, we have

$$
L_{p}\left(\tau^{\prime}(w)\right)=L_{p}(w)+L_{q}(w)+e \cdot c_{p}(w)-\frac{1}{2}(m-1)+\frac{1}{2}\left(-e \cdot \operatorname{sg}\left(n_{1}\right)+\operatorname{sg}\left(n_{m}\right)\right)
$$

Suppose, first, that w is minimal. Since L_{q} remains unchanged when we apply τ or τ^{\prime}, we have $L_{p}(\tau(w)) \geqslant L_{p}(w)$ and $L_{p}\left(\tau^{\prime}(w)\right) \geqslant L_{p}(w)$. Replacing in the expressions found for L_{p}, we obtain

$$
L_{q}(w)+e \cdot c_{p}(w)-\frac{1}{2}(m-1) \geqslant \frac{1}{2}\left(-e \cdot \operatorname{sg}\left(n_{1}\right)+\operatorname{sg}\left(n_{m}\right)\right)
$$

and

$$
L_{q}(w)+e \cdot c_{p}(w)-\frac{1}{2}(m-1) \geqslant \frac{1}{2}\left(e \cdot \operatorname{sg}\left(n_{1}\right)-\operatorname{sg}\left(n_{m}\right)\right) .
$$

Note that $c_{p}(w) \neq 0$, since $c_{p}(w)$ is not an integer. Then, putting $e=-\operatorname{sg}\left(c_{p}(w)\right)$, we get:

$$
L_{q}(w)-\left|c_{p}(w)\right|-\frac{1}{2}(m-1) \geqslant \frac{1}{2}\left(\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right)
$$

and

$$
L_{q}(w)-\left|c_{p}(w)\right|-\frac{1}{2}(m-1) \geqslant-\frac{1}{2}\left(\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right)
$$

Thus,

$$
L_{q}(w)-\left|c_{p}(w)\right|-\frac{1}{2}(m-1) \geqslant \frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right|
$$

as was to be proved.

Conversely, let τ be the T-transformation $x_{p} \rightarrow x_{p}$ and $x_{q} \mapsto x_{p}^{e} x_{q} x_{p}^{-e}$. Then

$$
\tau(w)=x_{p}^{n_{1}+e}\left(\prod_{2 \leq i<m} x_{v_{i}}^{n_{i}}\right) x_{p}^{-c},
$$

and taking lengths

$$
\begin{aligned}
L(\tau(w)) & =\left|n_{1}+e\right|+1+\sum_{2 \leqslant i \leqslant m}\left|n_{i}\right| \\
& =\left|n_{1}\right|+e \cdot \operatorname{sg}\left(n_{1}\right)+1+\sum_{2 \leqslant i \leqslant m}\left|n_{i}\right| \\
& =L(w)+\left(1+e \cdot \operatorname{sg}\left(n_{1}\right)\right) \geqslant L(w) .
\end{aligned}
$$

Then, it suffices to prove that the length of w does not decrease for T-transformations of the type $x_{p} \rightarrow x_{p}$ and $x_{q} \rightarrow x_{p}^{e} x_{q}$ or $x_{q} \rightarrow x_{q} x_{p}^{e}$.
Suppose that $\tau\left(x_{q}\right)=x_{p}^{e} x_{q}$. From the formula found for $L_{p}(\tau(w))$, we obtain

$$
\begin{aligned}
L(\tau(w))-L(w)= & L_{p}(\tau(w))-L_{p}(w) \\
= & L_{q}(w)+e \cdot c_{p}(w)-\frac{1}{2}(m-1)+\frac{1}{2}\left(e \cdot \operatorname{sg}\left(n_{1}\right)-\operatorname{sg}\left(n_{m}\right)\right) \\
\geqslant & \left|c_{p}(w)\right|+e \cdot c_{p}(w)+\frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right| \\
& +\frac{1}{2}\left(e \cdot \operatorname{sg}\left(n_{1}\right)-\operatorname{sg}\left(n_{m}\right)\right), \quad \text { by our assumption. }
\end{aligned}
$$

If $e=\operatorname{sg}\left(c_{p}(w)\right)$, we have

$$
\begin{aligned}
L(\tau(w))-L(w) \geqslant & 2\left|c_{p}(w)\right|+\frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right| \\
& +\frac{1}{2}\left(\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)-\operatorname{sg}\left(n_{m}\right)\right) \geqslant 0,
\end{aligned}
$$

because

$$
\left|c_{p}(w)\right| \geqslant \frac{1}{2} \quad \text { and } \frac{1}{2}\left(\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)-\operatorname{sg}\left(n_{m}\right)\right) \geqslant-1 .
$$

If $e=-\operatorname{sg}\left(c_{p}(w)\right)$,

$$
\begin{aligned}
L(\tau(w))-L(w) \geqslant & \frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right| \\
& -\frac{1}{2}\left(\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{p}(w)\right)+\operatorname{sg}\left(n_{m}\right)\right) \geqslant 0 .
\end{aligned}
$$

The case $\tau\left(x_{q}\right)=x_{q} x_{p}^{e}$ is similar.
Example. The word w is minimal in each of the following cases:
(i) $\left|n_{i}\right| \geqslant 2(1 \leqslant i \leqslant m)$.
(ii) $\operatorname{sg}\left(n_{i}\right)=\operatorname{sg}\left(n_{i}\right)(1 \leqslant i, j \leqslant m)$ and $L_{p}(w) \geqslant m$ for $p=1,2$.
(iii) $\operatorname{sg}\left(n_{i}\right) \neq \operatorname{sg}\left(n_{i+1}\right)(1 \leqslant i \leqslant m-1)$ and $L_{p}(w) \geqslant m$ for $p=1,2$.

Minimality of words in free groups is related with the following question, posed by Johnson and Wall for Poincaré duality [2, Problem 4, p. 597]: which words define (one relator) duality groups? In fact, a one relator group defined by a minimal word, involving all generators, which is not a proper power, satisfies cohomological duality
in dimension two. This is merely the conjunction of the following two known facts:
(i) ([1, Example 1, p. 121]). If $G=\langle F, w\rangle$ and w is not a proper power in F, then G is a two dimensional duality group if, and only if, G is freely indecomposable and non-cyclic.
(ii) ([3, p. 107]). With the notation above, G is such a group if, and only if, any minimal form of w involves all generators.

Therefore, we obtain:
Corollary. If $G=\langle x, y ; w(x, y)\rangle$, such that w is not a proper power in F and satisfies the assumptions of the theorem, then G is a duality group of dimension two.

Example. (cf. [1, example 2, p. 121]). The group

$$
G=\left\langle x, y ; y x y^{-1} x^{-2}\right\rangle
$$

is a two dimensional duality group, because the word $x_{2} x_{1} x_{2}^{-1} x_{1}^{-2}$ is minimal. For, in this case, we have $m=4, c_{1}(w)=c_{2}(w)=\frac{1}{2}$, and then,

$$
\begin{aligned}
& \frac{1}{2}(m-1)+\left|c_{1}(w)\right|+\frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{1}(w)\right)+\operatorname{sg}\left(n_{4}\right)\right|=\frac{3}{2}+\frac{1}{2}=2 \leqslant L_{2}(w)=2 \\
& \frac{1}{2}(m-1)+\left|c_{2}(w)\right|+\frac{1}{2}\left|\operatorname{sg}\left(n_{1}\right) \operatorname{sg}\left(c_{2}(w)\right)+\operatorname{sg}\left(n_{4}\right)\right|=2 \leqslant L_{1}(w)=3 .
\end{aligned}
$$

References

[1] R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality, Inventiones Math. 20 (1973) 3-124.
[2] F.E.A. Johnson and C.T.C. Wall, Groups satisfying Poincaré duality, Annals of Math. 96 (1972) 592-598.
[3] R. Lyndon and P.E. Schupp, Combinatorial Group Theory (Springer, Berlin, 1976).
[4] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory (Interscience, London-New York, 1966).
[5] A. Shenitzer, Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955) 273-279.

