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Noncommutative Landau problem for particle-vortex system
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We study the problem of a charged particle in the presence of a uniform magnetic field plus a vortex in a noncommutative plane considering
two non-commutative extensions of the corresponding Hamiltonian, namely “fundamental” and “antifundamental” representations. Using a
Fock space formalism we construct eigenfunctions and eigenvalues finding in each case half of the states existing in the ordinary space case.
In the limit of θ → 0 we recover the two classes of states found in ordinary space, relevant for the study of anyon physics.
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Estudiamos el problema de una partı́cula cargada en un campo magnético uniforme y un v́ortice en un plano no-conmutativo, considerando
dos extensiones no-conmutativas del hamiltoniano, las representaciones “fundamental” y “antifundamental”. Usando el formalismo de
espacios de Fock, construimos las autofunciones y los autovalores, hallando en cada caso la mitad de los estados existentes en espacio
ordinario. En el ĺımiteθ → 0, recuperamos las dos clases de estados encontrados en espacio ordinario, relevantes para el estudio de aniones.

Descriptores: Mecánica Cúantica no-conmutativa; partı́culas cargadas; vórtices, aniones.
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The Landau and the Aharonov-Bohm problems are the two
paradigms of planar quantum mechanics of charged particles
in a magnetic field [1]. Inspired by recent observations on
the relevance of noncommutative geometry for describing the
Quantum Hall effect [2], both problems have been considered
in noncommutative space [3,4].

Adding a uniform magnetic field plus other vortex-like,
turns the problem even more interesting. This system was
solved in ordinary space in Ref. 5, in the context of anyon
physics, where particles with exotic statistic are represented
by charges pierced by a magnetic flux. In this regard, the
problem of two anyons in an external magnetic field is equiv-
alent to that of a particle in the presence of an external mag-
netic field plus a vortex. In Ref. 5, eigenstates and spectrum
in ordinary space are found analytically by modifying in a
simple but subtle way, the usual Landau problem ladder op-
erator formalism.

We shall consider the noncommutative generalization of
this problem. Namely, we shall solve the Schrödinger equa-
tion for a charged particle in the presence of a uniform mag-
netic field plus a vortex, when space coordinates satisfy

[x1, x2] = iθ . (1)

It is convenient to introduce complex variables and, associ-
ated to them, annihilation and creation operatorsa anda†:

z√
θ
→ a =

x1 + ix2

√
2θ

,
z̄√
θ
→ a† =

x1 − ix2

√
2θ

, (2)

so that (1) becomes

[a, a†] = 1 . (3)

In this framework, the connection between operators and
function is|m〉〈m| → 2(−1)mLm(2r2/θ)e−

r2
θ and deriva-

tives are given by

∂z = − 1√
θ
[a†, ] , ∂z̄ =

1√
θ
[a, ] . (4)

The field strength in terms of the complex vector potential
components is

Fzz̄ = ∂zAz̄ − ∂z̄Az + ie[Az, Az̄] . (5)

As stated above, we will consider the field strength

Fzz̄ = iB0 − i
α

eθ
|0〉〈0| . (6)

In the θ → 0 limit, the second term goes, in configuration
space, to a delta function corresponding to a singular vortex,
with flux related to the real parameterα [8].

In noncommutative space, even for an Abelian gauge the-
ory one can define covariant derivatives in “fundamental” and
“anti-fundamental” representations,

DµΨ = ∂µΨ + ieAµΨ fundamental

DµΨ = ∂µΨ− ieΨAµ anti−fundamental. (7)

We shall first discuss the case of the fundamental representa-
tion and then extend the results to the anti-fundamental.

The time-independent Schrödinger equation of the wave
functionΨ is given by

HΨ(z̄, z) = − 1
2m

[Dz, Dz̄]+ Ψ = EΨ(z̄, z) . (8)
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Concerning the angular momentum operatorL, it is use-
ful to define the “covariant” positionw andw̄ [2],

w = z + ieθAz̄ w̄ = z̄ − ieθAz . (9)

In noncommutative space the appropriateL-operator can be
defined as [3,6]

L = wDz − w̄Dz̄ − eB0

2 (1− eB0θ)
[w̄, w]+

−θ

2
[Dz̄, Dz]+ . (10)

Notice thatL in (10) is the generalization to noncommutative
space of the so called “mechanical angular momentum” [7].

We introduce two pairs of creation and annihilation op-
erators, the noncommutative analogue of those developed for
the usual Landau problem [5]. They are defined as

c1 =
1√
|eB0|Dz, c2 = − 1√

|eB0|Dz̄,

d1 =
1√
|κ|(w + κDz̄), d2 =

1√
|κ|(w̄ − κDz),

(11)

where

κ =
1− eB0θ

eB0
. (12)

One can verify that with this definition

[c1, c2] = sgn(eB0)− α

θ|eB0| |0〉〈0|,

[d1, d2] = sgnκ +
α

θ|eB0(1− eB0θ)| |0〉〈0|,

[c1, d1] =
α

eB0θ
√
|1− eB0θ| |0〉〈0|, (13)

[c2, d2] = − α

eB0θ
√
|1− eB0θ| |0〉〈0|,

[c1, d2] = [c2, d1] = 0. (14)

Note that for those statesχ such that|0〉〈0|χ = 0 operators
ci’s anddi’s will play, depending on the sign ofeB0 andκ,
the role of creation (c†, d†) or annihilation (c, d) operators.
We shall callP0 the subspace of states satisfying this condi-
tion. In the commutative space limit the condition becomes
the “hard-core condition” since it corresponds to the vanish-
ing of wave functions at the origin. Moreover, in theθ → 0
limit, the algebra (14) coincides with that obtained in Ref. 5.

The Hamiltonian (8) takes the form

H =
ω

2
[
c, c†

]
+

, with ω =
|eB0|

m
. (15)

For states restricted toP0, the angular momentum is

L = sgnκ(c†c− d†d) for 1− eB0θ > 0,

L = −(c†c + d†d) for 1− eB0θ < 0, (16)

and [H,L] = 0. Thus, one can to find common eigenfunc-
tions ofH andL

Now, we have to write an explicit expression for the vec-
tor potential leading to a field strength (6). A possible choice
for 1− eB0θ > 0 and positiveα is

Az =
i√
θ
g(N)a† , Az̄ = − i√

θ
ag(N) (17)

with

g(N) = −1
e

(
1−

√
1− eB0θ +

α

N

)
. (18)

We shall now construct the Fock space associated to the
operatorsNc = c†c andNd = d†d. Let us start by consider-
ing a stateχ such that

cχ = 0 . (19)

Then,χ is an eigenstate of the Hamiltonian. In order to make
χ also an eigenstate ofL, we propose the following ansatz

χ(a, a†) = a†nh(N) . (20)

Note that in the commutative limita†n can be connected to
exp(−inϕ), an eigenfunction of the canonical angular mo-
mentum with eigenvalue−n.

One can see thatχ ∈ P0 providedn > 0. GivenL as
in (16), the ansatz is consistent only for0 < eB0θ < 1; we
shall study other regimes later on. One has,

Lχ = − (n + ᾱ)χ , with ᾱ =
α

1− eB0θ
. (21)

We start solving (19) forn = 1 and denote this eigenstate
asχ01. We obtain

χ01(z, z̄) = z̄ ∗ 2√
θ

∑
m

(−1)mhmLm(2r2/θ)e−
r2
θ , (22)

where

hm =

(
Γ(m + 2 + ᾱ)

(m + 1)! Γ(2 + ᾱ)
(eB0θ)2+ᾱ

(
1− eB0θ

)
m

2πθ

)1/2

(23)

A tower of states with increasing energy can be constructed
from χ01 by acting withc† andd†,

χkl =
(
c†

)k (
d†

)l−1
χ01, l > k,

Ek = ω

(
k +

1
2

)
0 < eB0θ < 1,

Lkl = (k − l − ᾱ). (24)

Being l > k, one can see thatχkl ∈ P0. In theθ → 0 limit,
states (24), coincide with the corresponding “class II” states
found in Ref. 5.
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Inspired by the ordinary space results, one could try to
construct a second class of states using, the conditiondη = 0.
In contrast with what happens in ordinary space, there is no
solution belonging toP0 in the region0 < eB0θ < 1.

RegioneB0θ < 0 can be studied analogously. In this
caseκ < 0 and thenc1, c2 (and alsod1, d2) interchange their
roles of creation and annihilation operators. Now, one starts
solvingdη10 = 0 with the ansatzη10 = a†f(N). The tower
of solutions with increasing energy is now given by

ηkl =
(
c†

)k−1 (
d†

)l
η10, k > l,

Ek = ω

(
k +

1
2
− ᾱ

)
, eB0θ < 0,

Lkl = (l − k − ᾱ). (25)

Again, eigenstates and eigenvalues coincide, in theθ → 0
limit with those called “class I” in ordinary space [5].

We have not found states in theeB0θ > 1 region. There,
one has to modify the ansatz for the vector potential, adding
to Az a term proportional toz. In that case we were not able
to construct the tower of eigenstates belonging toP0. Re-
markably, this region does not exist in theθ → 0 limit.

The analysis for the anti-fundamental representation fol-
lows the same steps. One defines operatorsci and di as
in (11) but with the covariant position and derivative in the
anti-fundamental representation. Now, we restrict states to a
subspacẽP0 such that, on it, the operator algebra reduces to
the canonical one. The condition readsχ̃ ∈ P̃0 ⇔ χ̃|0〉〈0=0
One finds the lowest state of thẽχ01 = s(N)a adjusting
cχ̃01 = 0, and from it one construct a tower of states through

χ̃kl =
(
c†

)k (
d†

)l−1
χ̃01, l > k,

Ek = ω

(
k +

1
2

)
, 0 < eB0θ < 1,

Lkl = −(k − l − ᾱ). (26)

Analogously, fromη̃10 = t(N)a, one has

η̃kl =
(
c†

)k−1 (
d†

)l
η̃10, k > l,

Ek = ω

(
k +

1
2
− ᾱ

)
eB0θ < 0,

Lkl = −(l − k − ᾱ). (27)

Note that these results coincide with those for the fundamen-
tal representation except for the sign in the angular momen-
tum eigenvalues.

It is interesting to connect our results with those in ordi-
nary space [5] in the discussion of the physics of two anyons
in a uniform magnetic field. Using the analogue of opera-
tors ci anddi, in Ref. 5 two classes of eigenstates are con-
structed, one for which the energy isα-dependent (class I)
and the other which exhibits anα-independent energy (class
II). Concerning the angular momentum, the two classes have
opposite sign eigenvalues. Class I states (classically “incor-
rect” circulation) have an energy which is shifted byα.

In noncommutative space only one class of states can
be constructed both for the fundamental and the antifunda-
mental representations. Indeed, in the fundamental, for uni-
form magnetic field in the range0 < eB0 < 1/θ, only
class II (α-independent energy) states exist while for a range
eB0 < 0 the only possible states are class I type withα-
dependent energy; concerning the antifundamental represen-
tation, the same phenomenon happens. Now, in theθ → 0
limit the fundamental representation (with chargee) and the
anti-fundamental representation (with charge−e) merge, so
that we have both classes of solutions in the whole range of
values ofeB0, recovering Johnson and Canright result.
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