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Noncommutative Landau problem for particle-vortex system
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We study the problem of a charged particle in the presence of a uniform magnetic field plus a vortex in a noncommutative plane considering
two non-commutative extensions of the corresponding Hamiltonian, namely “fundamental” and “antifundamental” representations. Using a
Fock space formalism we construct eigenfunctions and eigenvalues finding in each case half of the states existing in the ordinary space case
In the limit of # — 0 we recover the two classes of states found in ordinary space, relevant for the study of anyon physics.
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Estudiamos el problema de una jeuta cargada en un campo magjno uniforme y un @rtice en un plano no-conmutativo, considerando

dos extensiones no-conmutativas del hamiltoniano, las representaciones “fundamental” y “antifundamental”. Usando el formalismo de
espacios de Fock, construimos las autofunciones y los autovalores, hallando en cada caso la mitad de los estados existentes en espac
ordinario. En elimite & — 0, recuperamos las dos clases de estados encontrados en espacio ordinario, relevantes para el estudio de aniones

Descriptores: Mecanica C@ntica no-conmutativa; paculas cargadas;ortices, aniones.

PACS: 03.65.Ge; 11.27.+d

The Landau and the Aharonov-Bohm problems are the twan this framework, the connection between operators and

paradigms of planar quantum mechanics of charged particlggnction is|m)(m| — 2(71)mLm(27n2/9)e*§ and deriva-

in a magnetic field [1]. Inspired by recent observations ontjves are given by

the relevance of noncommutative geometry for describing the

Quantum Hall effect [2], both problems have been considered 9, = ———lal, ], 0: = —la, ]. (4)

in noncommutative space [3, 4]. Vo
Adding a uniform magnetic field plus other vortex-like,  The field strength in terms of the complex vector potential

turns the problem even more interesting. This system wagomponents is

solved in ordinary space in Ref. 5, in the context of anyon

physics, where particles with exotic statistic are represented F.;: =0,A; — 0:A, +ie[A,, As]. (5)

by charges pierced by a magnetic flux. In this regard, the

problem of two anyons in an external magnetic field is equivAS Stated above, we will consider the field strength

alent to that of a particle in the presence of an external mag-

netic field plus a vortex. In Ref. 5, eigenstates and spectrum

in ordinary space are found analytically by modifying in a In thed — 0 limit, the second term goes, in configuration

simple but subtle way, the usual Landau problem ladder op- . ; .
. space, to a delta function corresponding to a singular vortex,
erator formalism.

We shall consider the noncommutative generalization of ith flux related to the real parameter(8].

. gy In noncommutative space, even for an Abelian gauge the-
this problem. Namely, we shall solve the Satiinger equa- , i R N
. L . ory one can define covariant derivatives in “fundamental” and
tion for a charged particle in the presence of a uniform mag

netic field plus a vortex, when space coordinates satisfy anti-fundamental” representations,

F.. =iB° —i20)(0].
z2 =1 160|0><0| (6)

[Il’m2] —i0 . 1) D,V =0,V +ieA,¥ fundamental

It is convenient to introduce complex variables and, associ- Cn¥ = 0¥ —ie¥A, anti—fundamental. (7)

ated to them, annihilation and creation operatoada': We shalll first discuss the case of the fundamental representa-

P b g2 z ; ol —ix2 tion and then extend the results to the anti-fundamental.
NG —a= N7 R —a = V20 ) The time-independent Sddinger equation of the wave
function ¥ is given by
so that (1) becomes
1

[a,a"] =1 . ) HU(z,2) = —5—[D:, D], U= EV(z,2).  (8)
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Concerning the angular momentum operdtoit is use-
ful to define the “covariant” position andw [2],

w=z+iefAz =z —iefA,. (9)

In noncommutative space the appropriat@perator can be
defined as [3, 6]

_ eB°
L—wDZ—wD5—2(1_6BOG)[ w,
0
5D D], . (0)

Notice thatZ in (10) is the generalization to noncommutative
space of the so called “mechanical angular momentum” [7].
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and[H, L] = 0. Thus, one can to find common eigenfunc-
tions of H andL

Now, we have to write an explicit expression for the vec-
tor potential leading to a field strength (6). A possible choice
for 1 — eB%9 > 0 and positiver is

A = ﬁgw)a* A= —%agm (7)
with
g(N) = i<1,/16309+;> . @8)

We shall now construct the Fock space associated to the

We introduce two pairs of creation and annihilation op-operatorsV, = cfc andNy = d'd. Let us start by consider-
erators, the noncommutative analogue of those developed féitg & statex such that

the usual Landau problem [5]. They are defined as

1 1
o = ——=D., ¢y = ———Dx,
V/|eBO| V/|eBO| (11)
1 1
dy = ——(w+ kD), dy = —=(w—kD,),
V] Vsl
where
1—eB%
= — ° 12
5o 12)
One can verify that with this definition
(6
[c1,c2] = Sgn(eBO) - WWMO\»
(6
[dladQ] =sgnk + 9‘630(1 — 6309)‘ |0><0‘7
«
c1,di] = 0)(0|, 13
lev di] = —o |17€B09|\ {0l (13)
[0

Co,do| = — 0){0

le2, da 6300\/|176300|| A
[Cl,dz] = [Cz,dl] =0. (14)

Note that for those stategsuch tha0)(0|x = 0 operators
¢;'s andd;’s will play, depending on the sign efB° andx,
the role of creationd(, d) or annihilation ¢, d) operators.

We shall callP, the subspace of states satisfying this condi-

cx=0. (19)
Then,y is an eigenstate of the Hamiltonian. In order to make
x also an eigenstate @f, we propose the following ansatz
x(a,a’) = a™h(N). (20)

Note that in the commutative limit'™ can be connected to
exp(—ing), an eigenfunction of the canonical angular mo-
mentum with eigenvaluen.

One can see that € Py providedn > 0. GivenL as
in (16), the ansatz is consistent only for< eB%9 < 1; we
shall study other regimes later on. One has,

«

—eBY°

Ly=—
X 1

(n+a)yx, with a= (21)

We start solving (19) forn. = 1 and denote this eigenstate
asyo1. We obtain

Xo1(2,2) =2+ — Z )™ by Lim 2T2/0) , (22)
where
_ 1/2
W ( T(m+2+4a) (eB%)*T%(1—eB%)™
" (m+)IT(2+a) 270
(23)

tion. In the commutative space limit the condition becomes

the “hard-core condition” since it corresponds to the vanis

ing of wave functions at the origin. Moreover, in the— 0

limit, the algebra (14) coincides with that obtained in Ref. 5.
The Hamiltonian (8) takes the form

H= % [c, CT}+ , withw = @ (15)
For states restricted %, the angular momentum is
L =sgnk(cte — dfd)  for 1—eB% >0,
L=—(cle+dd) for 1-eB% <0, (16)

hA tower of states with increasing energy can be constructed

from xo1 by acting withct anddf,

= () (@)

1

Lkl:(kflfd).

X01, I> ka

0<eB% < 1,
(24)
Being! > k, one can see that,; € Py. Inthed — 0 limit,

states (24), coincide with the corresponding “class II” states
found in Ref. 5.
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Inspired by the ordinary space results, one could try toAnalogously, fromj;o = t(N)a, one has

construct a second class of states using, the conditjea 0.

In contrast with what happens in ordinary space, there is no

solution belonging td&, in the regiord < eB%9 < 1.

RegioneB%) < 0 can be studied analogously. In this
casex < 0 and thercy, ¢o (and alsaly, ds) interchange their
roles of creation and annihilation operators. Now, one starts

solvingdn,y = 0 with the ansatz);o, = af f(N). The tower
of solutions with increasing energy is now given by

Ml = (CT)k_l (dT)lmo,

1

Lkl:(lfkf@).

k>,
eB% < 0,

(25)

Again, eigenstates and eigenvalues coincide, infthe 0
limit with those called “class I” in ordinary space [5].

We have not found states in ta&%0 > 1 region. There,

Mkl = (CT)k_1 (dT)l 710,

1
Ek=w<k‘+2—a)

Ly :7(17]{1754).

k>,
eB% <0,
(27)

Note that these results coincide with those for the fundamen-
tal representation except for the sign in the angular momen-
tum eigenvalues.

It is interesting to connect our results with those in ordi-
nary space [5] in the discussion of the physics of two anyons
in a uniform magnetic field. Using the analogue of opera-
tors¢; andd;, in Ref. 5 two classes of eigenstates are con-
structed, one for which the energy dsdependent (class )
and the other which exhibits arindependent energy (class
I1). Concerning the angular momentum, the two classes have
opposite sign eigenvalues. Class | states (classically “incor-
rect” circulation) have an energy which is shifteddoy

In noncommutative space only one class of states can

one has to modify the ansatz for the vector potential, addinge constructed both for the fundamental and the antifunda-
to A, a term proportional ta. In that case we were not able mental representations. Indeed, in the fundamental, for uni-

to construct the tower of eigenstates belonging’to Re-
markably, this region does not exist in the— 0 limit.

form magnetic field in the range < eB° < 1/6, only
class Il p-independent energy) states exist while for a range

The analysis for the anti-fundamental representation fol¢B° < 0 the only possible states are class | type with

lows the same steps. One defines operatprand d; as

dependent energy; concerning the antifundamental represen-

in (11) but with the covariant position and derivative in the tation, the same phenomenon happens. Now, ifthe 0
anti-fundamental representation. Now, we restrict states to bimit the fundamental representation (with chargeand the
subspacéP, such that, on it, the operator algebra reduces tgnti-fundamental representation (with charge) merge, so

the canonical one. The condition reagds Py < ¥|0)(0=0
One finds the lowest state of they = s(V)a adjusting

that we have both classes of solutions in the whole range of
values ofe B?, recovering Johnson and Canright result.

cxo1 = 0, and from it one construct a tower of states through

Xkl = (CT)I€ (CZT)Z_1 X015

1

Ly = 7(]67[*0_4).

>k,
0<eB <1,

(26)
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