Short communication

Identification of core components of the exon junction complex in trypanosomes

Natalia Bercovicha, Mariano J. Levena, Christine Claysont, Martin P. Vazquezb,∗

a INGENI-COCOr, Vuelta de Obligado 2490, 2P, Buenos Aires, Argentina
b Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
c Zentrum für Molekulare Biologie, Heidelberg Universität, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany

Article history:
Received 4 March 2009
Received in revised form 20 March 2009
Accepted 24 March 2009
Available online 5 April 2009

Keywords:
Trypanosomes
EJC
Mago
Y14
mRNA export

A B S T R A C T

In animal cells, the exon junction complex (EJC) is deposited onto mRNAs during the second step of splicing, 20–24 nt upstream of the exon–exon junction. The EJC core contains four proteins: Mago, Y14, elf4AIII and Btz. In trypanosomes, cis-splicing is very rare but all mRNAs are subject to 5′ trans-splicing of a 39-nt RNA sequence. Here we show that trypanosomes have a conserved Mago and a divergent Y14 protein, but we were unable to identify a Btz orthologue. We demonstrate that Mago and Y14 form a stable heterodimer using yeast two hybrid analyses. We also show that this complex co-purifies in vivo in trypanosomes with a protein containing an NTF2 domain, typically involved in mRNA transport.

1. Introduction, results and discussion

The expression of protein–coding genes in eukaryotes involves a series of interconnected steps: transcription initiation, mRNA processing, export from the nucleus, translation, and degradation. In opisthokont eukaryotes, the exon junction complex (EJC) is loaded onto mRNAs during the second step of splicing at a fixed distance upstream (20–24 nt) of exon–exon junctions. The EJC serves as a marker for completed splicing; other proteins that interact with it promote mRNA export. The EJC is eventually removed during the first “pioneering” round of translation in the cytoplasm [12]; failure to remove it, in mammals, results in degradation of the mRNA in a process known as Nonsense Mediated Decay (NMD).

The stable core of the EJC contains four proteins: Mago, Y14, elf4AIII and Btz (MNLS51) [3,4]. elf4AIII is a DExH/D-box helicase that binds to the RNA and interacts with the heterodimer Mago/Y14 and Btz (NLM51) [1,5]. Y14 is a small protein with an RNA Recognition Motif (RRM), but instead of binding RNA, its RRM domain is involved in a protein–protein interaction with Mago [6,7]. The EJC tetramer is stably engaged on mRNA because of inhibition of elf4AIII ATPase activity by the C-terminal amino acids of Mago [8]. The dissociation of Mago/Y14 from elf4AIII due to interaction with cytoplasmic factors such as PYM [9] liberates the ATPase function and induces the release of EJC from mRNA during the pioneer round of translation.

In trypanosomes, transcription by RNA polymerase II is polycistronic [10]. The 5′-ends of individual mRNAs are created by trans-splicing of a 39 nt spliced leader sequence (SL) [11]; this is followed by polyadenylation. So far there is no evidence for any coupling between RNA polymerase II transcription and splicing (M. Stewart, S. Haile and C. Clayton, in preparation) there is no published evidence for NMD and little is known about mRNA export. We were therefore interested to find out whether trypanosomes have an exon junction complex.

We first searched the Trypanosoma brucei and Trypanosoma cruzi genomes for EJC components. The predicted trypanosome Mago protein (accession numbers XP_818983 for T. cruzi, XP_845612 for T. brucei) has over 50% of identity with other eukaryotic Magos (Fig. 1A). In contrast, we were unable to find Y14 by direct BLAST analysis. We therefore restricted the searches to the complete set of trypanosome small proteins containing only one RRM domain [12], then manually searched for key Y14 amino acid residues present in the RNP-2 and RNP-1 signatures within the RRM. The resultant trypanosome Y14 candidate (accession numbers AAW2044 for T. cruzi, XP_845741 for T. brucei) has about 30% sequence identity with the human protein, mostly restricted to the RRM domain (Fig. 1B). No trypanosome homologue of Btz (NLM51) was found, but a nuclear elf4AIII was previously suggested to be part of a putative EJC [13].
Fig. 1. (A) Mago sequence comparison. Residues that are involved in the Mago/Y14 interaction in the mammalian protein, and are conserved in the trypanosome protein, are shown by double dots; those required for interaction with eIF4AIII are shown by double stars. Mago/Y14-interacting residues that are not conserved in trypanosomes are indicated with single dots; altered residues for interaction with eIF4AIII are indicated by single stars. Structural predictions are below the sequence, b, beta-sheet; h, alpha helix; dot, loop. Hs, Homo sapiens; Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Pf, Plasmodium falciparum; Sp, Schizosaccharomyces pombe; Tb, Trypanosoma brucei; Tc, Trypanosoma cruzi. (B) Y14 amino acids sequence comparison, symbols as in (A) except that double dots and single dots reference to the interaction with Mago.

Looking for EJC-type interactions, we cloned the human and trypanosome Mago and Y14 proteins in the Gateway compatible Proquest yeast-two hybrid system in both AD and DB configurations. Interactions were tested by activation of HIS3 reporter gene in plates lacking histidine with 25 mM 3AT (not shown) and by activation of LacZ reporter gene in liquid culture assay (Fig. 2A). The results observed by activation of both reporter genes correlated perfectly. The interaction between TcY14 and TcMago appeared to be stronger than that of the human proteins (columns 2 and 5), and trypanosome Y14 also interacted with human Mago (columns 3 and 6). The Y14 RRM domain has two amino acids in the RNP-2 – Val46 and Phe48 – which are predicted to inhibit interactions with RNA [14] and might be involved in the interaction with Mago [6,7]. In agreement, mutation of these residues to Ala completely abolished interaction with TcMago further supporting the identity of the trypanosome Y14 (Fig. 2B).

To identify other components of the trypanosome EJC, we expressed a TAP-tagged version of Y14 in T. brucei procyclic cells, purified the complex, and identified the associated proteins by LC-MS/MS. Results are shown in Fig. 2C. In addition to TbMago, we found a novel protein of unknown function (encoded by locus Tb10.70.5500) with an NTF2 domain (Fig. 2D). NTF2 domains are typically found in nuclear transport factors [15–17]. Additionally, the protein has an Arg-rich region, separated from the NTF2 domain by a predicted coiled-coil (Fig. 2D). Surprisingly, we did not find the previously described [13] nuclear eIF4AIII protein. As expected, TAP-tagged TbY14 was mainly in the nucleus (Fig. 3A).

Finally, we depleted TbY14 and TbMago mRNAs by tetracycline inducible RNA interference. In one cell line, the knock down of TbY14 mRNA impaired trypanosome growth (Fig. 3B), suggesting that the trypanosome EJC is necessary for some aspect of mRNA metabolism. TbMago RNAi did not affect growth, but this result is uninformative since we do not know how much of the protein remains after RNAi induction.

Our results suggest that trypanosomes might contain a modified form of exon junction complex, containing Mago, a divergent Y14, and a novel protein with an NTF2 domain. The lack of any association with nuclear eIF4AIII, interestingly, correlates with the fact that two out of three residues required for Y14 to interact with eIF4AIII are mutated (Fig. 1B). Similarly, two key C-terminal residues necessary for Mago to inhibit ATPase function in eIF4AIII and lock the protein onto the mRNA are also lost (Fig. 1A). Nevertheless, we cannot rule out the possibility that this interaction indeed occurs in vivo, but was lost under the conditions used for the TAP purification. We do not yet know whether the trypanosome EJC is deposited on all mRNAs, or whether it is restricted to cis spliced mRNAs.
Fig. 2. Interactions between Mago and Y14. (A) Evaluation of two-hybrid interaction for the *T. cruzi* proteins by LacZ reporter activation in ONPG liquid culture assay as previously described [18]. The interacting pairs are indicated in DB/AD configuration. Tc, *Trypanosoma cruzi*; Hu, human; AD, activation domain alone. Two independent experiments with duplicates were quantified. (B) Top panel, schematic representation of the domain architecture of trypanosome Y14 showing the RNP signatures, and the mutated positions Val and Phe (VF) on the RNP2. Bottom panel, yeast-two hybrid analysis of the interaction between Mago and the variant Y14VFAA. Interactions were evaluated by HIS3 reporter activation in plates lacking histidine with 25 mM 3AT [18]. E, positive control provided by the Proquest kit (Invitrogen); TcY14/TcMago, wt interaction. (C) Top, outline of the TAP-tag inducible system used in the experiment. Bottom, TAP-tag LC-MS/MS analysis. TAP-tagged *T. brucei* Y14 was expressed in procyclic *T. brucei* cells and purified as described previously [19]; a 12% SDS-PAGE of purified complexes (TbY14-TAP) is shown including purification from cells expressing the TAP-tag alone (TAP) as a control. M, molecular weight marker. Bands specific to Y14-TAP identified by the LC-MS/MS analysis are indicated on the right. (D) Top, NTF2 protein sequence. Peptides identified by the LC-MS/MS analysis are shown in bold. Bottom, schematic representation of NTF2 protein domain architecture.

Fig. 3. Y14 is mainly a nuclear protein essential for normal parasite growth. (A) Immunofluorescence assay using procyclic trypanosomes expressing Y14-TAP was done as previously described [20]. The DAPI stain shows the DNA, and the TAP-tag Y14 was detected using Alexa fluor 594 conjugated anti-IgG. DIC: differential interface contrast. (B and C) Cumulative cell growth curves of procyclic RNAi cell lines for both Y14 (C3 line) and Mago (B2 line), respectively with or without tetracycline induction. RNAi experiments were done as previously described [19]. Quantification of Y14 and Mago mRNAs by Northern blots were measured for seven days after Tetracycline induction with the SRP RNA measured as control. Y14 mRNAs were down to 40% of the original levels by day 7 while Mago mRNAs were down to 20% in the same conditions (data not shown).
can speculate that if it is deposited on all mRNAs during trans splicing, and the topology is similar to that seen in mammalian cells, we would expect to find it bound to the SL, just downstream of the cap structure. The interaction of the NTF2-domain protein with the mRNA export machinery could then serve to expedite export of processed mRNAs to the cytoplasm.

Acknowledgments

We would like to thank Dr. Marina Cristodero (ZMBH) for helpful discussions and indispensable help, particularly for the TAP purification. We also thank Bhaskar Anand Jha (ZMBH) for his assistance. Mass spectrometry was done by Dr. T. Ruppert and his team at the facility in the ZMBH. This work was supported by grants from FONCYT – PICT REDES 2003-00300, UBACyT X-153 (University of Buenos Aires) and PIP-CONICET 5492 to MPV and WHO/TDR, South-South initiative (SSI-WHO/TDR) to MJL. MPV and MJL are members of the career of scientific investigator of CONICET, Argentina. Work of NB in CC’s laboratory was supported by an EMBO short-term fellowship (ASTF372-2006).

References