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a b s t r a c t

We give an elementary and direct proof of the following theorem: A real number is normal
to a given integer base if, and only if, its expansion in that base is incompressible by lossless
finite-state compressors (these are finite automata augmented with an output transition
function such that the automata input–output behaviour is injective; they are also known
as injective finite-state transducers). As a corollary we obtain V.N. Agafonov’s theorem on
the preservation of normality on subsequences selected by finite automata.
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1. Statement and discussion of results

In this note we give an elementary and direct proof of the following:

Characterization Theorem. A real number is normal to a given integer base if, and only if, its expansion expressed in that base
is incompressible by lossless finite-state compressors.

Normality, defined by Émile Borel in 1909 [2], requires that the infinite expansion of a real number be evenly balanced: a real
number is normal to a given integer base if every block of digits of the same length occurs with the same limit frequency in
the expansion of the number expressed in that base. For example, if a number is normal to base two, each of the digits ‘0’ and
‘1’ occur, in the limit, half of the time; each of the blocks ‘00’, ‘01’, ‘10’ and ‘11’ occur one fourth of the time, and so on. Lossless
finite-state compressors, introduced by David Huffman in 1959 [8], are ordinary finite automata augmented with an output
transition function such that the automata input–output behaviour is injective. They are also called injective finite-state
transducers.

Although the Characterization Theorem has not hitherto appeared explicitly in print, it was known to the experts in the
field as a consequence of these two results:

(a) Schnorr and Stimm in 1971 [12] considered martingales constructed from finite automata increased with stationary
transition probabilities and used them to predict the symbols in a sequence. They proved that normal sequences are exactly
those at which no such martingale succeeds in making unbounded profit. The proof relies on the theory of Markov chains.1

(b) Dai, Lathrop, Lutz and Mayordomo in 2004 [6] defined finite-state dimension as a measure of how much success is
achievable by the martingales considered by Schnorr and Stimm. Bounded success corresponds to finite-state dimension
one. Their theorem establishes that the finite-state dimension of a sequence is the infimum of all compression ratios
achievable on the sequence by lossless finite-state compressors. Therefore, finite-state dimension one is equivalent to
incompressibility by lossless finite-state compressors.

In [6] the authors also showed that every sequence normal to base two has finite-state dimension one (the result
generalizes to any other base). Bourke, Hitchcock andVinodchandran [3] established the converse using the notion of entropy
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1 For instance, Lemma 2 in [12] uses that in a Markov chain with discrete time, the sequence of positive probabilities in recurrent states has a Cesàro
limit.
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rate for blocks of symbols. These results together amount to yet another proof of Schnorr and Stimm’s theorem: normality
coincides with finite-state dimension one.

Our proof of the Characterization Theorem shows the incompressibility of normal numbers bypassing the intermediate
property of finite-state dimension one. The proof is done directly in terms of finite automata, with elementary counting
arguments and basic concepts in the theory of prefix codes.

As a corollary we obtain a theorem due to V.N. Agafonov in 1968 on the preservation of normality on subsequences
selected by finite automata [1].
Agafonov’s Theorem. LetA be the binary alphabet. An infinite sequence is normal to the alphabetA if, and only if, every infinite
subsequence selected by a finite automaton is, again, normal to alphabet A.
Agafonov’s publication [1] does not include the complete proof (it depends on previous work only available in Russian
literature). M.O’Connor [11] gave it using predictors defined from finite automata, and Broglio and Liardet [4] generalized it
to arbitrary alphabets. We also obtain Agafonov’s theorem for arbitrary alphabets.

It is known that for some slightly more powerful automata Agafonov’s theorem fails: Merkle and Reimann [10] showed
that normality is not preserved in subsequences selected by deterministic one-counter automata (pushdown automata
with a unary stack alphabet) nor by linear languages (languages recognized by one-turn pushdown automata, namely, the
automata with limited operations on one stack: once they start popping, they must stop pushing). Whether finite automata
is the largest class that yields normality-preserving selectors is yet to be determined. Similarly, the largest class of machines
that cannot compress normal numbers remains to be known.

2. Basic definitions

Hereafter A and B are alphabets (finite sets of at least two symbols), An is the set of strings of n symbols from A, A<n
=n−1

i=0 Ai is the set of strings of length strictly less than n, A∗ is the set of finite strings of any length and Aω is the set of
infinite sequences of symbols from A. |A| is the cardinality of A and observe that |An

| = |A|
n. λ is the empty string, |s| is

the length of string s, s[i] is the symbol at position i of s, for 1 ≤ i ≤ |s|, and s[i..i + k − 1] is the string of k consecutive
symbols of s starting at position i, for 1 ≤ i ≤ |s| − k + 1. We use a similar notation for the infinite sequences in Aω .

2.1. Normal numbers

There are several equivalent definitions of normality2; we give here the one that is most convenient to prove the
Characterization Theorem. For notational purposes we present it directly on infinite sequences of symbols from an alphabet
A.
Definition. A sequence α ∈ Aω is simply normal to alphabet A if each individual symbol in A has the same asymptotic
frequency in α,

∀x ∈ A, lim
k→∞

occ(x, α[1..k])
k

=
1

|A|
,

where occ(x, s) = |{i : x = s[i]}| is the number of occurrences of the symbol x in string s. A sequence α ∈ Aω is normal to
alphabet A if it is simply normal to alphabet An, for every n ≥ 1.
Thus, normality to a given alphabet implies normality to any power of that alphabet. Also notice that if a sequence is normal
to a given base, then so is each of its final segments.

2.2. Finite-state compressors

A finite-state compressor is a finite automaton with two tapes, an input tape and an output tape.
Definition. A finite-state compressor is a 6-tuple C = ⟨A, B, Q, q0, δ, o⟩ where A is the input alphabet, B is the output
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×A → Q is the transition function and o : Q×A → B∗

is the output function. The automaton processes the input symbols according to the current state q. When a symbol x ∈ A
is read, the automaton moves to state δ(q, x) and outputs o(q, x). We extend δ and o to process strings:

δ∗(q, λ) = q, o∗(q, λ) = λ,
δ∗(q, xs) = δ∗(δ(q, x), s). o∗(q, xs) = o(q, x)o∗(δ(q, x), s).

We write C(s) for o∗(q0, s) and |C(s)| for its length.

2 Borel’s original definition, given in [2], says: A real number r is simply normal to a given integer base b if each digit in {0, 1, . . . , b − 1} has the same
asymptotic frequency 1/b in the expansion of r expressed in base b. A real number r is normal to base b if each of the numbers r , br , b2r.. is simply normal
to the bases bn , for every n ≥ 1. Although it seems more demanding, this last condition is equivalent to require that just r be simply normal to the bases
bn , for every n ≥ 1. Another equivalent definition is in terms of equifrequency of blocks of digits, for every block size. An alternative characterization proves
that a real number x is normal to a base b if and only if, the sequence (xbn)n≥1 is uniformly distributed modulo one. For a proof of these equivalences see,
for instance, [5].
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Definition. A finite-state compressor is lossless if, from a given output and finishing state, there is at most one input that
produces it from the initial state. This is equivalent to requiring that the function f (s) = ⟨o∗(q0, s), δ∗(q0, s)⟩ be injective.

Definition. The compression ratio for a finite-state compressor C of a string s ∈ A∗ is the output length divided by the length
of a standard optimal coding of s in symbols of alphabet B:

ρC (s) =
|C(s)|

|s| log|B| |A|
.

The compression ratio for a finite-state compressor C of an infinite sequence α ∈ Aω is

ρC (α) = lim inf
n→∞

ρC (α[1..n]).

The finite-state compression ratio of a given sequence α is the infimum of the compression ratios achievable by all finite-
state compressors, namely,

ρ(α) = inf{ρC (α) : C is a lossless finite-state compressor}.

If C is a lossless finite-state compressor, then any string s can be coded by a sequence of length |C(s)|+kC , where kC depends
on C itself and its finishing state, but not on s.

Definition. A finite-state compressor C compresses a sequence α ∈ Aω if the compression ratio for C of α, ρC (α), is strictly
less than one. A sequence α is compressible by lossless finite-state compressors if there is a lossless finite-state compressor
C that compresses α, or equivalently, if ρ(α) < 1.

The next lemma proves that any given sequence in alphabet A and the same sequence seen in the alphabet power An, for
any given natural number n, have the same finite-state compression ratio.

Lemma 1. Fix n ∈ N. Let α be a sequence in Aω and let αn be the sequence in (An)ω such that αn
[i] = α[n(i − 1) + 1...ni].

Then, α and αn have the same finite-state compression ratio.

Proof. Given a lossless finite-state compressor C with input alphabet A we can construct another one with input alphabet
An that gives the same output. And, conversely, given a compressor with input alphabet An we can construct another that
reads symbols from A.

To go from A to An, we combine the processing of n consecutive symbols into one transition. Let C = ⟨A, B, Q, q0, δ, o⟩
be a finite-state compressor. For a given n, we define Cn

= ⟨An, B, Q, q0, δ∗, o∗
⟩ by restricting the domain of δ∗ and o∗ to

An. Notice that (An)∗ ⊆ A∗, (δ∗)∗ = δ∗ and (o∗)∗ = o∗, so |Cn(s)| = |C(s)| for strings s in (An)∗.
To go from An to A we reverse the previous conversion: a single transition that processes a symbol in An is split into n

individual transitions, so this gives rise to new intermediate states. In the new automaton we need a different set of states,
that we define by considering the prefix tree of strings in A of length less than n. Given a finite-state compressor Cn

=

⟨An, B, Q, q0, δ, o⟩, we define C = ⟨A, B, Q × A<n, ⟨q0, λ⟩, δ′, o′
⟩, where

δ′(⟨q, s⟩, x) =


⟨q, sx⟩, if |s| < n − 1,
⟨δ(q, sx), λ⟩, if |s| = n − 1. o′(⟨q, s⟩, x) =


λ, if |s| < n − 1,
o(q, sx), if |s| = n − 1.

The fact that (δ′)∗(⟨q, λ⟩, s) = ⟨δ∗(q, s), λ⟩ and (o′)∗(⟨q, λ⟩, s) = o∗(q, s) follows directly by applying n times the definitions
above. �

Observe that in the proof above, if one starts from a given automaton and applies the two transformations successively,
one does not recover the same automaton (because one of the transformations changes the set of states and the other does
not). Although the two automata are different, their outputs coincide. It is possible, with some extra work, to perform both
transformations and recover the original automaton: If we start from an automatonwith input alphabetAn, apply the trans-
formation to alphabet A, remove the unreachable states, apply the other transformation and then rename the remaining
states. If we start with an automaton with input alphabet A, after the two transformations use a minimization algorithm to
unify equivalent states.

3. Proof of the characterization theorem

3.1. Normal implies incompressible

Assume α ∈ Aω is normal to alphabet A. Let C = ⟨A, B, Q, q0, δ, o⟩ be an arbitrary lossless finite-state compressor
such that all its states are reachable and let ε > 0 be an arbitrarily small real. Using elementary counting arguments, we
show that the compression ratio for C of α is strictly larger than (1 − ε)3.

For each string s ∈ A∗, let as be the minimum addition to the output length that could result from processing s:

as = min{|o∗(q, s)| : q ∈ Q}.
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For each length n, consider the set of strings in An whose processing yields a large contribution to the output length:

Sn = {s ∈ An
: as > (1 − ε)n log|B| |A|}.

Given a string s in the complement set An
\ Sn there is at least one processing of s that produces an output of length at most

(1 − ε)n log|B| |A|. However, C is lossless and each state is reachable, so the string s can be associated in a unique way to a
starting state qs, an ending state δ∗(qs, s), and an output string o∗(qs, s) of length at most (1 − ε)n log|B| |A|. Consequently,
the assignment f (s) = ⟨qs, δ∗(qs, s), o∗(qs, s)⟩, for an appropriate qs defines an injective function

f : An
\ Sn → Q × Q × B<(1−ε)n log|B| |A|+1.

Thus, we can bound the cardinals of An
\ Sn and Sn as follows:

|An
\ Sn| < |Q|

2
|B|

(1−ε)n log|B| |A|+1
= |B| |Q|

2
|A|

(1−ε)n.

|Sn| > |An
| − |B||Q|

2
|A|

(1−ε)n
= |A|

n(1 − |B||Q|
2
|A|

−εn).

Since |B||Q|
2
|A|

−εn is arbitrarily close to 0 for a sufficiently large n, let n be large enough such that |Sn| > |A|
n(1 − ε).

Let Cn be the transformation of compressor C by changing its input alphabet from A to An, as in the proof of Lemma 1.
Let αn

∈ (An)ω be the sequence α seen in alphabet An, that is, αn
[i] = α[(i − 1)n + 1..in]. By the definition of normality,

since α is normal to alphabet A, αn is simply normal to alphabet An. Then, let k0 be such that

∀k > k0 ∀x ∈ An occ(x, αn
[1..k])

k
> |An

|
−1(1 − ε).

Observe that |An
|
−1(1− ε) = |A|

−n(1− ε). To give a lower bound for the compression length of Cn on αn
[1..k], for k > k0,

we consider only the strings s ∈ Sn yielding a large contribution to the output length. For each such s, we sum up the length
of the output produced by each occurrence of s in αn

[1..k]:

|Cn(αn
[1..k])| ≥


x∈An

occ(x, αn
[1..k]) ax

>

x∈Sn

k |A|
−n(1 − ε) ax

>

x∈Sn

k |A|
−n(1 − ε)(1 − ε)(n log|B| |A|) = |Sn|k|A|

−n(1 − ε)2 log|B| |A
n
|

> (1 − ε)3k log|B| |A
n
|.

Therefore, the compression ratio for Cn of αn, ρCn(αn) = lim infk→∞
|Cn(αn

[1..k])|
k log|B| |A

n| is at least (1 − ε)3. By the invariance of the

compression ratio under transformations to powers of the alphabet, proved in Lemma 1, ρC (α) is also at least (1 − ε)3.

3.2. Not normal implies compressible

Assume α ∈ Aω is not normal to alphabet A. We will show that α is compressible (regardless of the choice of an output
alphabet B). Since α is not normal to alphabet A, there is some n such that α is not simply normal to alphabet An. Fix such
a block length n. As before, let αn be the sequence with symbols in An such that αn

[i] = α[(i − 1)n + 1..in]. Then there is
some x ∈ An such that

lim
k→∞

occ(x, αn
[1..k])

k
≠

1
|An|

.

Either this limit does not exist, or it is different from |A|
−n. Thus, it is impossible that both,

lim inf
k→∞

occ(x, αn
[1..k])

k
and lim sup

k→∞

occ(x, αn
[1..k])

k
,

be equal to 1/|An
|. We will define an increasing sequence of positions (ik)k∈N relative to this block length n such that for

each y ∈ An, the limiting frequency of y at positions (ik)k∈N,

fy = lim
k→∞

occ(x, αn
[1..ik])

ik

is defined and fx ≠ |An
|
−1. Let y1 = x and for j = 2, .., |An

|, let yj be the j-th element of An
\ {x} in the lexicographic order.

We define (ik)k∈N by taking subsequences. Let

i(1)k


k∈N

be an increasing sequence of positions such that fy1 is defined and

different from |An
|
−1. This exists because y1 = x andwe already argued that the limit for x is not |An

|
−1 over all subsequences.

And for each j, 2 ≤ j ≤ |A|
n, let


i(j)k

k∈N

be a subsequence of

i(j−1)
k


k∈N

such that the limit fyj is defined when considered
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over positions

i(j)k

. Since frequencies are bounded between 0 and 1, such a subsequence necessarily exists. Observe that

the sequence

i(|A

n
|)

k


k∈N

verifies that for all y ∈ An, fy is defined. By letting ik = i(|A
n
|)

k , for each k ∈ N, we obtain the desired
sequence.

We now prove that αn is compressible. We shall bound the compression ratio of αn at the sequence of positions (ik)k∈N.
We follow an idea known from information theory as in the Noiseless-Coding Theorem [13]. We encode the blocks via
a block-to-variable-length encoding, with m-length blocks of symbols from An, such that the average codeword-length is
less than m × n. For each integer m, we define a compressor Cm that codes the input by groups of m symbols. Let Cm =

⟨An, B, (An)<m, λ, δ, o⟩ be such that for each q ∈ (An)<m and z ∈ An,

δ(q, z) =


qz, if |q| < m − 1,
λ, if |q| = m − 1. o(q, z) =


λ, if |q| < m − 1,
ō(qz), if |q| = m − 1,

where ō : (An)m → B∗ is an injective map into a prefix-free subset of B∗ such that

|ō(z1z2...zm)| =


m
i=1

− log|B| fzi


.

Since 
s∈(An)m

|B|
−|ō(s)|

=


s∈(An)m

m
j=1

fs[j] ≤ 1,

such a prefix-free set exists (for example, it can be defined by Huffman’s coding [7]). This ensures that Cm is lossless. We
now give an upper bound for the length of the output of Cm on an arbitrary string s ∈ (An)∗. Fix p to be the largest integer
such that pm ≤ |s|. By definition of Cm,

Cm(s) = o∗(λ, s) = ō(s[1..m])ō(s[m + 1..2m] . . . ō(s[(p − 1)m + 1..pm]).

And, using the definition of ō,

|Cm(s)| = |o∗(λ, s)| =

p
j=1

|ō(s[(j − 1)m + 1..jm])| ≤ |s|/m +


y∈An

occ(y, s)(− log|B| fy).

We obtain the following upper bound for the compression ratio for Cm of αn,

ρCm(αn) = lim inf
k→∞

|Cm(αn
[1..k])|

log|B| |A
n| k

≤ lim
k→∞

|Cm(αn
[1..ik])|

log|B| |A
n| ik

≤ lim
k→∞


ik
m

+


y∈An

occ(y, αn
[1..ik])(− log|B| fy)


log|B| |A

n
| ik


≤
1

m log|B| |A
n|

+


y∈An

fy(− log|B| fy)/ log|B| |A
n
|.

Since we assumed there was some x ∈ An such that fx ≠ |A|
−n, by Shannon’s work [13] we have

y∈An

fy(− log|B| fy)/ log|B| |A
n
| < 1.

Then, for some sufficiently large m, ρCm(αn) is also strictly less than 1. This proves that αn, as a sequence in (An)ω , is com-
pressible. By the invariance of the compressibility ratio under powers of the alphabet, shown in Lemma 1, the sequence
α ∈ Aω is also compressible. This concludes the proof of the Characterization Theorem.

4. Proof of Agafonov’s theorem

As a corollary of the Characterization Theorem we obtain Agafonov’s Theorem [1]. We regard a finite automaton that
selects a subsequence of a given sequence as a finite-state compressor that behaves as the identity function but only on
selected positions. We call it a finite-state selector.

Definition. A finite-state selector is a 5-tuple S = ⟨A, Q, q0, δ, Qf ⟩ where A is the input alphabet, Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × A → Q is the transition function and Qf ⊆ Q is the set of selecting states. To ensure
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that for an infinite input the output is necessarily infinite, we require that the transition function δ be free of cycles of non-
selecting states. The output function o : Q × A → A is the identity function restricted to the selecting states: o(q, x) = x,
if q ∈ Qf ; and o(q, x) = λ, otherwise. The automaton processes the input symbols according to the current state q. When
a symbol x ∈ A is read, the automaton moves to state δ(q, x) and outputs x if q ∈ Qf ; otherwise, it outputs nothing. We
define the extensions δ∗ and o∗ as in the definition of finite-state compressors. We write S(s) for o∗(q0, s), the output of the
selector on input the string s.

The next lemma is a known result, see for instance [9]; it asserts that finite-state selectors cannot select a sublinear
fraction of the input.

Lemma 2. Let α ∈ Aω and let S be a finite-state selector with k states, then ρS(α) ≥ 1/k.

Proof. Let S = ⟨A, Q, q0, δ, Qf ⟩ and (qn)n∈N be the sequence of states visited when processing α, qn = δ∗(q0, α[1..n]).
Consider blocks of k = |Q| consecutive states in the sequence qt , qt+1, . . . , qt+k−1. Since there are k states in a block either
all states appear in it or there is a cycle of states. Eitherway, at least one state in the blockmust be a selecting state; therefore,
at least one symbol from each block of k consecutive symbols of α must be selected. �

We now introduce a technical tool that we will use in the proof of Agafonov’s theorem: a finite-state compressor with
more than one output. We show that the compression ratio for ordinary finite-state compressors and for these new ones
coincides.

Definition. A two-output finite-state compressor is a 7-tuple C = ⟨A, B, Q, q0, δ, o1, o2⟩ where A is the input alphabet, Q
is a finite set of states, q0 ∈ Q is the initial state, δ : Q × A → Q is the transition function and oi : Q × A → B∗ are
the output functions. The automaton processes the input symbols according to the current state q. When a symbol x ∈ A
is read, the automaton moves to state δ(q, x) and outputs oi(q, x) on output tape i. We extend δ and oi to process strings in
the same way as for regular finite-state compressors. We write C(s) for ⟨o∗

1(q0, s), o
∗

2(q0, s)⟩ and

|C(s)| = |o∗

1(q0, s)| + |o∗

2(q0, s)|.

A two-output finite-state compressor is lossless if, from two given output strings and a finishing state, there is at most one
input that produces from the initial state the two strings and the finishing state. This is equivalent to requiring that the
function f (s) = ⟨o∗

1(q0, s), o
∗

2(q0, s), δ
∗(q0, s)⟩ be injective.

The definition of compression ratio for a two-output finite-state compressor is exactly as the definition for the case of a
single output.

Lemma 3. The finite-state compression ratio of a given infinite sequence is equal to the two-output compression ratio of the same
sequence.

Proof. Any lossless compressor can be emulated by a two-output lossless compressor by not using one of the outputs.
Therefore, the two-output compression ratio is clearly less than or equal to the finite-state compression ratio. Let us show
that for any lossless two-output compressor C = ⟨A, B, Q, q0, δ, o1, o2⟩ and an infinite sequence α ∈ Aω we can build a
lossless finite-state compressor C ′ such that ρC ′(α) is arbitrarily close to ρC (α).

The idea is to interleave both outputs in blocks of m symbols with one extra symbol before each block that identifies
which output it came from. Let b1, b2 ∈ B be different symbols. We will use bi to mark that a given output block comes
from output i. Let Fm, Lm : B∗

→ B∗ be the functions that split the output such that

Fm(s) = s[1..|s| − |s| mod m] and Lm(s) = [|s| − |s| mod m + 1..|s|].

Clearly, for all s, Fm(s)Lm(s) = s, |Fm(s)| mod m = 0, and |Lm(s)| < m. Let F ′
m : B∗

×B → B∗ be equal to F but appending
the symbol b before each block ofm symbols. Thus,

F ′
m(s, b) =

|Fm(s)|/m
i=1

b Fm(s)[im + 1..(i + 1)m].

Let Cm = ⟨A, B, Q × B<m
× B<m, ⟨q0, λ, λ⟩, δ′

m, o′
m⟩ where

δ′
m(⟨q, t1, t2⟩, x) = ⟨δ(q, x), Lm(t1o1(q, x)), Lm(t2o2(q, x))⟩

o′
m(⟨q, t1, t2⟩, x) = F ′

m(t1o1(q, x), b1)F ′
m(t2 o2(q, x), b2).

Notice that Cm basically mimics the behaviour of C and puts in its single output both outputs of C in blocks of m bits, each
preceded with an indicator symbol bi to indicate that the block came from output i.

Consider a fixed m and let us show that Cm is lossless. Let fi : B∗
× (Q × B<m

× B<m) → B∗ and g : B∗
× (Q ×

B<m
× B<m) → Q be functions that, given an output and finishing state of Cm, calculate both outputs and the finishing

state, respectively, of C . From the existence of such functions, since C is lossless, it is clear that Cm is also lossless. Let

Jt,i = {j : 1 ≤ j ≤ |t|/(m + 1) ∧ t[j(m + 1) − m] = bi}
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be the set of positions of blocks in t that come from output i. Then,

fi(t, q, u1, u2) =


j∈Jt,i

t[j(m + 1) − m + 1..j(m + 1)]

 ui

g(t, q, u1, u2) = q.

Simply fi parses t into blocks of m + 1 bits, and it appends to its output only the final m bits of each block starting with
marker bi. Finally, notice that

ρCm(α) = lim inf
n→∞

Cm(α[1..n])
n

≤ lim inf
n→∞

m + 1
m

|o∗

1(α[1..n])| + |o∗

2(α[1..n])|
n

≤


1 +

1
m


ρC (α).

Letting C ′
= Cm for sufficiently large m we can make the compression ratio for C ′ be arbitrarily close to the compression

ratio for C . �

We are ready to prove Agafonov’s Theorem generalized to arbitrary alphabets.

Agafonov’s Theorem. A sequence α ∈ Aω is normal to alphabet A if, and only if, every finite-state selector on input α outputs
a sequence normal to alphabet A.

Proof. In this proof we use finite-state compressors whose output alphabet is the same as the input alphabet, to match the
input/output behaviour of finite-state selectors.

Assume α is normal to alphabet A and, towards a contradiction, suppose S = ⟨A, QS, q0S, δS, Qf ⟩ is a selector such that
S(α) is not normal to alphabet A. By the Characterization Theorem, there is a lossless C = ⟨A, A, QC , q0C , δC , oC ⟩ with
output alphabet A and a positive εC such that

ρC (S(α)) = lim inf
n→∞

|C(S(α)[1..n])|/n = 1 − εC .

We define a two-output compressor C ′ that runs C on the subsequence selected by S, and acts as the identity on the rest of
the input sequence. Let C ′

= ⟨A, A, QC × QS, ⟨q0C , q0S⟩, δ, o1, o2⟩, where

δ(⟨qC , qS⟩, x) =


⟨qC , δS(qS, x)⟩, if qS ∉ Qf
⟨δC (qC , x), δS(qS, x)⟩, if qS ∈ Qf .

o1(⟨qC , qS⟩, x) =


λ, if qS ∉ Qf
oC (qC , x), if qS ∈ Qf .

o2(⟨qC , qS⟩, x) =


x, if qS ∉ Qf
λ, if qS ∈ Qf .

By construction, C ′ is lossless, because it reproduces the input in one case, and it applies a lossless compressor in the other
case.

Let S̄ be exactly as the selector S = ⟨A, QS, q0S, δS, Qf ⟩ but complementing the selecting states. This is S̄ = ⟨A, QS, q0S,
δS, Q \ Qf ⟩. Observe that for s ∈ A∗, C ′(s) = ⟨C(S(s)), S̄(s)⟩, so

|C ′(s)| = |C(S(s))| + |S̄(s)| = |C(S(s))| + |s| − |S(s)|.

Let in be an increasing sequence of positions such that limn→∞
|S(α[1..in])|

in
= ρS(α). For α ∈ Aω ,

ρC ′(α) = lim inf
n→∞

|C ′(α[1..n])|
n

= lim inf
n→∞

|C(S(α[1..n])| + n − |S(α[1..n])|
n

≤ lim inf
n→∞

|C(S(α[1..in])|
in

+ 1 −
|S(α[1..in])|

in

≤ lim inf
n→∞

|C(S(α[1..in])| |S(α[1..in])|
|S(α[1..in])|in

+ 1 −
|S(α[1..in])|

in

≤ lim inf
n→∞

|C(S(α[1..in])|
|S(α[1..in])|

ρS(α) + 1 − ρS(α)

≤ ρC (S(α)) ρS(α) + 1 − ρS(α).

By Lemma 2, ρS(α) ≥ εS for a positive εS = 1/|QS |. By definition of C , ρC (S(α)) = (1− εC ) for some positive εC . Since both
constants are positive,

ρC ′(α) ≤ (1 − εC )εS + (1 − εS) < 1.
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Thus, C ′ compresses α and, by Lemma 3, α is compressible by ordinary lossless finite-state compressors. This contradicts
the Characterization Theorem because we assumed that α is normal to alphabet A.

The other direction of the theorem is ensured by the finite-state selector that selects all the symbols of the input
sequence. �
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