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Abstract

Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a
condensation transition, where a positive fraction of all particles condenses on a single site when the total
density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential
to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a
law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the
fluctuations of the maximum and the fluctuations in the bulk.
c⃝ 2013 Elsevier B.V. All rights reserved.

MSC: 60K35; 82C22

Keywords: Zero-range process; Condensation; Conditional maximum; Subexponential tails

1. Introduction

The zero-range process is one of the interacting particle systems introduced in the seminal
paper [26]. The process has unbounded local state space, i.e. there is no restriction on the number
of particles per site, and the jump rate g(n) at a given site depends only on the number of particles
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n at that site. This simple zero-range interaction leads to a product structure of the stationary
measures [1,26] and further interest was initially on the existence of the dynamics under general
conditions [1] and on establishing hydrodynamic limits. These questions have been successfully
addressed in the case of attractive zero-range processes when g(n) is a non-decreasing function,
and results are summarized in [23]. For such processes with additional space dependence of the
rates gx , there is also a number of rigorous results regarding condensation on slow sites [2,18,24].

More recently, there has been increasing interest in zero-range processes with spatially
homogeneous jump rates g(n) decreasing with the number of particles. This results in an effective
attraction of the particles and can lead to condensation phenomena. A generic family of models
with that property has been introduced in the theoretical physics literature [14], with asymptotic
behaviour of the jump rates

g(n) ≃ 1 +
b

nλ
as n → ∞. (1.1)

For λ ∈ (0, 1), b > 0 and for λ = 1, b > 2 the following phase transition was established
using heuristic arguments: If the particle density ρ exceeds a critical value ρc, the system
phase separates into a homogeneous background with density ρc and a condensate, a single
randomly located lattice site that contains a macroscopic fraction of all the particles. This type of
condensation appears in diverse contexts such as traffic jamming, gelation in networks, or wealth
condensation in macro-economies, and zero range processes or simple variants have been used
as prototype models to explain these phenomena (see [15] for a review).

The existence of invariant measures with simple product structure makes the problem math-
ematically tractable. Jeon, March and Pittel showed in [22] that for some cases of zero-range
processes the maximum site contains a non-zero fraction of all the particles. Condensation has
been established rigorously in [21] by proving the equivalence of ensembles in the thermody-
namic limit, where the lattice size L and the number of particles N = N (L) tend to infinity such
that N/L → ρ. This implies convergence of finite-dimensional marginals of stationary measures
conditioned on a total particle number N , to stationary product measures with density ρ in the
subcritical case ρ ≤ ρc, and with density ρc in the supercritical case ρ > ρc. In the latter case
the condition on the particle number is an atypical event which is most likely realized by a large
deviation of the maximum component, and the problem can be described as Gibbs condition-
ing for measures without exponential moments. It turns out (cf. [3]) that a strong form of the
equivalence holds in the supercritical case, which determines the asymptotic distribution of the
particles on all L sites. A similar result has been established in [17] on a lattice of fixed size L
in the limit N → ∞, and the local equivalence of ensembles result was generalized to processes
with several particle species in [20]. More recent rigorous results address metastability for the
motion of the condensate [5,6].

In this paper we study the properties of the condensation transition at the critical density ρc
for the processes introduced in [14] with rates (1.1), to understand the onset of the condensate
formation. We consider the thermodynamic limit L , N = N (L) → ∞ where N/L → ρc,
with the excess mass N − ρc L is on a scale o(L). Our results are formulated in Section 2.2
and provide a rather complete picture of the transition from a homogeneous subcritical to
condensed supercritical behaviour. It turns out that the condensate forms suddenly on a critical
scale N − ρc L ∼ ∆L , which is identified in Theorems 2.1 and 2.3 to be

∆L =


σ

(b − 3)L log L for λ = 1, b > 3 and

cλ(σ
2L)

1
1+λ for λ ∈ (0, 1), b > 0.

(1.2)
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Our results imply a weak law of large numbers for the ratio ML/(N −ρc L)where ML is the max-
imum occupation number, which is illustrated in Fig. 1. The ratio exhibits a sudden jump from
0 to a positive value when the excess mass reaches the critical size ∆L . At this point both values
can occur with positive probability depending on sub-leading orders of the excess mass, which
is discussed in detail in Section 2.3. For λ = 1 the full excess mass is concentrated in the max-
imum right above the critical scale. On the other hand, for λ ∈ (0, 1) the excess mass is shared
between the condensate and the bulk, and the condensate fraction increases from 2λ/(1 + λ) to
1 only as (N − ρc L)/∆L → ∞. Theorem 2.5 provides results for the bulk fluctuations, which
imply that the mass outside the maximum is always distributed homogeneously and the system
typically contains at most one condensate site. Theorems 2.1 and 2.3 also cover the fluctuations
of the maximum, which change from standard extreme value statistics to Gaussian. This is com-
plemented by Theorems 2.2 and 2.4 on downside deviations, which give a detailed description
of the crossover to the expected Gumbel distributions in the subcritical regime (ρ < ρc), where
the marginals have exponential tails. In [16] the fluctuations of the maximum for λ = 1 were
observed by the use of saddle point computations to change from Gumbel (ρ < ρc), via Fréchet
(ρ = ρc), to Gaussian or stable law fluctuations (ρ > ρc), raising the question on how the
transition between these different regimes occurs. Our results around the critical point provide
a detailed, rigorous answer to that question, covering also the case λ ∈ (0, 1). We use previous
results on local limit theorems for moderate deviations of random variables with power-law dis-
tribution [13] for the case λ = 1, and stretched exponential distribution [25] for λ ∈ (0, 1). In
the latter case we can also extend the results for ρ > ρc (Corollary 2.6) to parameter values that
were not covered by previous results [3].

In general, the onset of phase separation and phase coexistence at the critical scale is a clas-
sical question of mathematical statistical mechanics. This has been studied for example in the
Ising model and related liquid/vapour systems in [8,9], where a major point is the shape of criti-
cal ‘droplets’. Here we treat this question in the case of zero-range condensation, where the main
mathematical challenges are related to subexponential scales and a lack of symmetry between
the fluid and condensed phase. The condensate turns out to always concentrate on a single lat-
tice site (even at criticality), and contains a positive fraction of the excess mass. In contrast to
liquid/vapour systems, this fraction is not ‘universal’, but depends on the system parameter λ
(see also discussion in Section 2.3). From a mathematical point of view, the analysis includes in-
teresting connections to extreme value statistics and large deviations for subexponential random
variables, which in itself is an area of recent research interest (see [12,4] and references therein).
Our results also provide a detailed understanding of finite-size effects and metastability close to
the critical point, which are important in applications such as traffic flow and granular clustering
(see [10] and references therein).

2. Definitions and results

2.1. The zero-range process and condensation

We consider the zero-range processes on a finite set ΛL of size L . Given a jump rate function
g : N0 = {0, 1, 2, . . .} → [0,+∞) such that g(n) = 0 ⇔ n = 0 and a set of transition
probabilities p(·, ·) on ΛL ×ΛL , a zero range process is defined as a Markov process on the state
space X L = NΛL

0 of all particle configurations

η = (ηx : x ∈ ΛL), (2.1)
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Fig. 1. Illustration of the law of large numbers for the excess mass fraction ML
N−ρc L in the condensate on the critical scale

∆L (1.2). For λ = 1 the results are given in Theorem 2.1 ((2.22) and (2.24)) and for λ ∈ (0, 1) in Theorem 2.3 ((2.33)
and (2.35)). The behaviour at 1 depends on the sub-leading terms in the excess mass, as detailed in (2.20) and (2.37).

where ηx ∈ N0 is the local occupation number at site x . The dynamics is given by the generator

L f (η) =


x,y∈ΛL

g(ηx )p(x, y)


f (ηx,y)− f (η)


(2.2)

using the notation ηx,y
z =


ηx − 1, z = x and ηx > 0
ηy + 1, z = y and ηx > 0
ηz , otherwise.

For a technical discussion of the domain of test functions f of the generator and the
corresponding construction of the semigroup we refer to [1]. The practical meaning of (2.2) is
that any given site x looses one particle with rate g(ηx ) and this particle then jumps to site y with
probability p(x, y). To avoid degeneracies p(x, y) should be irreducible transition probabilities
of a random walk on ΛL . This way, the number of particles is the only conserved quantity of
the process, leading to a family of stationary measures indexed by the particle density. In the
following we are interested in the situation where these measures are spatially homogeneous.
This is guaranteed by the condition that the harmonic equations

x∈ΛL

p(x, y)λx = λy, y ∈ ΛL , (2.3)

have the constant solution λx ≡ 1, and by the irreducibility of p(x, y) this implies that every
solution is constant. This is for example the case if ΛL is a regular periodic lattice and p(x, y)
is translation invariant, such as ΛL = Z/LZ and p(x, y) = δy,x+1 for totally asymmetric or
p(x, y) =

1
2δy,x+1 +

1
2δy,x−1 for symmetric nearest-neighbour hopping.

It is well known (see e.g. [1,26]) that under the above conditions the zero-range process has
a family of stationary homogeneous product measures νφ . The occupation numbers ηx are i.i.d.
random variables with marginal distribution

νφ

ηx = n


=

1
z(φ)

w(n) φn where w(n) =

n
k=1

1
g(k)

. (2.4)
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The parameter φ of the stationary measures is called the fugacity, and the measures exist for all
φ ≥ 0 such that the normalization (partition function) is finite, i.e.

z(φ) :=

∞
n=0

w(n) φn < ∞. (2.5)

The particle density as a function of φ can be computed as

R(φ) := Eνφ

ηx


= φ ∂φ log z(φ), (2.6)

and turns out to be strictly increasing and continuous with R(0) = 0.
In this paper we consider the family of models introduced in [14], where the jump rates have

asymptotic behaviour

g(n) ≃ 1 +
b

nλ
as n → ∞, (2.7)

with b > 0 and λ ∈ (0, 1]. In (2.7) and hereafter we use the notation an ≃ bn as n → ∞ if
limn→∞ an/bn = 1. We will also write an ∼ bn as n → ∞ if there is a constant C > 1 such
that C−1

≤ an/bn ≤ C for sufficiently large n. With (2.4) this definition of jump rates leads to
stationary weights with asymptotic power law decay

w(n) ∼ C1n−b for λ = 1, (2.8)

and stretched exponential decay

w(n) ∼ Cλ exp

−

b

1 − λ
n1−λ


for λ ∈ (0, 1), (2.9)

with constant prefactors Cλ.
In the second case the distributions (2.4) are well defined for all φ ∈ [0, 1] with finite maximal

(critical) density

ρc := R(1) < ∞ (2.10)

and finite corresponding variance

σ 2
:= Eν1


η2

x


− ρ2

c < ∞. (2.11)

If λ = 1 the corresponding variance is finite if b > 3, which we will assume hereafter. The case
2 < b ≤ 3 is not covered by our main results, and we discuss it shortly in Section 2.3. In general,
(2.9) also contains terms of lower order n1−kλ, k ≥ 2, in the exponent, which may contribute to
the asymptotic behaviour for λ ∈ (0, 1/2] depending on the subleading terms in the jump rates
(2.7). To avoid these complications when λ ≤ 1/2, we focus on processes with rates (2.7) for
which (2.9) holds. The simplest way to meet this condition is to choose g(n) = w(n − 1)/w(n),
n ≥ 1, with w(n) as in the right hand side of (2.9) with Cλ = 1.

It has been shown in [14,21] that when the critical density is finite the system exhibits
a condensation transition that can be quantified as follows. Since the number of particles is
conserved by the microscopic dynamics for each N ∈ N, the subspaces

X L ,N =

η ∈ X L : SL(η) = N


where SL(η) =


x∈ΛL

ηx (2.12)
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are invariant. The zero range process is irreducible over each of these subspaces and the unique
invariant measure supported on X L ,N is given by

µL ,N = νφ

· |SL = N


. (2.13)

It is not hard to see that the measures µL ,N are independent of φ on the right hand side.
A question of interest is the convergence of the measures µL ,N in the thermodynamic limit
L , N = N (L) → ∞, N/L → ρ. This is answered by the equivalence of ensembles principle,
which states that in the limit the measures µL ,N locally behave like a product measure νφ for a
suitable φ. Note that when ρ ≤ ρc there exists a unique φ = φ(ρ) such that ρ = R


φ

, whereas

if ρ > ρc no such φ exists. The equivalence of ensembles precisely states that if f is a cylinder
function, i.e. a function that only depends on the configuration η on a finite number of sites, then

µL ,N


f


→ νφ


f

, (2.14)

provided that (see [20] and Appendix 2.1 in [23])

R(φ) = ρ and f ∈ L2(νφ) for ρ < ρc and

φ = φc = 1 and f bounded for ρ ≥ ρc. (2.15)

The behaviour described above is accompanied by the emergence of a condensate, a site which
contains O(L) particles. If ρ < ρc one can easily check that the limiting measures νφ(ρ) have fi-
nite exponential moments and the size of the maximum component ML(η) = maxx∈ΛL ηx is typ-
ically O(log L). If on the other hand ρ > ρc it has been shown in [22] for the power law case that

1
L

ML
µL ,N
−→ ρ − ρc. (2.16)

The notation in (2.16), which we also use in the following, denotes convergence in probability
w.r.t the conditional laws µL ,N , i.e.

µL ,N

 1
L

ML − (ρ − ρc)

 > ϵ


→ 0 for all ϵ > 0. (2.17)

Eq. (2.14) has been generalized in [3] for ρ > ρc to test functions f depending on all sites but
the maximally occupied one, and Eq. (2.16) is proved for stretched exponentials of the form (2.9)
with λ > 1/2, as well. An immediate corollary is that the size of the second largest component is
typically o(L), which implies that the condensate typically covers only a single randomly located
site.

2.2. Main results

In the following we study the distribution of the excess mass in the system at the critical point
to fully understand the emergence of the condensate when the density increases from sub- to
supercritical values. We consider the thermodynamic limit

L , N = N (L) → ∞, N/L → ρc i.e. |N − ρc L| = o(L), (2.18)

and the excess mass is on a sub-extensive scale. For simplicity of notation we often denote this
limit simply by limL→∞. Our first theorem on the power-law case (2.8) relies on a result of Doney
(Theorem 2 in [13]) for the estimation of νφc


SL = N


. Precisely, for z := (N−ρc L)/

√
L → ∞,
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we get

νφc


SL = N


=

1
√

2πσ 2L
e−

z2

2σ2

1 + o(1)


+ Lνφc


ηx =


z
√

L


1 + o(1)

. (2.19)

It turns out that when N − ρc L is close to the typical scale
√

L (case (a) in the theorem below)
the first term of the sum dominates the right hand side of (2.19) and the excess mass is distributed
homogeneously among the sites. On the other hand, when N − ρc L is large enough (case (b))
it is the second term that dominates the right hand side of (2.19) and this implies the existence
of a condensate that carries essentially all the excess mass. Finally, there is an intermediate scale
(case (c)) where the two terms are of the same order and both scenarios can occur with positive
probability.

Theorem 2.1 (Upside Moderate Deviations, Power Law Case). Let λ = 1 and b > 3, so that
σ 2 < ∞. Assume that N ≥ ρc L and define γL ∈ R by

N = ρc L + σ

(b − 3)L log L


1 +

b

2(b − 3)
log log L

log L
+

γL

log L


. (2.20)

(a) If γL → −∞ the distribution under µL ,N of the maximum ML is asymptotically equivalent
to its distribution under νφc . Precisely, for all x > 0 we have in the limit (2.18)

lim
L→∞

µL ,N


ML

L
1

b−1

≤ x


= lim

L→∞
νφc


ML

L
1

b−1

≤ x


= exp


−

A1x1−b

b − 1


. (2.21)

In particular, if N − ρcL ≫ L
1

b−1 then
ML

N − ρc L

µL ,N
−→ 0. (2.22)

(b) If γL → +∞ the normalized fluctuations of the maximum around the excess mass under
µL ,N converge in distribution to a normal r.v.,

ML − (N − ρc L)
√

Lσ 2

µL ,N
H⇒ N (0, 1). (2.23)

In particular,
ML

N − ρc L

µL ,N
−→ 1. (2.24)

(c) If γL → γ ∈ R we have convergence in distribution to a Bernoulli random variable,

ML

N − ρc L
µL ,N
H⇒ Be(pγ ), (2.25)

where pγ ∈ (0, 1) is such that pγ → 0 (1), as γ → −∞ (+∞). An explicit expression for pγ
is given in (3.20) and (3.21) in the proofs section.

The next result connects the fluctuations of the maximum to the extreme value statistics
expected in the subcritical regime.

Theorem 2.2 (Downside Moderate Deviations, Power Law Case). Let λ = 1 and b > 3 and
define 0 ≤ ωL ≪ L1/(b−1) by

N = ρc L − ωLσ
2L

b−2
b−1 . (2.26)
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(a) If ωL → 0 the distribution under µL ,N of the maximum ML is asymptotically equivalent to
its distribution under νφc . Precisely, for all x > 0 we get in the limit (2.18)

µL ,N


ML

L
1

b−1

≤ x


→ exp


−

A1x1−b

b − 1


. (2.27)

(b) If ωL → ω > 0 then there exists a positive constant v such that for all x > 0

µL ,N


ML

L
1

b−1

≤ x


→ exp


−A1


∞

x
e−vt dt

tb


. (2.28)

(c) If ωL → ∞ then there exist sequences BL → ∞ and sL =
ρc L−N
σ 2 L

(1 + o(1)) with
BLsL → ∞, such that for all x ∈ R

µL ,N


ML − BL

1/sL
≤ x


→ exp{−e−x

}. (2.29)

We return to a more detailed discussion of these results in Section 2.3 after stating the results
for the stretched exponential tail (λ < 1). For this case the counterpart of estimate (2.19) was
obtained by A.V. Nagaev in [25], and is summarized in Theorems 1–5 in the Appendix. The size
of the maximum is also discussed in the same article (Remarks 1–5 in the Appendix). In fact, a
careful reading of his proofs reveals that Eq. (2.34) below is already contained there.

Theorem 2.3 (Upside Moderate Deviations, Stretched Exponential Case). Let λ ∈ (0, 1) and

cλ = (1 + λ)(2λ)−
λ

1+λ


b

1−λ

 1
1+λ

. Assume that N ≥ ρc L and define tL ≥ 0 by

N = ρc L + tL(σ
2L)

1
1+λ . (2.30)

(a) If lim sup tL < cλ the distribution under µL ,N of the maximum ML is asymptotically
equivalent to its distribution under νφc . Precisely, there exist sequences yL , bL (3.25) such that

yL ≃

1 − λ

b
log L

 1
1−λ
, bL ≃

yλL
b

as L → ∞, (2.31)

and for all x ∈ R we have in the limit (2.18)

lim
L→∞

µL ,N


ML − yL

bL
≤ x


= lim

L→∞
νφc


ML − yL

bL
≤ x


= e−e−x

. (2.32)

In particular if N − ρc L ≫ yL then
ML

N − ρc L

µL ,N
−→ 0. (2.33)

(b) If tL → t with cλ < t ≤ +∞, there exists a sequence aL and a function a(t), aL → a(t),
such that

ML − (N − ρc L)aL
√

L

µL ,N
H⇒ N

0,
σ 2

1 −
λ


1−a(t)


a(t)

 . (2.34)

In particular
ML

N − ρc L

µL ,N
−→ a(t). (2.35)
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The sequence aL is implicitly defined by (A.7) in the Appendix (with aL = 1 − α and γ =

b/(1 − λ)), and when N − ρc L ≫ L
1

2λ we may take aL = 1. The limit a(t) in the preceding
equation is an increasing function of t with

lim
t↓cλ

a(t) =
2λ

1 + λ
and lim

t↑∞
a(t) = a(+∞) = 1. (2.36)

(c) If tL → cλ, assume that λ > 1/2 and suppose

N = ρc L + cλ(σ
2L)

1
1+λ −

1 + λ

2λcλ
(σ 2L)

λ
1+λ
 3

2 log L + γL


(2.37)

with γL → γ ∈ R. Then we have convergence to a Bernoulli random variable,

ML

N − ρc L
µL ,N
H⇒

2λ
1 + λ

Be(pγ ), (2.38)

where pγ ∈ (0, 1) is such that pγ → 0 (1) for γ → ∞ (−∞). An explicit expression for pγ is
given in (3.26).

In (c) analogous statements also hold for the case λ ≤ 1/2, which can be derived from the
results in [25] summarized in the Appendix. However, the order of the sub-leading scale depends
on the first few Cramér coefficients of the distribution, and results cannot be formulated in an
explicit form as above.

Theorem 2.4 (Downside Moderate Deviations, Stretched Exponential Case). Let λ < 1 and

define 0 ≤ ωL ≪ (log L)
1

1−λ by

N = ρc L − ωL L (log L)−
1

1−λ .

If ωL → c ∈ [0,+∞] there exist sequences γL and ζL , both increasing to ∞ with L, such that
in the limit (2.18)

µL ,N [ML ≤ γL + x ζL ] → e−e−x
, x ∈ R. (2.39)

If ωL → 0 the distribution under µL ,N of the maximum ML is asymptotically equivalent to its
distribution under νφc . Precisely, if yL and bL are the sequences introduced in Theorem 2.3(a),
we can take γL = yL and ζL = bL to get

µL ,N [ML ≤ yL + x bL ] → e−e−x
, x ∈ R.

Our final result focuses on the fluctuations of the bulk outside the maximum. Recall the critical
scales ∆L defined in (1.2).

Theorem 2.5 (Fluctuations of the Bulk). Assume λ ∈ (0, 1), or λ = 1 and b > 3 so that
σ 2 < +∞ (2.11).

(a) In the subcritical regime, that is if ML
∆L

µL ,N
−→ 0, the distribution under µL ,N of the bulk

fluctuation process converges in the Skorokhod space to a standard Brownian bridge conditioned
to return to the origin at time 1, i.e. in the limit (2.18)

X L
s =

1

σ
√

L

[sL]
x=1


ηx −

N

L


µL ,N
H⇒ B Bs .
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(b) In the supercritical regime, that is if N − ρc L > ∆L and ML
N−ρc L

µL ,N
−→ κ , with 2λ

1+λ
≤ κ ≤ 1,

the distribution under µL ,N of the bulk fluctuation process converges in the Skorokhod space to a
standard Brownian bridge plus an independent, random drift term. Precisely, if η̃x = ηx1{ηx ≤

L1/4
} then

Y L
s =

1

σ
√

L

[sL]
x=1


η̃x −

N − aL(N − ρc L)

L


µL ,N
H⇒ B Bs + s Φ,

where Φ ∼ N


0, 1/

1 −

λ(1−κ)
κ


is a normal random variable independent of the Brownian

bridge B B·. When λ = 1, or when λ ∈ (0, 1) and N − ρc L ≫ L
1

2λ we may take aL = 1.
Otherwise, aL is defined by (A.7) in the Appendix (with aL = 1 − α and γ = b/(1 − λ)), which
is the same as in Theorem 2.3(b).

The supercritical case (assertion (b) above) takes a particularly simple form when κ = 1: then
Φ ∼ N (0, 1) is a Gaussian variable independent of the Brownian bridge component, and hence
B Bs + s Φ is a standard Brownian motion Bs . This is the case for the supercritical power law, or
for the stretched exponential law when N−ρc L

∆L
→ +∞.

2.3. Discussion of the main results

As is already summarized in the introduction, Theorems 2.1 and 2.3 imply a weak law of
large numbers for the excess mass fraction in the condensate ML/(N − ρc L). The critical scale
∆L for the excess mass, above which a positive fraction of it concentrates on the maximum and
forms a condensate according to (2.22), (2.24) and (2.33), (2.35), is summarized in (1.2). It is
of order


L log L for the power law case given precisely in (2.20), and the lighter tails in the

stretched exponential case lead to a higher scale of order L
1

1+λ given precisely in (2.30). At the
critical scale the excess mass fraction can take both values with positive probability (cf. (2.25)
and (2.38)), depending on sub-leading orders as detailed in (2.20) and (2.37). In the power law
case, the condensate always contains the full excess mass (2.24) as soon as it exists. On the
other hand, for stretched exponential tails the excess mass is shared between the condensate
and the bulk according to (2.35) as long as N − ρc L ∼ ∆L , and the fraction a(t) of the
condensate gradually increases to 1. This behaviour is illustrated in Fig. 1 in the introduction.
The results on the bulk fluctuations in Theorem 2.5 imply that below criticality the excess mass
is distributed homogeneously in the system, and that the same holds above criticality in the bulk,
which completes the above picture. These results are illustrated in Fig. 2, where we show sample
profiles for a zero-range process which show exactly the predicted behaviour already at a rather
moderate system size of L = 1024.

The discontinuous formation of the condensate on the critical scale implies that it forms
‘spontaneously’ out of particles taken from the bulk of the system: when crossing the critical
scale by adding more mass to the system, the number of particles joining the maximum is indeed
of higher order than the number of particles that have to be added to the system in order to
form the condensate. A similar phenomenon has been reported for the Ising model and related
liquid/vapour systems in [8,9]. In contrast to these results, the condensed excess mass fraction
at criticality is not ‘universal’, but depends on the system parameter λ according to (2.36). This
might seem surprising at first sight, but the rates of the form (1.1) introduce an effective long-
range interaction when the zero-range process is mapped to an exclusion model with finite local
state space (see e.g. [14,15]).
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Fig. 2. Results of Monte Carlo simulations of the zero-range process with rates (1.1) with λ = 0.6 and b = 2, on a
one-dimensional lattice with L = 1024 sites and periodic boundary conditions. For these parameter values ρc = 0.842,
σ 2

= 2.55 and cλ = 4.09, and we choose N = 1360 particles, which is very close to the leading order prediction of 1356
for the critical scale according to (2.37) with γ = 0. We plot four realizations for the accumulated profile Sk =

k
x=1 ηx

against k, and see that both, fluid and condensed realizations occur. In the condensed case, the mass is shared between
the condensate and the bulk according to the prediction (2.36) with 2λ

1+λ
= 3/4, as is indicated by the dashed lines.

In addition to a law of large numbers our results also include limit theorems for the fluctuations
of the maximum, which are Gaussian above the critical scale (cf. (2.23) and (2.34)), and given by
the extreme value statistics below criticality. As long as limL→∞(N − ρc L)/∆L < 1, the excess
mass does not affect the behaviour of the maximum. According to statements (a) of Theorems 2.1

and 2.3, ML scales as the maximum of i.i.d. random variables, which is proportional to L
1

b−1 and

(log L)
1

1−λ , respectively, with limiting Fréchet distribution for power law tails (2.21) (cf. [16])
and Gumbel distribution for stretched exponential tails (2.32). Theorems 2.2 and 2.4 describe the
crossover to the expected Gumbel distributions in the subcritical regime, where the marginals
have exponential tails. In the power law case, the change from Fréchet to Gumbel occurs at the
critical scale ρc L − N ∼ L(b−2)/(b−1) according to (2.28). In [16] the behaviour of the maximum
was predicted for N = ρL with ρ smaller, equal, or bigger than ρc for the power law case λ = 1.
Our results provide a rigorous confirmation including the stretched exponential case λ ∈ (0, 1),
together with a full understanding of the crossover from subcritical extremal statistics to Gaussian
fluctuations in the supercritical regime.

We point out that at criticality the correlations introduced by conditioning on the total number
of particles shift from being entirely absorbed by the bulk to being entirely absorbed by the
maximum. Indeed, when N − ρc L ≪ ∆L we know from Theorem 2.1(a) and 2.3(a) that the
maximum behaves as the maximum of i.i.d. random variables with distribution νφc . On the
other hand, if N − ρc L ≫ ∆L , the bulk asymptotically behaves as i.i.d. random variables with
distribution νφc following from Theorems 1a and 1b in [3], and the discussion after Theorem 2.5.

In the stretched exponential case, there is another interesting point regarding the centring of
the bulk variables in the central limit theorem: when the excess mass exceeds ∆L the typical
excess mass in the bulk is

(1 − aL)(N − ρc L) ∼
σ 2bL

(N − ρc L)λ
,

as follows from the implicit definition (A.7) of aL . This is of order at least
√

L unless N −ρc L ≫

L1/(2λ), hence the special centring required in Theorem 2.5(b). In this case the equivalence of
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ensembles cannot be extended to the strong form of [3] (Theorem 2b). Note that for λ ≤ 1/2
this affects even supercritical densities, i.e. N/L → ρ > ρc. This is why previous results did
not cover this case, which is summarized in the following simple Corollary of Theorem 2.3, and
completes the condensation picture for supercritical densities.

Corollary 2.6. If λ ∈ (0, 1/2] and N/L → ρ > ρc we have

1
L

ML
µL ,N
−→ ρ − ρc,

and the fluctuations around this limit are given by (2.34), with (1 − aL) = O(L−λ).

A necessary condition for our results is the existence of finite second moments, and the case
λ = 1 and 2 < b ≤ 3 is not covered by this article. The reason we cannot provide results
analogous to Theorems 2.1 and 2.2 is the lack of a precise estimate for the probability of a
moderate deviation of the sum in that case, similar to the result (2.19) by Doney [13] for square
integrable power-law tails. Nevertheless, when the excess mass is such that

P

SL = N


= L P


η1 = [N − ρc L]


1 + o(1)


,

we can still apply Theorem 1 in [3] to obtain a stable limit theorem for the fluctuations of the
maximum around N − ρc L . For instance if 2 < b < 3, the preceding relation is true provided

N − ρc L ≫ L
1

b−1 , and under this condition we get that

ML

N − ρc L

µL ,N
−→ 1 and

ML − (N − ρc L)

L
1

b−1

µL ,N
H⇒ Gb−1,

where Gb−1 is a completely asymmetric stable law with index b − 1.

3. Proofs

Since the product measures νφ and the conditional distributions µL ,N are exchangeable and
independent of the jump probabilities p(x, y), the spatial structure of zero-range configurations
is irrelevant for our results. In the following we will therefore consider η1, η2, . . . to be i.i.d.
integer valued random variables defined in a probability space (Ω ,F ,P), where F is the σ -field
generated by {ηi }i∈N and P = νφc . We further define

pk := P

ηi = k


. (3.1)

Note that pn is directly proportional to the stationary weights w(n) in (2.4). Recall the notation

ρc = E

ηi

, σ 2

= E

η2

i


− ρ2

c , SL =

L
i=1

ηi , ML = max
i=1,...,L

ηi , (3.2)

and that the conditional laws are given by µL ,N = P

· | SL = N


. We will denote by x+

=

max{x, 0} the positive part of a real number x , and by x−
= (−x)+ its negative part.

3.1. Preliminaries

Our proofs mainly involve explicit estimates and standard large deviations methods. One
such technique consists in introducing a change of measure that renders the rare event typical.
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Precisely, given α > 0 and s ∈ R, define a new measure Pα(s) on the σ -field FL :=

σ(η1, . . . , ηL) by

dPα(s)
dP


FL

=
1

Z L
α (s)

1{ML≤α}e
sSL , (3.3)

where the normalization above is given by

Zα(s) =


k≤α

esk pk .

Note that under Pα(s) the random variables {ηk}k∈N are i.i.d., bounded above by α, their mean
value is given by

ρα(s) =
Z ′
α(s)

Zα(s)
=

1
Zα(s)


k≤α

kesk pk,

and their variance is given by σ 2
α (s) = ρ′

α(s). It is not hard to verify that

lim
s→−∞

ρα(s) = inf{k ≥ 0 : pk > 0} and lim
s→∞

ρα(s) = sup{k ≤ α : pk > 0}.

Since ρα(·) is a continuous increasing function, it follows that if N/L is sufficiently close to the
mean ρc of the distribution and α is sufficiently large, there exists an s∗ = s∗(L , N , α) such that

ρα(s∗) =
N

L
. (3.4)

The following lemma can be applied to compute the exact asymptotics of the conditional maxi-
mum when the average is set to be a small perturbation of the mean, using an a priori estimate as
input.

Lemma 3.1. Consider the limit (2.18) with N
L → ρc, and suppose the following conditions are

satisfied:
(i) There exists a sequence αL ≤ ∞ such that

µL ,N

ML ≤ αL


→ 1 and


N

L
− ρc

+

αL → 0.

(ii) There exists a sequence βL(·) such that for all x ∈ R we have βL(x) → +∞, βL(x) ≤ αL
for sufficiently large L, and the following limit exists

lim
L→∞

L


βL (x)<k≤αL

es∗k pk =: Φ(x) ∈ [0,+∞),

where s∗ = s∗(L) is defined as in (3.4) with α = αL .
Then

µL ,N [ML ≤ βL(x)] −→ e−Φ(x) as L → ∞.

Proof. For ease of notation we may write α and β as shorthands for αL and βL(x) respectively.
The idea of the proof is quite simple. By condition (i) in the statement of the lemma, we have

µL ,N [ML ≤ βL(x)] ≃
µL ,N [ML ≤ β]
µL ,N [ML ≤ α]

=
P [ML ≤ β, SL = N ]
P [ML ≤ α, SL = N ]

.



I. Armendáriz et al. / Stochastic Processes and their Applications 123 (2013) 3466–3496 3479

In terms of the newly introduced probabilities Pα(s∗), Pβ(s∗), and normalization constants
Zα(s∗), Zβ(s∗) we have

P [ML ≤ β, SL = N ]
P [ML ≤ α, SL = N ]

=


Zβ(s∗)

Zα(s∗)

L Pβ(s∗)[SL = N ]

Pα(s∗)[SL = N ]
. (3.5)

The second ratio can be seen to converge to 1 (see (3.13) and (3.15)), while the first can be
easily expressed in terms of the sum featuring in condition (ii). One thus obtains exponential type
asymptotics

µL ,N [ML ≤ βL(x)] ≃

1 −
1
L

×

L


β<k≤α

es∗k pk
k≤α

es∗k pk


L

, with

k≤α

es∗k pk ≃ 1

yielding the assertion of the lemma (see (3.16)). We go through this plan in detail below.
Let us begin by showing that under the conditions of the Lemma s+

∗ α → 0. Using the
elementary inequality (x − y)(ex

− ey) ≥ (x − y)2 valid for all x, y ≥ 0, we have for any s > 0

Zα(s)

ρα(s)−

N
L


=


k≤α


k −

N
L


esk pk ≥ es N/L


k≤α


k −

N
L


pk + s


k≤α


k −

N
L

2 pk .

By the elementary minimizing property of the variance σ 2
≤


k(k − c)2 pk, c ∈ R, we have

Zα(s)

ρα(s)−

N
L


≥ es N/L


ρc −

N
L −


k>α


k −

N
L


pk


+ sσ 2

− s

k>α


k −

N
L

2 pk . (3.6)

If we set

s0σ
2

= 2

k>α


k −

N
L


pk + 2

 N
L − ρc

+ (3.7)

it follows from (3.6) that ρα(s0) > N/L for sufficiently large L , and since ρα(·) is increasing we
have s∗ < s0. On the other hand, in view of condition (i) in the statement of the Lemma and the
finiteness of the second moment we have s0α → 0. Thus,

s+
∗ α → 0. (3.8)

When L is suitably large the case s∗ < 0 may only happen if N
L < ρc, since

ρc = ρα(0)+


k>α

(k − ρc)pk

Zα(0)
≥ ρα(0) > ρα(s∗) =

N

L
. (3.9)

Then,
k


k −

N
L


es∗ N/L

− es∗kpk = es∗ N/Lρc −
N
L


−


k>α


k −

N
L


es∗k pk

≤

ρc −

N
L


−→ 0.

Since all terms of the leftmost sum in the preceding display are non negative, this implies

s−
∗ → 0. (3.10)
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The limits in (3.8), (3.10), together with the dominated convergence theorem and Fatou’s lemma
imply that

Zα(s∗) =


k≤α

es∗k pk −→ 1 and Zβ(s∗) =


k≤β

es∗k pk −→ 1 as L → ∞. (3.11)

This in turn gives after another application of the dominated convergence theorem that

σ 2
α (s∗) =

1
Zα(s∗)


k≤α


k −

N

L

2
es∗k pk −→ σ 2 and

σ 2
β (s∗) −→ σ 2 as L → ∞.

(3.12)

The local limit theorem for triangular arrays (Theorem 1.2 in [11]), (3.4) and (3.12) give
2πLσ 2 Pα(s∗)


SL = N


−→ 1. (3.13)

In order to compute the asymptotics of Pβ(s∗)

SL = N


in (3.5) we need to obtain estimates on

ρβ(s∗)− N/L . Now

ρβ(s∗) =


k≤β

kes∗k pk
k≤β

es∗k pk
=

N
L


k≤α

es∗k pk −


β<k≤α

kes∗k pk
k≤β

es∗k pk

=
N

L
+


β<k≤α

 N
L − k


es∗k pk

k≤β

es∗k pk

and

L


ρβ(s∗)−

N

L

2

= L




β<k≤α

 N
L − k


es∗k pk

Zβ(s∗)


2

≤

L


β<k≤α

es∗k pk

Z2
β(s∗)


β<k≤α


N

L
− k

2

es∗k pk . (3.14)

It follows easily from (3.11), (3.12) and condition (ii) of the Lemma that

lim
L→∞

L


ρβ(s∗)−

N

L

2

= 0.

By another application of the local limit theorem for triangular arrays, we get that
2πLσ 2 Pβ(s∗)[SL = N ] −→ 1 as L → ∞, (3.15)

which, by condition (ii), (3.5), (3.11) and (3.13) in turn gives

µL ,N [ML ≤ βL(x)] ≃


Zβ(s∗)

Zα(s∗)

L

=

1 −


β<k≤α

es∗k pk
k≤α

es∗k pk


L

−→ e−Φ(x). � (3.16)
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3.2. The power law case

3.2.1. Proof of Theorem 2.1
Here N > ρc L and N/L → ρc as L ↑ ∞.
We will use that if λ = 1 then by (2.8) we have pn ≃ A1n−b, and the decomposition (2.20)

N = ρc L + σ

(b − 3)L log L


1 +

b

2(b − 3)
log log L

log L
+

γL

log L


that holds for b > 3.

The proof of the theorem relies on the following two lemmas, that can also be inferred from
the proof of (2.19) in [13]. We include a short proof below for completeness.

Lemma 3.2. Let b > 3 and N > ρc L be such that the sequence γL in (2.20) has a limit

limL→∞ γL = γ ∈ [−∞,∞) . If αL =

√
L

log L then

P

ML ≤ αL ; SL = N


=

1
√

2πσ 2L
exp


−
(N − ρc L)2

2σ 2L


(1 + o(1)).

Lemma 3.3. Suppose b > 3 and N −ρc L ≫ ϑL
√

L , for a sequence ϑL → ∞. Then as L → ∞

P


ML ≥ N − ρc L − ϑL
√

L; SL = N


= A1L(N − ρc L)−b1 + o(1)

.

Proof of Lemma 3.2. The argument follows the standard approach used for moderate deviations
of the sum of i.i.d. random variables. Consider s∗ ∈ R such that ραL (s∗) =

N
L . Notice that since

we assume here that N > ρc L we have s∗ ≥ 0 for sufficiently large L by (3.9). On the other
hand, by the argument following (3.7) we must have s∗ ≤ s0 = o(log L/

√
L), because we

assume γ < +∞. In particular, we have Ls2+ϵ
∗ → 0 for all ϵ > 0. Just as in the proof of

Lemma 3.1, we may write

P [ML ≤ αL ; SL = N ] = Z L
αL
(s∗) e−s∗ N PαL (s∗)[SL = N ]

= Z L
αL
(0) exp


−L

 s∗

0
t ρ′

αL
(t) dt


PαL (s∗)[SL = N ], (3.17)

where we have used the identity

log
 ZαL (s∗)

ZαL (0)


=

 s∗

0
ραL (t) dt = s∗ραL (s∗)−

 s∗

0
tρ′
αL
(t) dt.

We now determine the asymptotic order of each term in (3.17). Observe that

Z L
αL
(0) = νφc [ML ≤ αL ] =


1 −


k>αL

pk

L

−→ 1 as L → ∞.

Furthermore, if we define hαL (t) = ραL (t)− ραL (0)− tσ 2
αL
(0) we have s∗

0
tρ′
αL
(t) dt =

1

σ 2
αL
(0)

 s∗

0
(ρaL (t)− ραL (0)− hαL (t))ρ

′
αL
(t) dt

=


ραL (s∗)− ραL (0)

2
2σ 2
αL
(0)

−
1

σ 2
αL
(0)

 s∗

0
hαL (t)ρ

′
αL
(t) dt. (3.18)
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Using elementary estimates one can show that

L

ραL (s∗)− ραL (0)

2
2σ 2
αL
(0)

−
(N − ρc L)2

2σ 2L
−→ 0. (3.19)

For the rightmost term in (3.18) notice that for all s ∈ [0, s∗] we have

0 ≤


k≤αL

k2esk
− 1


pk ≤ Csϵ,

for some ϵ > 0, which implies that
σ 2

aL
(s)− σ 2

αL
(0)
 ≤ Csϵ . Therefore,

L
 s∗

0
hαL (t)ρ

′
αL
(t) dt = L

 s∗

0

 t

0
σ 2
αL
(s)− σ 2

αL
(0) ds


σ 2
αL
(t)dt

= O

Ls2+ϵ

∗


→ 0,

where in the first equality we used that ρ′
αL
(t) = σ 2

αL
(t). Together with (3.18), (3.19) this gives

exp

−L

 s∗

0
tρ′
αL
(t) dt


≃ exp


−
(N − ρc L)2

2σ 2L


as L → ∞.

The assertion now follows recalling that


2πLσ 2
αL
(s∗)PαL (s∗)


SL = N


−→ 1 by (3.13). �

Proof of Lemma 3.3. Consider a sequence ϑL as in the statement of the lemma. Then

PL := P

ML ≥ N − ρc L − ϑL

√
L; SL = N


≃


k≥(N−ρc L)−ϑL

√
L

L pk P

SL−1 = N − k; ML−1 ≤ k


.

Using the central limit theorem we can see that the contribution to the sum of the terms outside
the set UL = {k ∈ Z : |N − ρc L − k| ≤ ϑL

√
L} is negligible, that is

PL =


k∈UL

L pk P

SL−1 = N − k; ML−1 ≤ k


+ o


L(N − ρc L)−b.

Recall now that by (2.8) we have pk ≃ A1k−b to get

PL = A1L(N − ρc L)−b


k∈UL

P

SL−1 = N − k; ML−1 ≤ k


+ o(1)


.

The last sum converges to 1 again by the central limit theorem and the fact that P


ML−1 ≤ k


→

1, uniformly for k ∈ UL , so

PL = A1L(N − ρc L)−b1 + o(1)

,

as asserted. �

We proceed now with the proof of Theorem 2.1. (a) The case γL → −∞.
By Lemma 3.2 and (2.19) if N − ρc L ≫

√
L or the local limit theorem otherwise, condition

(i) of Lemma 3.1 is satisfied by αL =
√

L/ log L . Consider s∗ > 0 such that ραL (s∗) = N/L
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and let βL(x) = x L
1

b−1 , x > 0 . Then

L


βL (x)<k≤αL

es∗k pk = L


βL (x)<k≤αL

pk + L


βL (x)<k≤aL


es∗k

− 1


pk

= L F̄


x L
1

b−1


− L F̄(αL)+ L


βL (x)<k≤αL


es∗k

− 1

,

where F̄(t) =


k>t pk . Using (2.8) it is easy to see that the first term above converges to
A1

b−1 x1−b, the second vanishes in the limit, and so does the third since s∗αL ≤ s0αL → 0. That is

L


βL (x)<k≤aL

es∗k pk −→
A1

b − 1
x1−b as L → ∞,

which is condition (ii) in Lemma 3.1.
(b) The case γL → +∞.
This case is essentially treated in [3]. It is shown there (cf. Theorem 1b) that when the second

term on the right hand side of (2.19) dominates the probability of the event {SL = N }, the
variables {ηi } aside from their maximum become asymptotically independent with distribution
νφc . This entails that for all y ∈ R

µL ,N

ML − (N − ρc L)

σ
√

L
≤ y


−→

1
√

2π

 y

−∞

e−x2/2 dx,

which is (2.23).
(c) The case γL → γ ∈ R.
Here N − ρc L ≃ σ


(b − 3)L log L , and the two terms in the right hand side of (2.19) are of

the same order. Precisely,

1
√

2πLσ 2
exp


−
(N−ρc L)2

2σ 2 L


L A1[N − ρc L]−b −→

σ b−1(b − 3)
b
2

√
2π A1

e−(b−3)γ
=: ℓγ . (3.20)

It follows by (2.19) and Lemma 3.2 that

lim inf
L→∞

µL ,N


ML ≤ αL


≥

ℓγ

1 + ℓγ
.

On the other hand, applying Lemma 3.3 with ϑL ≪


log L we have that

lim inf
L→∞

µL ,N


ML ≥ N − ρc L − ϑL

√
L


=
1

1 + ℓγ
.

Using a similar argument to the one in the proof of Lemma 3.3 we have

µL ,N


ML ≥ N − ρc L + ϑL

√
L


≤

A1L


N − ρc L + ϑL
√

L
−b

P

SL = N


× P


SL−1 ≤ ρc L − ϑL

√
L


−→ 0,
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by (2.19) and the central limit theorem. As ϑL
√

L ≪ N − ρc L when γL → γ ∈ R the last three
relations together imply that

ML

N − ρc L
µL ,N
H⇒ Be(pγ ) with pγ =

1
1 + ℓγ

. (3.21)

Note that pγ as given above satisfies

pγ →


1 if γ → ∞

0 if γ → −∞.

This finishes the proof of Theorem 2.1. �

3.2.2. Proof of Theorem 2.2
Here N < ρc L and N/L → ρc as L ↑ ∞.
We take αL = ∞, so that (i) in Lemma 3.1 is automatically satisfied. It remains to identify the

sequence βL → ∞ and the limit Φ in condition (ii) for each case (a), (b) or (c) in the theorem.
Note that since

N

L
= ρ(s∗) = ρc +

 s∗

0
σ 2(s) ds, with σ 2(s)

s→0
−→ σ 2,

we have

s∗ =
N − ρc L

σ 2L


1 + o(1)


as L → ∞. (3.22)

(a) The case ωL → 0.

Let βL(x) = x L
1

b−1 . Then

L


k>βL (x)

es∗k pk = L F̄

βL(x)


+ L


k>βL (x)


es∗k

− 1


pk,

where

0 ≥ L


k>βL (x)


es∗k

− 1


pk ≥ Ls∗


k>βL (x)

kpk = O(ωL) −→ 0.

That is,

L


k>βL (x)

es∗k pk −→
A1

b − 1
x1−b.

(b) The case ωL → ω > 0.

As in the previous case, let βL(x) = x L
1

b−1 . By the regular variation of the probabilities pk ,

L


k>βL (x)

es∗k pk ≃ A1L
M L

1
b−1

k=βL (x)+1

es∗k 1
kb + A1L


k>M L

1
b−1

es∗k 1
kb .

We compute the limits of both terms on the right hand side above:

lim
M→∞

lim
L→∞

L


k>M L
1

b−1

es∗k 1
kb = 0
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and by (3.22)

lim
M→∞

lim
L→∞

L
M L

1
b−1

k=βL (x)+1

es∗k 1
kb = lim

M→∞
lim

L→∞
L

M L
1

b−1
k=βL (x)+1

exp

−ω

k

L
1

b−1


1
kb

= lim
M→∞

 M

x
e−ωt 1

tb dt.

(c) The case ωL → ∞.
Define now a sequence BL by the equation

(|s∗|BL)
b e|s∗|BL = A1L|s∗|

b−1, (3.23)

and note that (3.22) implies that the right hand side of (3.23) is of order ωb−1
L . Thus, ωL → ∞

implies that |s∗|BL → ∞ as well. Let βL(x) = BL +
x

|s∗|
. Then

L


k>βL (x)

es∗k pk = Les∗ BL


k>βL (x)

es∗(k−BL ) pk

≃ A1Le−|s∗|BL


k>βL (x)

es∗(k−BL )
1
kb

= |s∗|


k>βL (x)

es∗(k−BL )


BL

k

b

= |s∗|


k′>x/|s∗|

es∗(k′)


|s∗|BL

|s∗|k′ + |s∗|BL

b

−→


∞

x
e−t dt = e−x

as L → ∞, using dominated convergence with |s∗|BL → ∞. The third line above follows from
the second one by (3.23). This concludes the proof of the theorem. �

3.3. The stretched exponential case

Here we have pn ≃ Aλe−
b

1−λ
n1−λ

. The proofs in this case use results from [25], which are
summarized in the Appendix.

3.3.1. Proof of Theorem 2.3
We recall the notation from Eq. (2.30)

N = ρc L + tL(σ
2L)

1
1+λ .

(a) The case lim supL→∞ tL < cλ.
The second equation in (2.32) that gives the limit theorem for ML without conditioning is a

standard computation in extreme value theory. The appropriate scales yL , bL (see (2.31)) have to
be chosen so that

L F̄(yL + xbL) = L


k>yL+xbL

pk → e−x , x ∈ R. (3.24)
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From standard asymptotics we have that
k>x

e−
b

1−λ
k1−λ

≃
xλ

b
e−

b
1−λ

x1−λ

as x → ∞,

and it is straightforward to see that (3.24) is satisfied so long as

y1−λ
L =

1 − λ

b
log


AλL

b


+
λ

b
log


1 − λ

b
log L


+ o(1) and

bL

yλL
→

1
b
.

For later convenience we fix

y1−λ
L =

1 − λ

b
log


AλL

b


+
λ

b
log


1 − λ

b
log L


and

bL =
1
b


1 − λ

b
log L

 λ
1−λ

.

(3.25)

Let c > 1. According to (A.4)

P

ML ≤ cyL ; SL = N


≃ P


SL = N


.

We thus set the sequence αL = cyL , and item (i) in Lemma 3.1 is satisfied. Recall that s∗ > 0
since N > ρc L . If we define βL(x) = yL + xbL , we obtain

L


βL (x)<k≤αL

es∗k pk = L F̄

yL + xbL


− L F̄


αL

+ L


βL (x)<k≤αL


es∗k

− 1


pk .

In view of (3.24), the first term on the right hand side converges to e−x , the second one
vanishes in the limit since for all x ∈ R we eventually have αL ≥ βL(x), and the rightmost term
also converges to zero by (3.8) and (3.24). This provides condition (ii) in Lemma 3.1.

(b) The case tL → t > cλ.

When N − ρc L ≫ L
1

2λ this can be deduced by Theorem 1a in [3], since in that case the
L − 1 smallest variables become asymptotically independent. In fact, we can then take aL = 1.
For smaller values of N − ρc L , even though it is not stated explicitly, this is essentially proved
in [25]. Note that by Remarks 2, 3 and 5 in the Appendix for any θL → ∞ we have

µL ,N


|ML − (1 − α)(N − ρc L)| < θL

√
L


−→ 1

where α is implicitly defined by (A.7). This implies that the conditional distribution of
ML−(1−α)(N−ρc L)

√
L

is tight. To identify the limit distribution we make use of Theorems 2, 3 and
5 in the Appendix, which give asymptotic expressions for P[SL = N ] and show that they are
dominated by events with a single large component and uniform distribution of the rest of the
mass. Then, using the shorthand ξL = ⌊(1 − α)(N − ρc L)⌋,

µL ,N [ML − ξL = m] = AλLe−
b

1−λ
(ξL+m)1−λ P[SL−1 = N − ξL − m]

P[SL = N ]


1 + o(1)


,

where m = O(
√

L). The definition of α implies that the term P[SL−1 = N−ξL−m] is dominated
by configurations which do not exhibit a large component and an asymptotic expression is given
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in Theorem 1 in the Appendix. A lengthy but straightforward explicit computation then yields

µL ,N [ML − ξL = m] =


1 −

λα
1−α

2πσ 2L
exp


−

m2

2σ 2L


1 −

λα

1 − α

 
1 + o(1)


for all m up to order

√
L , which implies the statement. Note that the sequence aL in the statement

of Theorem 2.3 is given by 1−α. The properties of its limit a(t) can easily be deduced from (A.7).
(c) The case tL → cλ.
This case can be treated analogously to the third part of Theorem 2.1. By (A.11), the leading

order of P

SL = N


is the sum of two explicit terms, and one has to find the precise subscale

around N − ρc L − cλ(σ 2L)
1

1+λ where these two terms are of the same order. Using (A.12) for
λ > 1/2 and (A.7) we find that on the scale (2.37)

1

σ
√

2πL
e−

k2

2Lσ2


AλL

1 −
σ 2γ λ(1−λ)L

k1+λ(1−α)1+λ

e−
α2k2

2σ2 L
−γ (1−α)1−λk1−λ

−→

√
1 + λ

2Aλ
√
πσ 2

eγ =: ℓγ . (3.26)

Combining Remark 4 in the Appendix with the arguments applied to deduce Theorem 2.1(c), we
obtain (2.38) with pγ = (1 + ℓγ )

−1. �

3.3.2. Proof of Theorem 2.4
As for the downside deviations in the power law case, we here set αL = ∞. Then (i) in

Lemma 3.1 is satisfied, s∗ < 0, and satisfies (3.22). Now the limit in (ii), Lemma 3.1 is given by
Φ(x) = e−x in all cases, so we just need to prove that the proposed values of the sequence βL(x)
do the job. The proofs are all based on the following computation, with simple adjustments to
match each situation.

Suppose there exist sequences γL and ζL and ℓ1 and ℓ2 ∈ R such that

lim
L→∞

ζ 2
L

γ 1+λ
L

= 0, lim
L→∞

ζL |s∗| = ℓ1 and

lim
L→∞

ζL

γ λL
= ℓ2, ℓ1 + bℓ2 = 1.

(3.27)

Then

AλL
γL+yζL

k=γL+xζL

es∗ke−
b

1−λ
k1−λ

= AλL es∗γL−
b

1−λ
γ 1−λ

L

γL+yζL
k=γL+xζL

es∗(k−γL )e−
b

1−λ


k1−λ

−γ 1−λ
L



= AλL es∗γL−
b

1−λ
γ 1−λ

L

γL+yζL
k=γL+xζL

es∗(k−γL )e
−

b
γ λL
(k−γL ) 

1 + o(1)


= AλL es∗γL−
b

1−λ
γ 1−λ

L

k−γL=yζL
k−γL=xζL

e
−(|s∗|+ b

γ λL
)(k−γL ) 

1 + o(1)


≃ AλL
es∗γL−

b
1−λ

γ 1−λ
L

|s∗| +
b
γ λL

 y(ℓ1+bℓ2)

x(ℓ1+bℓ2)

e−t dt.
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We now let y → ∞ and apply (3.27) to get

AλL


k>γL+xζL

es∗ke−
b

1−λ
k1−λ

≃ AλL ζL es∗γL−
b

1−λ
γ 1−λ

L e−x . (3.28)

We will work on this limit case by case.
Recall the sequences yL , bL from (3.25) and note that

AλL bLe−
b

1−λ
y1−λ

L = 1. (3.29)

(a) The case s∗yL → 0 ⇔ ωL → 0.
Here γL := yL and ζL := bL satisfy (3.27) with ℓ1 = 0 and ℓ2 = 1/b. It is straightforward

from (3.28) and (3.29) that

lim
L→∞

L


k>yL+xbL

es∗k pk = e−x .

(b) The case s∗yλL → 0.
Here we may again take ζL = bL , but we may need to make lower order corrections on yL to

get a suitable γL when s∗yL 9 0. Precisely, let γL be the solution to

s∗γL =
b

1 − λ


γ 1−λ

L − y1−λ
L


or equivalently s∗yλL =

b

1 − λ


yλL
γ λL

−
yL

γL


. (3.30)

By the condition s∗yλL → 0, and the fact that necessarily γL ≤ yL , this implies that yL
γL

≃ 1, and
(3.27) holds with ℓ1 = 0 and ℓ2 = 1/b. Also (3.28)–(3.30) imply

lim
L→∞

L


k>γL+xbL

es∗k pk = e−x .

(c) The case s∗yλL → c < 0, c ∈ R.
The scaling in the sequences γL and ζL is preserved, but the limits limL→∞

γL
yL

and

limL→∞
ζL
bL

need to be chosen so that ℓ1 and ℓ2 in (3.27) satisfy ℓ1 + bℓ2 = 1. We set ζL = κbL
for a constant κ > 0 to be determined and we define γL as the solution to

AλL ζL es∗γL−
b

1−λ
γ 1−λ

L = 1. (3.31)

The preceding equation and (3.29) together imply

s∗γL −
b

1 − λ


γ 1−λ

L − y1−λ
L


= log


bL

ζL


, (3.32)

which in turns gives that γL/yL → q where q ∈ (0, 1) solves cq −
b

1−λ
(q1−λ

− 1) = 0. We
finally choose κ so that

ℓ1 + bℓ2 = lim
L→∞

ζL


|s∗| +

b

γ λL


= κ


|c|

b
+ q−λ


= 1.
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(d) The case |s∗|yλL → ∞. Let now ζL =
1

|s∗|
and set γL as the solution to (3.31). From (3.32)

we now obtain that, to leading order,
1 − λ

b
log L

 1
1−λ

≃ γL


1 +

1 − λ

b
|s∗|γ

λ
L

 1
1−λ

,

from where we conclude that necessarily |s∗|γ
λ
L → ∞. Then (3.27) holds with ℓ1 = 1 and

ℓ2 = 0, and the assertion follows from (3.28). �

3.4. Proof of Theorem 2.5

(a) The assertion will follow from Theorem 24.2 in [7] provided we check the validity of the
following three conditions for the exchangeable random variables ξ L ,N

x =
ηx −N/L
σ
√

L
.

1.
L

x=1 ξ
L ,N
x

µL ,N
−→ 0. This is trivial since the sum of all ξ L ,N

x is equal to zero µL ,N -a.s.

2.
max1≤x≤L ξ

L ,N
x

 µL ,N
−→ 0. This follows from part (a) of Theorems 2.1 and 2.3 when

N ≥ ρc L , or from Theorems 2.2 and 2.4 when N < ρc L .

3.
L

x=1


ξ

L ,N
x

2 µL ,N
−→ 1: we prove it for the power law and stretched exponential cases

simultaneously.

Let ϵ > 0 and set αL =

√
L

log L , which is an upper bound for the typical size of the maximum
for the power law case as well as for the stretched exponential case. Then

RL ,N := µL ,N

 1
L

L
x=1


ηx −

N

L

2

− σ 2

 > ϵ



≤ µL ,N

 1
L

L
x=1


ηx −

N

L

2

− σ 2

 > ϵ, ML ≤ αL


+ µL ,N [ML > αL ]. (3.33)

By Theorem 2.1(a) and Theorem 2.2 in the power law case, or Theorem 2.3(a) and Theorem 2.4
in the stretched exponential case, the second term on the right side above tends to 0 as L → ∞.
Let us now write

µL ,N

 1
L

L
x=1


ηx −

N

L

2

− σ 2

 > ϵ, ML ≤ αL



=

P
 1

L

L
x=1


ηx −

N
L

2
− σ 2

 > ϵ, ML ≤ αL ,
L

x=1
ηx = N


P


L
x=1

ηx = N



=

Z L
αL
(s∗) PαL (s∗)

 1
L

L
x=1


ηx −

N
L

2
− σ 2

 > ϵ,
L

x=1
ηx = N


E

es∗SL 1{


ηx =N }



≤

PαL (s∗)

 1
L

L
x=1


ηx −

N
L

2
− σ 2

 > ϵ


PαL (s∗)


L

x=1
ηx = N

 , (3.34)
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where we recall that given parameters α > 0 and s ∈ R, the measure PαL (s) is defined by (3.3).
From (3.33), (3.34) and (3.13) we conclude that

RL ,N ≤


2πσ 2L PαL (s∗)

 1
L

L
x=1


ηx −

N

L

2

− σ 2

 > ϵ


+ o(1).

The result will thus follow if we show that

√
L PαL (s∗)


1
L

L
x=1


ηx −

N

L

2

≥ σ 2
+ ϵ


−→ 0 as L → ∞ (3.35)

and

√
L PαL (s∗)


1
L

L
x=1


ηx −

N

L

2

≤ σ 2
− ϵ


−→ 0 as L → ∞. (3.36)

Let us start with the former. If ζ > 0 then

PαL (s∗)


L

x=1


ηx −

N

L

2

≥ (σ 2
+ ϵ)L



≤ e−ζ(σ 2
+ϵ)L Es∗


exp


ζ

L
x=1


ηx −

N

L

2


= e−ζ(σ 2
+ϵ)L


1

ZαL (s∗)

αL
k=1

eζ(k−
N
L )

2
es∗k pk

L

, (3.37)

where Es∗ denotes expectation with respect to the measure PαL (s∗).

Now set ζ =
log3/2 L

L so that ζα2
L → 0. Apply next the elementary inequality ex

≤ 1 + xψ(h)

for x ∈ [0, h], ψ(h) =
eh

−1
h , to get

1
ZαL (s∗)


k≤αL

eζ(k−
N
L )

2
es∗k pk ≤

1
ZαL (s∗)


k≤αL


1 + ζ


k −

N

L

2
ψ(ζα2

L)


es∗k pk

= 1 + ζ σ 2
αL
(s∗)ψ(ζα

2
L).

From (3.12) we can make σ 2
αL
(s∗)ψ(ζα

2
L) < σ 2

+ ϵ/2 for large enough L , so (3.37) becomes

PαL (s∗)


L

x=1


ηx −

N

L

2
≥ (σ 2

+ ϵ)L


≤ e−ζ(σ 2

+ϵ)L


1 + ζ σ 2
αL
(s∗)ψ(ζα

2
L)
L

≤ e−ζ(σ 2
+ϵ)L eζ Lσ 2

αL
(s∗)ψ(ζα2

L )

≤ e−
ϵ
2 log3/2 L , (3.38)

from where (3.35) is easily obtained. The limit (3.36) can be derived by similar estimates.

(b) In the power law case (λ = 1), or when λ < 1 and N − ρc L ≫ L
1

2λ , the assertion follows
immediately (with aL = 1) from the asymptotic independence of the bulk variables proved in
Theorems 1b, 1a in [3], respectively.
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Let us then consider the stretched exponential case λ < 1 when N − ρc L = tL(σ
2L)

1
1+λ ,

and tL → t ∈ (cλ,+∞] (we refer to the statement of Theorem 2.3 for notation). The case
N − ρc L ≫ L

1
2λ discussed in the previous paragraph clearly belongs to this family as well.

We first observe that in this situation

N − a(t)(N − ρc L) < ρc L + cλ(σ
2L)

1
1+λ . (3.39)

Indeed, according to (A.7), a(t) satisfies

1

t1+λ
=
(1 − a(t)) a(t)λ

γ (1 − λ)
with γ =

b

1 − λ
.

Let xt = t (1 − a(t)). Then it follows from Theorem 2 in the Appendix that xt is the smallest
positive root of the equation

b = xt (t − xt )
λ, (3.40)

and it is easily checked that

lim
t↑∞

xt = 0 and lim
t↓cλ

xt = cλ
1 − λ

1 + λ
< cλ.

In order to conclude (3.39) it will therefore be enough to show that xt is decreasing. Differenti-
ating in (3.40) we get, after a couple of operations, that the derivative x ′

t satisfies

x ′
t


λ

t − xt
−

1
xt


=

λ

t − xt
.

Now

λ

t − xt
<

1
xt

⇐⇒ λxt < t − xt ⇐⇒ λt (1 − a(t)) < ta(t) ⇐⇒
λ

1 + λ
< a(t).

But a(t) is increasing on the half-line (cλ,∞) with limt↓cλ a(t) =
2λ

1+λ
, limt↑∞ a(t) = 1, and

hence a(t) > λ
1+λ

.

Inequality (3.39) allows us to decompose the random walk YL into two components: the first
term will be easily shown to converge to a Brownian bridge via the same arguments applied to
prove the first statement in the theorem, while the second one is a drift term determined by the
Gaussian limit specified in Theorem 2.3(b). Precisely, write

Y L
s = W L

s +
[sL]

L

ML − aL(N − ρc L)
√

σ 2L
, W L

s =
1

σ
√

L

[sL]
x=1


η̃x −

N − ML

L


. (3.41)

Next, consider the interval AL =


X ∈ R,

 X
aL (N−ρc L) − 1

 ≤ δL


associated to δL = L−

1
4

1−λ
1+λ ,

chosen so that Theorem 2.3(b) implies limL→∞ µL ,N [ ML ∈ AL ] = 1. Notice that by (3.39) the
occupation variables {η̃x }x=1,...,L are in the subcritical regime when ML ∈ AL , they are clearly
exchangeable, and moreover when properly centred they satisfy conditions (1), (2) and (3) of
Theorem 24.2 in [7].
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Namely, let ξ̃ L ,N
x =

η̃x −(N−ML )/L
σ
√

L
. Then, provided ML ∈ AL , we can easily show that

1′.
L

x=1 ξ̃
L ,N µL ,N

−→ 0. In fact, the sum equals 0 except in the rare event that the second order
statistic of the sample {ηx }1≤x≤L is greater than L1/4.

2′. | max1≤x≤L ξ̃
L ,N
x |

µL ,N
−→ 0. This is trivial, as η̃x ≤ L1/4 and N − ML ≤ L

1
1+λ when

ML ∈ AL .

3′.
L

x=1(ξ̃
L ,N
x )2

µL ,N
−→ 1. This can be shown following the arguments applied to prove

condition (3) in the first statement of the theorem, the difference being that it is now necessary to
condition on ML before applying Chebyshev’s inequality: for ϵ > 0,

µL ,N

 1
L

L
x=1


η̃x −

N − ML

L

2

− σ 2

 > ϵ, ML ∈ AL



= EµL ,N


µL ,N

 1
L

L
x=1


η̃x −

N − ML

L

2

− σ 2

 > ϵ

ML


1{ML∈AL }


. (3.42)

The estimates leading to the bound (3.38) hold uniformly for Ñ = N − ML when ML ∈ AL , and
hence can be applied to the conditioned expectation in the right side of (3.42) to conclude that

µL ,N

 1
L

L
x=1


η̃x −

N − ML

L

2

− σ 2

 > ϵ, ML ∈ AL


−→ 0,

as required. Conditions (1′), (2′) and (3′) imply that W L
s

µL ,N
H⇒ B Bs , the standard Brownian

bridge on [0, 1] conditioned to return to the origin at time 1. On the other hand, we know

form Theorem 2.3(b) that ML−aL (N−ρc L)
√

σ 2 L

µL ,N
H⇒ Φ, a zero mean Gaussian variable with variance

1/(1 −
λ(1−a(t))

a(t) ).
Our assertion will follow once we prove the convergence of the finite dimensional marginals

plus tightness for the laws of the sequence Y L
s . The former is easily derived by first conditioning

on ML ; the fact that the limit of the first term in (3.41) is independent of the value of the
second implies that the finite dimensional marginal distributions converge to those of B Bs + s Φ.
Tightness is also straightforward: by the linearity of the second term in (3.41), it suffices to show
that the modulus of continuity of the first term tends to 0,

ω(δ) = sup
|s−r |≤δ

W L
s − W L

r

 µL ,N
−→ 0 as δ → 0,

which is a direct consequence of the Arzelà–Ascoli Theorem. �
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Appendix

Theorem 2.3 for the stretched exponential case relies heavily on the asymptotics for the
probability of moderate deviations in [25]. An English translation of this article can be found in
Selected Translations in Mathematics, Statistics and Probability (1973), Volume 11. The purpose
of this appendix is to provide the main results of this difficult to access article, as they apply in
our model.

We use the same notation as in Section 3, introduced in (3.2), and write the stretched expo-
nential tail of the law P of the independent integer random variables η j , j = 1, 2, . . . , L as

P

η j = n


∼ Ae−γ n1−λ

as n → ∞,

where A, γ are positive constants and 0 < λ < 1. We are interested in the asymptotic behaviour
of the probabilities PL(N ) = P


SL = N


as L → ∞, where N = ρc L + k, and k deviates

from the typical behaviour k = O(
√

L). This is done in [25] when A = γ = 1 in a series of five
theorems and remarks, where the asymptotics are obtained for five different ranges of k-values.
In the following, we transcribe these theorems for arbitrary values of A and γ , which are applied
in the proofs of Theorems 2.3 and 2.4 with A = Aλ and γ = b/(1 − λ).

We will denote by θL a sequence that increases to infinity arbitrarily slowly. Let rL(m) be a
sequence such that

L
∞

n=rL (m)

nme−γ n1−λ

−→ 0 as L → ∞. (A.1)

Note that we may take rL(m) =

β log L

 1
1−λ , for any β > γ−1. We will use λ[t](z) to denote

the sum of the first t terms of the Cramér series (see e.g. [19], Chapter 8), where

t =

1
λ


− 1 and λ[t](z) = λ0 + λ1z + · · · + λt−1zt−1. (A.2)

In particular, λ[t](z) ≡ 0 when λ > 1/2. The coefficients λ j depend on the cumulants of the
distribution. Finally, we define

cλ = (1 + λ)(2λ)−
λ

1+λ γ
1

1+λ .

Case 1◦

δ
√

L < k = N − ρc L < (cλ − δ)(σ 2L)
1

1+λ , (A.3)

where δ > 0 is any sufficiently small fixed number.

Theorem 1. If k is as in (A.3), then

PL(N ) =
1

σ
√

2πL
exp


−

k2

2Lσ 2 +
k3

L2 λ
[t]
 k

L


1 + o(1)


as L → ∞.
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Remark 1. Under the conditions of Theorem 1

P

SL = N


P

SL = N ; η j < rL(m), 1 ≤ j ≤ L

 −→ 1, (A.4)

where m can be taken as the smallest positive integer such that N
 k

N

m+1
= o(1).

Case 2◦

(cλ + δ)(σ 2L)
1

1+λ < k <
L1/2λ

θL
. (A.5)

Theorem 2. If k is as in (A.5), then

PL(N ) =
AL

1 −
σ 2γ λ(1−λ)L

k1+λ(1−α)1+λ

× exp

−
α2k2

2σ 2L
+
α3k3

L2 λ[t]
αk

L


− γ (1 − α)1−λk1−λ


1 + o(1)


(A.6)

as L → ∞, where α is the smallest positive root of the equation

σ 2L

k1+λ
=
α(1 − α)λ

γ (1 − λ)


1 − Rλ(αk

L )

. (A.7)

The term Rλ in the preceding equation is given by

Rλ(x) =
σ 2

x

d

dx


x3λ[t](x)


= σ 2

t−1
j=0

λ j ( j + 3)x j+1,

and in particular Rλ ≡ 0 if λ > 1/2.

Note that the fraction of excess mass on the condensate in Theorem 2.3 is aL = 1 − α with
γ = b/(1 − λ).

Relation (A.6) takes a particularly simple form for λ > 1/2 and θL L
1

1+λ < k < L
1

2λ
θL

. In this
case

PL(N ) = AL exp

−
α2k2

2σ 2L
− γ (1 − α)1−λk1−λ

 
1 + o(1)


.

Remark 2. Under the conditions of Theorem 2

P

SL = N


LP

SL = N ; η j < rL(m), 1 ≤ j ≤ L − 1; |ηL − (1 − α)k| < θL

√
L
 −→ 1, (A.8)

where m can be taken as the smallest positive integer such that Lk−λ(m+1)
= o(1) as L → ∞.

Case 3◦

k > L
1

2λ θL . (A.9)

Theorem 3. If k is as in (A.9), then

PL(N ) = AL exp

−γ k1−λ


1 + o(1)


as L → ∞.
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Remark 3. Under the conditions of Theorem 3

P

SL = N


LP

SL = N ; η j < rL(2), 1 ≤ j ≤ L − 1; |ηL − k| < θL

√
L
 −→ 1 as L → ∞.

Case 4◦

(cλ − δ)(σ 2L)
1

1+λ < k < (cλ + δ)(σ 2L)
1

1+λ . (A.10)

Theorem 4. If k is as in (A.10), then

PL(N ) =
AL

1 −
σ 2γ λ(1−λ)L

k1+λ(1−α)1+λ

× exp

−
α2k2

2σ 2L
+
α3k3

L2 λ[t]

αk

L


− γ (1 − α)1−λk1−λ

 
1 + o(1)


+

1

σ
√

2πL
exp


−

k2

2Lσ 2 +
k3

L2 λ
[t]


k

L

 
1 + o(1)


as L → ∞, (A.11)

where, as before, α is the smallest positive root of Eq. (A.7).

Relation (A.11) takes a simple form for λ > 1/2. In this case

PL(N ) =
1

σ
√

2πL
exp


−

k2

2Lσ 2

 
1 + o(1)


+

AL
1 −

σ 2γ λ(1−λ)L
k1+λ(1−α)1+λ

exp

−
α2k2

2σ 2L
− γ (1 − α)1−λk1−λ

 
1 + o(1)


. (A.12)

Remark 4. This case is intermediate between cases 1 and 2. Under the conditions of Theorem 4
we can only state that

P


SL = N


LP


SL = N ; η j < rL (m), j ≤ L − 1; |ηL − (1 − α)k| < θL
√

L


+ P


SL = N ; η j < rL (m),∀ j
 −→ 1,

where m = t + 2.

Case 5◦

L
1

2λ

θL
< k < L

1
2λ θL . (A.13)

Theorem 5. If k is as in (A.9), then

PL(N ) = AL exp

−γ k1−λ

+
L(1 − λ)2σ 2

2k2λ

 
1 + o(1)


as L → ∞.

Remark 5. In this case the picture is the same as in Remark 3.
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