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1. I N T R O D U C T I O N  

In the discretization of mildly nonlinear elliptic problems, it is usually necessary to solve nonlinear 

systems tha t  satisfy the hypotheses in the monotone Newton theorem; such systems also arise in 
the discretization of one-dimensional nonlinear boundary value problems. The theorem essentially 

states that ,  with two convenient starting points, it is possible to generate two monotone sequences, 
enclosing a root of the system with both converging quadratically to it [1]. One of the hypotheses 
in the monotone Newton theorem is that  the Jacobian matr ix  is an M-matr ix .  For systems 

involving such matrices, it was shown that  partial elimination is a useful preconditioner for 
Jacobi and Gauss-Seidel iterations [2]. A similar conclusion holds for fixed point linear equations 
for which the iteration function has a nonnegative Jacobian [3]. Here, the counterpart  of linear 
elimination is functional substitution. More interestingly, in the framework of the monotone 
Newton theorem, it has been shown that  accurate partial functional elimination (i.e., an unknown 

is eliminated by means of the equation with the same index) produces a reduced system that  
inherits the properties of the original one. Moreover, the corresponding monotone sequences 

with projected start ing points converge termwise faster than those in the original sequences. 
This improvement is extended to the eliminated coordinate via functional evaluation [3]. The 
process can be repeated, inductively, in order to eliminate a set of unknowns by means of the 
equations with the same set of indexes. In this note, extensions of these results for a derivative free 
version of the monotone Newton theorem are proven and illustrated with a numerical example. 
They  are based on a thorough analysis of the results in [3]. 

2. A DISCRETE M O N O T O N E  N E W T O N  T H E O R E M  

Consider a continuously differentiable function F : D c ~n ~ !I~n and the equation 

F x  = 0. (2.1) 
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It will be assumed throughout that  we have x ° <_ yO; i.e., x ° <_ yO, for 1 < i < n, such that  

(x° ,y  °) : =  x ° < x < y °  c D ,  and F x  ° < O < F y  °. 

It will also be assumed that  F '  is isotone; i.e., 

x < y implies F'(x)  <_ F'(y) ,  

and that  it is Lipschitz continuous, namely 

IIF'(x)-F'(Y)II< IIx-YII, Vx, yeD.  

Recall that  if F '  is isotone, then F is order convex; i.e., 

F(Ax + (1 - A)y) _< AFx + (1 - )OFy, 

for x < y or y < x and A • (0, 1). Notice that  for n > 1, order convexity is a weaker notion than 
convexity. 

Now consider mappings P~, Qk:  (x °, y0) ~ L(Nn), such that  for each y • (x  °, yO), Pk(Y) and 
Qk(y) are nonnegative subinverses of F'(y) .  The following theorem can be proven [1]. 

THEOREM 2.1. The sequence 

yk+l := yk _ pk(yk)Fyk,  k -- 0, 1 , . . .  (2.2) 

is well defined and it satisfies yk ~ y, • (x o, yO) as k --* oo and y* is the unique solution of  (2.1) 

in (x °, yO). Moreover, the subsidiary sequence 

x k+l := x k - Qk(yk)Fx  ~, k = 0, 1 , . . .  (2.3) 

is also well defined and it satisfies x k T y* as k ~ oc. 
The iterates satisfy 

F x  k < 0 < Fy  k, k = 0 , 1 , . . . .  (2.4) 

Finally, i f  for all y • D, F'(y)  is nonsingular with nonnegative inverse, and it is defined 

Qk (yk) := Pk (yk) := F'  (yk) -1 , (2.5) 

then there exists a constant c such that 

Ily - x +lll < cllx y ll k = 0,1 . . . . .  (2.6) 

REMARK 2.2. It has been Fourier who, for n = 1, realized that  the iterates in (2.3) with the 
choice (2.5) generate a complementary sequence to the one defined by (2.2) [4]. Theorem 2.1, 
with the choice (2.5) and exclusive of (2.6), has been obtained by Baluev [5], while the general 
version presented here, together with (2.6), has been proven by Ortega and Rheinboldt [6]. It is 
this general version which we shall apply in this paper; the hypotheses in Theorem 2.1 will be 
assumed throughout. There are three more possible variants of Theorem 2.1. They are obtained 
by interchanging the roles of x ° and y0, and also by supposing that  F '  is antitone (i.e., x < y 
implies F'(x)  > F'(y)) ,  which implies that  F is order concave (see [1, Table 13.1]). The terms 
generated by (2.3) and (2.2) with the choice (2.5), while setting yO N := y0 and x ° := x °, will be 
denoted respectively y~, x~v, and referred to as the Newton-Fourier (N-F) iterates. 

In the context given by Theorem 2.1, it may be desirable to avoid the calculation of F~(y), 
while retaining monotone and superlinear convergence for the corresponding iterates. It will now 
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be shown that  convenient approximations of the Jacobian matrix provide a satisfactory solution. 
F '  will be assumed to be continuous. 

Consider h • N, h > 0, such that 

y + h e • D ,  

and define 

• ,  , yo; ,  V 

1 
[J(y, h)]i, j := ~ [f~(y + h e j) - f~(y)], 

e := (1 , . . . , 1 )  t, 

1 _< i, j _< n, (2.7) 

where e j is the jth unit coordinate vector. Note that there exists ho > 0 such that  for h < ho, 
J(y,  h) is well defined and nonsingular whenever y E (x °, y°/. It will throughout be assumed 
t h a t y E  (x ° , y ° / a n d t h a t 0 < h _ < h 0 .  

LEMMA 2.3. The following propositions hold: 

(i) F ' ( y ) < _ J ( y , h ) < _ F ' ( y + h e ) ,  V y e ( x  °,y°}. 
(ii) J(x ,h)  <_ J(y,h) ,  Vx, y • (x °,y°}, x < y .  

PROOF. It follows from the isotonocity of F ' ,  when applied to 

~0 
1 

[J(y, h)]i,j = Ojfi (y + t h e  j) dt. 

COROLLARY 2.4. J (y, h) -1 is a nonnegative subinverse o f F ( y ) .  I f  F'(y) is an M-matr/x,  then 
the same holds [or J(y, h). Moreover, if F ( y  °) is also irreducible, then there exists h~o > 0 such 
that if  0 < h < h~o, then J(y, h) is irreducible for ali y E (x °, yO). 

PROOF. For the last part, it is only necessary to note that the set of irreducible matrices is an 
open set. 

REMARK 2.5. Following [1], instead of (2.7), it could have been considered the more general 

1 I ( j-1 ) ( j-_~l /] [z(y, hl]~,j := h~-~ f~ y + ~ Z h~k ~k + h~j ~ - f~ y + ~ h~k e k , 
\ k= l  k=l  / . J  

with/~ e [0, 1] and hij > O. 

l < i < n ,  

(2.s) 

Lemma 2.3 and its corollary also hold for (2.8), and the proofs are again straightforward. The 
subsequent discussion is valid for (2.8) as well, but it will be circumscribed to (2.7) for the sake 
of notational simplicity. We assume that h0 _< h~. 

In (2.2) and (2.3), the choice of 

Qk (yk) := Pk (yk) := j (yk, h k ) - l ,  with 0 < hk _< h0 (2.9) 

yields convergence for these discrete Newton-Fourier (D-N-F) iterates, and it is analized in the 
following lemma. The proof applies some well-established arguments [1]. 

LEMMA 2.6. 

(i) Ilyk÷l--Xk÷lll<_Cl [KIIXk--ykllhk+lllxk--ykll2], k - - - -0 ,1 ,  
(ii) x k <_ XkN <_ y* < yk N < yk, k = 0 ,1 , . . . .  

PROOF. 

(i) 

Ilyk÷l _ x ÷lll < IIJ(y , h k ) - ' l ]  IIJ(yk, h )(y - x _ (Fy  - 

< c~ [[J(yk, h k ) -  F'(yk)][  []yk _ zk][ + Cl HF'(yk)(y  k - x k) - ( B y  k - f x k ) [ [  

1 
<~__ ClI~"~'h k Hy k - xkH + 51"y~ Ily k - x k n  2 " 

30-I-G 
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Note that ,  if for instance I[ II :---- II ][1' then K = 1. 

(ii) It follows inductively. 

REMARK 2.7. The main fact to be retained from Lemma 2.6 throughout this note is that,  by 
choosing hk <_ c [[yk _ xk[[, quadratic convergence is attained for the D-N-F iterates, as it is the 
case for the nondiscrete ones. Samanskii [1] originally pointed out that  the choice [hk[ _ c [[Fyk[[, 
with some constant c, yields at least quadratic convergence for general discrete Newton iterates, 
without any convexity assumption on F [1]. Note also that,  if F'(y*) is nonsingular, then the 
inverse function theorem implies the existence of a neighborhood U of y* and positive constants 
m and M, such that  

m[[Fy[[_< [[y-y*[l_< M HEy[[, V y E U .  (2.10) 

This means that  Samanskii's choice yields a value of hk that  is of the same order as that  of the 
error. Note also that,  since on compact neighborhoods of y*, J(y, h) (resp. J(y, h) -1) converges 
uniformly to F'(y) (resp. F ' (y ) - l ) ) ,  then there exist positive constants m'  and M' ,  such that  
for y0 in an appropriate neighborhood of y*, 

?Yt' [[Fyk[] ~ ny k + l -  yk[[ __( M' [[Fy~[[. (2.11) 

Clearly, (2.10) and (2.11)imply in general that  ny~v + 1 -  ykN][, [IFykn and [[yk N -y*[[  converge 
to 0 with the same order. Also, the same holds for the D-N-F iterations. But in order to 
ensure at least quadratic convergence in the present context, an alternative choice is thus given 
by 0 < hk <_ c[]y k -  xk][. Finally, it is to be noticed that  (ii) in Lemma 2.6 implies that  
no assymptotic improvement in the convergence of the D-N-F iterations can be expected when 
the N-F iterates converge quadratically if, for example hk := ck [[Fyk][ with limck = 0. To 
summarize, the N-F iterates always converge termwise better than the D-N-F ones and the 
latter also converge at least quadratically if hk := c[[Fyk[[ or hk := c[[y k -  xk[]. All these 
considerations will be necessary in the fourth section. 

3. C O N V E R G E N C E  A F T E R  A C C U R A T E  

F U N C T I O N A L  E L I M I N A T I O N  

As mentioned in the introduction, it has been proven that  accurate functional elimination 
in (2.1) leads to convergence improvement of the N-F iterates for the reduced system [3]. Analogue 
results for D-N-F iterates will be discussed in this section. Some additional notation and results 
will be needed [3]. 

Since F'(y*) is a nonsingular M-matrix, the implicit function theorem yields the existence of 
neighborhoods U of y*, V of y--~:= (y~, . . . ,  y~), a function g : Y --, ~, for which fl(g(~),~) -- 0, 
(~ := (Y2,..., Y,)), such that  if y E U satisfies fl(Y) = 0, then Yl = g(Y). It will be assumed that  

(x° ,y  °) C U and (76,y -6} C V. 

Note that  distinction between row and column vectors is avoided unless strictly necessary. We 
may now consider the reduced system 

Y , y = 0 ,  with Y := (]i), i = 2  . . . .  ,n,  ~ E V ,  andTi (~ ) := f i (g (~ ) ,~ ) .  (3.1) 

The reduced system (3.1) has been shown to inherit the properties of (2.1) [3]. Consequently, 
the corresponding N-F iterates may be considered. They will be denoted (Y~v) and (~v) ,  with 
starting points y-6 and x -6, respectively. For k = 0, we set 5 ° := ~-6 and y o  := y-6. The next 
comparison result has been established [3]. 
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THEOREM 3.1. The  following inequali t ies  hold: 

- -  m 

(i) X~v < 5~v < Y-~ -< Y~ <- Y~r, k = 0, 1 , . . . .  (3.2) 

(ii) (xk) l  < g (Ek)  < y~ < 9(Y~v) < (YkN)I, k = 0, 1 , . . . .  (3.3) 

REMARK 3.2. Clearly, the meaning of (i) is that the reduced N-F iterates converge termwise 
faster than the corresponding nonreduced ones, whereas (ii) implies that  the evaluation of g on 
the reduced iterates also produces better values for the eliminated coordinate• These two facts 
can also be exploited in order to improve the stopping criterion based on [[yk _ xk v [1oo -- Tol by 
checking first for I[~kN -- E~v[[oo < Tol and, once it is satisfied, the reduced iterations proceed until 

tg(~ k)  -g(EkN) [ _< Wol. In accordance with (2.7), we define the reduced approximation of F '  by 

1 h)],,j := [ L  + h J) - 2 _< i, j _< n. (3.4) 

LEMMA 3.3• / f  

(a) Olf i  is cons tant  for all 1 < i < n, or 

(b) Ojfx is cons tant  for all 1 < j < n, then J(~,  h) is nonsingular and 

- 1  
[ J (~ ,h)  ]i,j = [J ( (g (~ ) ,~ ) , h )  , 2 < i , j  < n. 

PROOF• Recall that  

I'[ = o j I ~ ( g ( . ) ,  .) - o l i n ( g ( . ) ,  .) • 0ill(g(.), .)/ 

When (a) holds, consider (1 
--m2,1 

/ --T~3,1 
ML := . 

\ --mn,1 

whereas if (b) 

0 0 . . . . . .  0 ~ 

1 0 . . . . . .  0 

0 1 ". 
• • • . • 

". 1 0 

0 . . . . . .  0 1 

holds, we define 

1 --T/~I, 2 --ml,3 . . . . . .  - -m l ,n  

0 1 0 . . . . . .  0 
, • 

0 0 1 '. 
, , , . ~ • 

". 1 0 
0 0 . . . . . .  0 1 

M U :-~ 

J/,1 
with mi,1 := J l , l '  

Jl,j 
with m l , j  := Jl, l '  

(3.5) 

l < i < n ,  

l <_j <_n. 

Now (3.5) and (a) imply that 

M L * J =  

Jl,1 • • • J l , n  

J 
(3.6) 
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while (3.5) and (b) imply that 

(3.7) 

The conclusion follows in either case by considering a formal inversion in (3.6) and (3.7) and by 

taking into account the block structure of the involved matrices. 

The analogue of Theorem 3.1 may now be stated for discrete and reduced discrete N-F iterates. 

Recall that the reduced D-N-F iterates are defined by 

g”+’ := gk _ J(yk, f&)-1@“, 

$+’ := i - J(jj”, hk)-‘fi’, where 

$::=p and $‘::=s. 

THEOREM 3.4. If (a) or (b) in Lemma 3.3 hold, then 

and 

PROOF. The proof follows as that of Theorem 3.1, and by taking account of Lemma 3.3. 

REMARK 3.5. When (a) holds, the question arises whether to use some ith equation, i # 1, for 

which &fi # 0, in order to eliminate the first unknown in (2.1). Such procedure may lead to a 

reduced system that doesn’t satisfy the hypotheses in Theorem 2.1, but even if it does satisfy 

them, then the convergence for the reduced N-F iterates turns out to be slower [3]. This is the 

reason for calling accurate partial elimination the procedure based on eliminating an unknown 

by means of its corresponding equation. However, if a subset of unknowns is to be eliminated 

before proceeding with the iterations, the corresponding subset of equations may be handled at 

will, because the final reduced system does not depend on the order of the elimination. 

The hypotheses in Theorem 3.4 are restrictive enough, when compared with those in Theo- 

rem 3.1. This is the reason for the approach that will now be examined. Notice that explicit 

mention of intermediate points in the application of mean value theorems will be omitted. 

LEMMA 3.6. If F’(y”) is irreducible, then g is strictly isotone on 

V < 5 implies g(Z) < g(S). 

Moreover, if z” # y* or y” # y*, then necessarily x0 < y”. Finally, fl (y’) > 0 if and only if 
g(F) < yy, and fi(xo) < 0 if and only if z$ < g(z). 

PROOF. Since F’(y) is irreducible for y 5 y ‘, for each such y there is some nonvanishing partial 

derivative ajfi(Y) with 2 < j 5 n. Thus, 

g(B)-g(Z)=~~jg*(yj-_zj)=-~a3fl 
j=2 ‘lfl 

*(Yj-Zj) >O. 
j=2 
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As for the second statement, assume for instance that x ° ~ y*; i.e., F x  ° ~ 0 and F x  ° <_ O. Then, 
since F'(y°) -1 > 0, it follows that 

x ° < x ° - F ' ( y ° ) - l F x  ° = x 1. (3.8) 

Theorem 2.1 also yields 
X 1 ~ y. _~ y0 

which combined with (3.8) gives x ° < y0. The third part can be dealt with by noting that  

fl  (y0) : f ,  ( y 0 ) -  f l  (g (Y-0),Y-0) : 0 i l l  $ (Yl 0 --g (Y'O)) • 

THEOREM 3.7. Suppose that for some k >_ O, F'(g(ykN),ykN) ~ F ' (y~  ) and E'(y  k) is irreducible. 
Then the following propositions hold: 

(i) IfykN ~ V, then ~/-bl < yk+l and g(~k+l) < (ykN+l)l" 

(ii) # then < and < 

PROOF. (i) Consider the first inequality; F'(ykN) being irreducible yields F'(yk)-1 > O, while 
irreducibility and F' (g(~ kN ) , ~ kN ) ~ F ' (ykN ) imply 

F'(y~v)- '  < F ' (g(yk) ,ykg)  -1. 

Clearly, Theorem 2.1 applied to (3.1) yields T~kN _> 0; thus, 

(g (~kN),~kN)- f '  (g (Y~v),Yk) - 1 F  (g (YkN),YkN) < (g (YkN),Ykg) 

-- F '  (ykN)-I F (g (Y~v),YkN) --< yk _ F '  (ykN)-i Fy~v = y~N +~. (3.9) 

The last inequality in (3.9) is a consequence of the order convexity of F. The proof for the first 
inequality can now be completed by applying the arguments needed in the proof of Theorem 3.1, 
i.e., Theorem 3.9 in [3]. As for the second inequality, Lemma 3.6 yields 

while 

0_~ fl  (yk-bl)----- f l  (yk-[-1)_ fl (g(yk-[--'---~),y~N+l) = 01fl , ( (yk-b l ) l -  g (y-- '~))  . 

Since 01fl > 0, the conclusion follows from the preceding two inequalities. 
(ii) The proof is very similar to the corresponding one for (i). 

COROLLARY 3.8. Suppose that F'(y °) is irreducible, that F' is not constant on any open subset 
of (x °, y0>, and that F'(g(y°), yO) ~ F(yO). 

(i) I f y  k # y--Z, then ~'~ < y--~ and g(y~) < (Y~)I for 1 _< m < k + 1. 

(ii) I f ~ z  ~ ~-z, then -~g < x ~  and (z'~)l < g(Sr~) for 1 <_ m < k + 1. 

PROOF. (i) Theorem 2.1 applied to F with respect to <~-6,~-6) implies that 

~'~ # y--~, O < m <_ k. 

Thus, inductively, 

and 

( g ( Y ~ ) , ~ )  < Y~ 

F I - m  - - m  E l l  m~ (g(YN),YN) ¢ ~YNJ, for 1 < m < k + 1. 

THEOREM 3.9. With the hypotheses in Corollary 3.8, ifO < hm in (2.9), 0 ~ m < k, are chosen 
conveniently small, then the following hold: 

(i) H~kN ¢: y--Z, then ~'~ < ym and g(~ m) < y ~  for 1 <_ m < k + 1. 

(ii) If~kN ~ -~, then x m < ~rn and y ~  < 9(~ m) for 1 <_ m <_ k + 1. 
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PROOF. It is only necessary to recall that J(y, h) -1 (resp. J(~,  h) -1) converges uniformly on 
compact sets to F ' ( y )  -1 (resp. ~ , ( y ) - l ) .  

REMARK 3.10. Unlike Theorem 3.4, Theorem 3.9 only has a qualitative meaning. It is our 
purpose now to show that the hypotheses in (i) and (ii) are automatically satisfied if F ~ is not 
constant on any open set. 

LEMMA 3.11. Suppose that F~(y °) is irreducible and that F ~ is not constant on any open subset 
of (x °, yo). 

(i) I f y  0 ~ y*, then y* < ykN+l < y k  for k : 0 , 1 , . . . .  

(ii) I f  x ° ~ y*, then XkN < XkN +1 < y* for k = O, 1 , . . . .  

PROOF. The proof is simple, so that only (i) will be considered. Since FP(y°) -1 > 0 and Fy  ° >_ O, 
then 

y l  = yO _ F,(yO)-lFyO < yO. 

Recall that  FylN >_ 0 and suppose that Fy 1 = 0. Thus, 

= Fy  ° - FYlN = .~a I F ~ (yl N + t (yO _ y~))  (yO _ yl N) Fy  o dt 

< F' (y0) (yo _ y~) = F y 0  

and 

If 

r]01F ' (ylN + t (Y 0 _ y l ) )  (yO _ y l )  dt -~ F '  (yO) (yO _ ylN) " 

Ojf i (y lN+t(yO--ylN)  ) =Ojfi(yO), V t C ( 0 , 1 ) ,  l < i , j < n ,  

isotonicity would imply that 

(3.10) 

o~f,(z) = ojf~ ( f )  , v z e ( y l ,  yo) , 

which contradicts that  F t is not constant on any open set. Thus, there exist io,Jo and to E (0, 1), 
such that 

Ojofio(yl  + t ( y ° - y l ) ) < O j o f i o ( y ° ) ,  Vt<_to. (3.11) 

Consider 

~0 
1 

a i j : =  O j f i ( y l N + t ( y ° - y ~ ) ) d t ,  f o r l < _ i , j < n .  

Equation (3.11) implies that 

with equality excluded, whence 

A < F' (y0), 

A ( f  - y~) _< F' (y0) (y0 _ y ~ ) ,  

with equality excluded as well. But this contradicts (3.10), which yields 

FylN ~ O. 

An induction argument completes the proof. 

THEOREM 3.12. Suppose that F'(y  °) is irreducible, F'(g(y°) ,y  °) ~ F'(y°), ~'6 ~ - ~  and that 
-~ , not constant on any open subset of ~'6,  ~--6). Then, for k = 1, 2 . . . . .  is 

x k < ~ k < ~ - < ~ k < y k  N and (x~) l  < g ( S k N ) < y ~  < g ( y ~ v ) < ( y ~ ) l .  
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For each k, there exist era > 0,0 <_ m < k,  depending on k and such that ifO < hra < era, then 
for 1 < m <  k + l ,  

x m  < ~m < - ~  < y m  < y '~n and x ~  < g(bm)  < y~ < g(ym)  < y ~ .  

PROOF. Notice first that  F' (g(y° ) ,y  °) ¢ F ' (y  °) assumes that  g(~6) < y0. Since F'(y  °) is 
irreducible, there exists i > 2 for which 

o f (y °) >0, 

whence 

Thus, 
y0 Cy*.  

Since (~,)~1(~-6) = (F,)~l(g(-y-6), yO), for i ¢ 1 ¢ j [3], the irreducibility of F ' ( y  °) follows from 

that  of F'(y°) .  Lemma 3.11 can now be applied to F with respect to (~6, ~-'6~ and it yields that  
\ l 

Recall that  
- o j / l ( g ( . ) ,  .) 

O j f  i( .  ) "~ O j f i ( g ( . ) ,  .) -- C~lf/(g(.) ,  .) * C~lf l(g( . ) ,  . ) ,  

which implies that  also F t cannot be constant on any open subset of (x °, y0). The inequalities 
for the N-F iterates now follow from Corollary 3.8, while those relating the D-N-F iterates can 
be obtained with the argument in Theorem 3.9. 

REMARK 3.13. Although the necessary condition f l (y  °) > 0 (i.e., g(yO) < yO) may not be 
satisfied, note that  the procedure leading to the reduced system (3.1) might have been applied to 
any other variable with its corresponding equation. Thus, unless F(y  °) = 0, it may be supposed 
that  f l ( y  °) > 0. However, in actual problems, the elimination criterion should take into account 
both the simplicity of the equation to be used and the resulting complexity for the reduced 
iterations. Note that  the condition x --6 ~ y---~, which is equivalent to ~ - 6  ~ 0, is implied by 
x ° < g(x--6); i.e., f~(x °) < 0. Note also that  it is easy to exhibit examples in the context given by 
Theorem 2.1 for which it may happen that  F r is constant while F '  is not constant on any open 
subset of (x °, y0). However, Theorem 3.12 also holds if, instead of asking F '  not being constant 
on open sets, it is only supposed that F t is not constant on any open subset of (x °, yO). The 
proof in this case takes into account strict inequalities like the one in (3.9) and can be obtained 
by making slight changes in the proof of Theorem 3.1. A different proof for this modification of 
Theorem 3.12 may be found in [7]. 

Let us define F : ~R 1° 

4.  A N  E X A M P L E  

~10 by 

2yl - Y2 + y3  
f l  . -  h2 

2yi - Yi-1 - Y~+I 3 
f~ := h2 + y~, 2 < i < 9, 

- Y9 1 f l0  "-- 2y3~2~ , with h := ~-~. 
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By eliminating Yl0 by means of fl0, the following reduced system is obtained: 

' ]1  - 2 y ~  - Y2 h - - - 5 -  + y3 

~ _- 2y~ - y~_~ - Yi+I 3 
h2 +y~ ,  2 < i < 8  

h 2 + Y9, where g := - -  . 

Consider x ° := (0 , . . .  ,0,0.14,0.41) and y0 := (1 , . . . ,  1). This example is taken from [3], where 
the verification of the hypotheses in Theorem 2.1 is included. Clearly, also the hypotheses in 

Theorem 3.12 are satisfied. The calculations have been carried out on a PC, with the double 
precision of Fortran 5.0. The stopping criteria have been IIFYkll~ < e :---- 0.5 * 10 -13 and 

tlFxklioo < e, and their analogues for the reduced counterparts.  I t  is to be noted that ,  with the 
exceptions in Tables 2 and 5, the reduced iterations converge faster than the nonreduced ones. 

Table 1. 

6 8 5 5 

Table 1 gives for reference the number of necessary N-F and reduced N-F iterations in order to 
satisfy the stopping criteria (see [8] for the actual iterates); because of (ii) in Lemma 2.6, these 

values are theoretical lower bounds for the corresponding ones of discrete iterations tha t  are given 

in the following tables. The tables represent the tests with different ways of producing hm, i.e., 
the value of h in (2.7) used to approximate the Jacobian matr ix  for iteration number m + 1. In 
each table, the first column shows the values of c used to produce hm; each of the following four 

columns gives the corresponding minimum value of k for which the stopping criterion on top of 
the column has been satisfied (or not). 

h m : ~  

c 

10-I 
10-2 
10-3 
10-4 
10-5 
10-6 

Table 2. 

73 73 8 8 

10 11 5 8 

6 12 5 13 

6 12 6 16 

6 oo(52) 9 RT (335) 

7 16 oo(39) RT  (96) 

RT stands here for breakdown in the calculations due to singularity of the approximate Jacobian 
matrix; what  is in parentheses indicates the value of k for its occurence. Analogously, c~ stands 

for machine overflow. Note the almost uniform bad behavior with repect to the Fourier iterates; 
as a mat te r  of fact, no choice of c has been permit ted to at tain either the value k = 6 for the 
nonreduced Newton iterates or the value k = 5 for the reduced ones. This can be only partially 
explained by the fact that  when the Newton iterates approach the root, the approximation of the 
Jacobian matr ix  may tend to be numerically ill-conditioned. Besides, note tha t  for c := 10 -1,  
convergence for the nonreduced iterations is very slow. Another significant point is given by 
the comparison between the values of k for c = 10 -3 and c -- 10-4; they suggest that ,  with 
the notation in Theorem 3.12, some hm are larger than Cm. Notice also that  with c -- 10 -5 or 
c = 10  - 6 ,  the reduced Fourier iterates converge much slower than the nonreduced ones. Finally, 
note tha t  only for c : =  10 - 3  the optimal values in Table 1 for the Newton iterations are attained. 
All this suggests that  Samanskii 's choice, although analytically sound, may be numerically bad. 



h m : ~  

a 

10-1 
10-2 
10-3 
10-4 
10-5 
10-6 
10-7 

Newton I tera t ions  

Table 3. 

c*maxCIIFv"lloo,llFz"lloo) ~, m~Cll~y""llo~, I1~"'11~) 

IIFPII <  IIF  lloo<  I1"   11oo<  
80 80 8 8 

11 11 6 6 

8 8 5 5 

7 8 5 6 

7 8 5 8 

18 19 8 13 

303 303 157 157 
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In the present context, one wonders whether it may be numerically bet ter  to somehow take into 

account both  residues, i.e., at  Newton's and at Fourier's iterates. The corresponding results are 

described in Table 3. 

The situation described here has improved when compared with tha t  corresponding to Table 
2; however, it is still far from good. I t  is to be noted tha t  for the reduced iterations the behavior 
is definitely bet ter  than for the nonreduced ones. Another possibility involving the residues can 

be based on (2.4) and is described in Table 4. 

herr : 

C 

10-1  

10-2  

10-3  

10-4  

10-5  

10-6  

10-7  

Table 4. 

c ,  IIF~ m - Fxmlloo c • I I ~  m -T~m[Ioo 

134 134 9 9 

13 13 6 6 

8 8 5 5 

7 8 5 5 

6 8 5 9 

6 8 5 10 

6 208 5 52 

Table 5. 

c • I l y "  - z ' l l ~ o  ~ * l l Y "  - ~ m l l ~  

7 8 5 5 

7 8 5 5 

6 8 5 9 

6 9 5 10 

6 82 5 24 

h~q~ :~-- 

c 

10 -1 
10-2 
10-3 
10-4 
10-5 

In Table 5, we turn to the second criterion discussed in Remark 2.7; i.e., we consider hm :-- 

c * [[yrn _ xm[too" Table 5 clearly shows a more robust behavior for the discrete iterations than  
those described by the previous three tables. However, no best possible results are attained; i.e., 
no row matches the da ta  row in Table 1. Note also that ,  as with Table 2, the values c = 10 -3 and 
c = 10 -4 yield slower converging reduced Fourier iterations. Tables 2 through 4 suggest the need 
of introducing a damping element that  makes hm small when the residues are large, and keeps 
hm of the same size of the residues when they are small; here, small is intended with respect to 
working precision. The usefulness of this point of view is illustrated in Table 6. The vertical dots 
in Table 6 mean tha t  k remains constant columnwise for the corresponding intermediate values 
of c. The  described results give good evidence of the usefulness of the damping element; Table 7 
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h m : 

c 

i 0 - i  

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

10-10 

h m : =  

c 

10-1 

10-2 

10-3 

10-4 

10-5 

10-6 

10-10 

J. P. MILASZEWl(Z 

Table 6. 

min(c, max(llFy"ll~, IIFx"I I~)) mine(, max(ll:  ' ll , 

IIF ' II  IIF ' It II  kll II  kll 
11 12 7 7 

9 9 6 6 

8 8 5 6 

7 8 5 6 

7 8 5 6 

6 8 5 6 

6 8 5 5 

6 8 5 5 

Table 7. 

min(c, IlY m - z"l l~)  min(c, IlY m - ~mllo~) 

8 9 6 6 

8 8 5 6 

7 8 5 5 

7 8 5 5 

7 8 5 5 

6 8 5 5 

: : : : 

6 8 5 5 

shows that  it may yield better results in the context of Table 5, i.e., when related to the sizes of 
the enclosing intervals given by the Newton-Fourier iterates. 

FINAL REMARKS. Discrete Newton-Fourier iterations may be a useful substitute for Newton- 
Fourier iterations, especially when the Jacobian matrix is difficult to calculate. However, some 
caution should be excercised as to the choice of the step size used in the difference approxima- 
tions; the numerical results exhibited here suggest that  a reliable step size may be Hy m -- Xml[oo 

t runcated by half the working precision. 
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