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Chaos and crises in more than two dimensions
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Noisy chaotic trajectories, with finite-time Lyapunov exponents that fluctuate about zero, are basically
unshadowable@S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Phys. Rev. Lett73, 1927~1994!#. This can
occur when periodic orbits, with different numbers of unstable directions, coexist inside the attractor. The
presence of a He´non-type chaotic saddle~i.e., a nonattracting chaotic set with a structure similar to that of the
Hénon attractor! guarantees such coexistence in a persistent manner@S. P. Dawson, Phys. Rev. Lett.76, 4348
~1996!#. In this paper, we describe how these sets appear naturally in maps of more than two dimensions, how
they can be found, and what crises they produce.@S1063-651X~97!13005-7#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

The studies of chaos in low-dimensional dynamical s
tems have grown steadily during the past decades. In m
physical problems, the evolution of a~low-dimensional! dy-
namical system is given by a set of ordinary different
equations~ODE’s! for the variables that define the state
the system. For certain purposes, looking at discrete ti
provides the necessary information about the system
these cases the evolution is described by, usually nonlin
maps. Given a set of ODE’s, this can always be achie
provided that a suitablePoincarésurface of sectioncan be
found, in which case the corresponding map is called aPoin-
carémap ~see, e.g.,@3#, p. 64!. In this paper, we work with
maps which contract the phase space volume, i.e., they
dissipative. We introduce the basic definitions related
maps as dynamical systems in the next section. However
want to describe, first, the main ideas of the present wo
We refer the reader to the next section in case there is s
concept whose meaning is not very well known.

In the case of dissipative systems, one is usually in
ested in the asymptotic behavior, in particular, in what c
be observedafter a transient disappears. For this reas
most studies of chaotic dynamics have concentrated oncha-
otic attractors. Chaotic attractors always coexist withnonat-
tracting invariant sets. Moreover, in most cases, these no
attracting sets are tightly related to what can be observ
For example, chaotic attractors contain a dense set of
stable~i.e., ‘‘unobservable’’! periodic orbits@4#. These peri-
odic orbits can be used to calculate the Lyapunov expon
of a typical chaotic trajectory on the attractor@5#. The num-
ber of their expanding directions usually determines
number of positive exponents. This means that thesensitivity
to initial conditions, which is typical of chaos and is mea
sured by the Lyapunov exponents, is related to propertie
the unobservable periodic orbits. Moreover, in the case
flows, the way in which the~unstable! periodic orbits are
linked can imply that the attractor is chaotic~see, e.g.,@3#, p.
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222!. Other types of phenomena, in which nonattracting
variant sets play an important role, arecrises@6#. Crises oc-
cur when a chaotic attractor collides with an unstable p
odic orbit, in which case, the attractor either changes s
suddenly or disappears. Nonattracting sets can themselve
chaotic. Nonattracting chaotic sets also affect the observ
dynamics @7#. For example, they can generatetransient
chaos@8#, i.e., trajectories that look chaotic for a while b
finally settle down into a periodic orbit. The length of the
chaotic transients can increase dramatically with the num
of dimensions, showing the necessity of studying chao
saddles in systems with many degrees of freedom. On
other hand, the structure of both periodic@9# and chaotic@10#
nonattracting sets has been determined in real experime
proving that they leave their imprint on the observable d
namics. This shows that the study of nonattracting sets is
merely academic but it can be of important practical use

In this paper, we are mainly interested in nonattract
sets that are chaotic, in particular, in the so-calledchaotic
saddles. The most famous example of this type is the inva
ant set of the~Smale! horseshoe map@11#, which has been
‘‘a motivating example for the development of the mode
theory of dynamical systems’’~ @12#, p. 230!. The horseshoe
map is a 2D map from the unit square toR2. Its invariant set
belongs to the unit square. It is at the intersection of t
Cantor sets, one of vertical lines and the other of horizon
lines @see Fig. 1~a!#. The invariant set is a chaotic saddle.
contains a dense set of periodic orbits, with one expand
and one contracting direction, and has a Cantor set struc
along both the stable~contracting! and the unstable~expand-
ing! directions. As described later, this type of structure is
be expected in the case of 2D dissipative maps@2#. However,
as we show in this paper, other types of nonattracting cha
sets can exist in maps of slightly higher dimension, maps
have not been studied in great detail in the physics literat

In fact, the maps that have been most widely studied
one-dimensional~noninvertible maps of the interval or map
of the circle! and 2D maps~usually diffeomorphisms! @13#.
Chaos can occur in noninvertiblem-dimensional maps, with
m>1, and inm-dimensional diffeomorphisms, withm>2.
Among the dissipative systems, the He´non family
5350 © 1997 The American Physical Society
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55 5351CHAOS AND CRISES IN MORE THAN TWO DIMENSIONS
xn115r2xn
21byn ,

yn115xn , ~1!

provides a prototypical example of what can be observed
2D diffeomorphisms. Changing the values of the two para
eters,r and b, one can find stable periodic orbits, chaot
saddles, and strange attractors on which the dynamics is
otic. In the case of 2D dissipative diffeomorphisms, and,
particular, for the He´non map, these chaotic saddles have
same structure as the invariant set of the Smale horses
i.e., they are products of Cantor sets. On the other hand,
chaotic attractors of this map also contain a dense se
periodic orbits with one expanding and one contracting
rection, but they are ‘‘smooth’’ along the unstable~expand-
ing! directions@15#. The ‘‘smoothness’’ along the unstabl
directions is the basic difference between a chaotic attra
and a chaotic saddle in 2D, and it is related to what is ca
the absolute continuity of the stable foliation@17# ~p. 216!.
We show this difference, schematically, in Fig. 1, where
depict parts of two chaotic invariant sets of a 2D diffeomo
phism. The invariant set,L, in Fig. 1~a! is nonattracting~of
horseshoe type!. It is the intersection of a Cantor set of ve
tical lines and a Cantor set of horizontal lines, some of wh
are shown in the figure. The invariant set,A, in Fig. 1~b! is
an attractor~of Hénon type!. The piece we show is a Canto
set of vertical lines. All the region shown in Fig. 1~b! is
‘‘foliated’’ by the stable sets of the points inA ~i.e., by
points that approachA under forward iterations of the map!.
On the other hand, the stable set ofL is a Cantor set of
horizontal lines. While there is a nonvanishing probabil
that, by choosing an initial condition at random in the regi
shown in Fig. 1~b!, we will end up approachingA, there is a
zero probability that an analogous thing will happen w
L in Fig. 1~a!, since we would need to lie exactly on one

FIG. 1. Schematic picture of a region of a chaotic invariant
that is nonattracting~a! and of one that is attracting~b! for a 2D
diffeomorphism of the square to itself. In both pictures the horizo
tal direction is contracting and the vertical one is expanding. T
invariant set in~a! is at the intersection of a Cantor set of vertic
lines and a Cantor set of horizontal lines, some of which are sho
in the picture. The region shown of the attractor in~b! is a Cantor
set of vertical lines. Thus, the invariant set in~a! has a Cantor set
structure along the unstable direction while the one in~b! is smooth.
The horizontal lines which contain points that approach points
the invariant sets form a Cantor set in~a! while they foliate the
whole region shown in~b!. For this reason an initial condition ran
domly chosen in the region shown will approach the invariant se
~b! but not in ~a!. This shows the difference between the attrac
~b! and the nonattracting set in this case.
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the horizontal lines of the stable foliation. For this reaso
L is nonattracting whileA is an attractor. We also show
pictures of a chaotic saddle~of horseshoe type! and a chaotic
attractor of the He´non map in Fig. 2, where the different type
of structures can be observed.

In higher-dimensional maps, other types of nonattractin
chaotic sets can exist, in particular, chaotic saddles that
smooth along some unstable directions@2#. In almost all the
examples of maps that we can think of, there are invaria
manifolds ~i.e., manifolds,M , such that if we pick up an
initial condition inM all forward and backward iterations of
it stay inM ), which are of lower dimension than the whole
phase space. Typical examples are the stable manifolds
unstable periodic orbits~see the next section!. The chaotic
saddles that we describe in this paper belong to an invari
manifold of lower dimension than the phase space. Mor
over, they are chaotic attractors with a structure similar to t
Hénon attractor, if we restrict the dynamics to the invarian
manifold. However, when we look at the whole phase spac
they are not attractors, because the manifold itself is n
attracting. We call these setsHénon saddles. In @2# we de-
scribed how these He´non saddles could arise via a sequenc
of bifurcations out of unstable periodic orbits. For this reaso
we expected them to appear as often as strange attractor
maps of more than 2D. In fact, we show in this paper seve
examples of He´non saddles that are formed in this way. Al
the examples correspond to a 4D map that models a parti
lar physical system, thedouble-rotor map@19,20# ~see Sec.
III !, which has not been tailored to display this behavio
Furthermore, it has been proved that, under certain con
tions, homoclinic bifurcations~associated with orbits ho-
moclinic to fixed points with at least two unstable directions!
give rise to the formation of He´non saddles@21#, in very
much the same way as He´non attractors appear in homoclinic
bifurcations of 2D diffeomorphisms@22#. Moreover, the re-
sult in @22# states that these He´non attractors can be found,
with a nonvanishing probability, by choosing the paramete
at random. All these results reinforce our idea that He´non
saddles should be found very often in maps of more than 2

As described in@2#, the existence of a He´non saddle can
give rise to~persistent! trajectories that visit the vicinity of
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FIG. 2. An actual realization of the scheme shown in the prev
ous figure that occurs for the He´non map@Eq. ~1!# with b50.3. The
figure on the left corresponds to the piece of a chaotic saddle
r54.2 contained in 1<x<3, 0.7<y<2. The figure on the right is
the piece of an attractor atr51.2 contained in 0.7<x<1.3,
0.5<y<0.9. These figures were made using the softwareDYNAMICS

as described in@18#.
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5352 55PABLO MORESCO AND SILVINA PONCE DAWSON
periodic orbits with different numbers of unstable direction
In fact, we describe in detail an example, in Sec. IV,
which a chaotic saddle of horseshoe type, containing p
odic orbits with 1D unstable manifolds, ‘‘collides’’ with a
Hénon saddle, giving rise to an invariant set that conta
both 1D and 2D unstable periodic orbits. Again, this exam
corresponds to the double-rotor map, a map that descr
the dynamics of a simple mechanical system. Moreover
this example, if we change the parameters, a crisis occ
after which the invariant set, with its 1D and 2D unstab
orbits, belongs to the attractor of the system. This type
behavior can occur in apersistentway because the set o
points that approach the He´non saddle~its stable set! is of
larger dimension than the stable manifolds of its perio
points. As described in Sec. III, this property also allows
to find, numerically, He´non saddles that contain 2D unstab
periodic orbits~i.e., with two expanding directions! using a
technique@23# that was developed for chaotic saddles~of
horseshoe type! with only 1D unstable periodic orbits.

A trajectory that visits the vicinity of periodic orbits with
different numbers of expanding directions will have at le
one finite-time Lyapunov exponent that changes sign al
its way. If this causes the exponent to fluctuate about z
then any noise added to the trajectory~such as the one that i
unavoidable in numerical simulations! makes the noisy tra
jectory continuously unshadowable@1#. This means that
there is no continuous deformation of the noisy traject
that can reduce the noise all the way down to zero. Th
numerically generated trajectories of this type are highly
reliable. On the other hand, if the noise is intrinsic, in t
sense that is produced by variables that are left aside du
the modeling, this problem raises the concern of how va
the model itself is. Although some years ago there was so
debate around this question@24#, we think it still remains an
open problem. Fluctuating Lyapunov exponents are also
sociated to other dramatic behaviors, such as riddled ba
blow-out bifurcations, and on-off intermittency@14#.

The organization of the paper is as follows. In Sec. II,
introduce some basic definitions providing an intuitive p
ture of what they mean. In Sec. III, we describe how He´non
saddles arise via a sequence of bifurcations out of unst
periodic orbits, showing several examples in which this
realized. In Sec. IV, we comment on the crises that can oc
when there is a He´non saddle. In particular, we describe,
detail, the example of a chaotic saddle of the double-ro
map that collides with a He´non saddle. We analyze, in th
case, how the various finite-time Lyapunov exponents
have. In Sec. V, the conclusions are summarized.

II. BASIC DEFINITIONS

In this paper, a dynamical system is a map,f :M→M,
from a phase space,M, to itself. The phase space is a
m-dimensional (mD! differentiable manifold such that
point in it corresponds to one state of the real system@25#.
For the sake of simplicity, we will considerM#Rm. Let us
assume thatf is a diffeomorphism~as it is always the cas
for Poincare´ maps of smooth flows!. In such a case, an orb
is a sequence$xn%nPZ such thatxn115 f (xn). The forward
orbit is the subsequence withn>0. A subset of phase spac
A,M, is calledinvariant if it is mapped onto itself as the
.
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system evolves forward or backwards in time, i.
f n(A)#A for nPZ, where we denote byf n then-fold com-
position of f with itself, if n>0 and that of the inverse
f21, if n,0. A,M is positively invariantif f n(A)#A for
nPZ, n>0.

The simplest examples of invariant sets are thefixed
points @points x̄PM such that f ( x̄)5 x̄# and theperiodic
points @points x̄PM such that f p( x̄)5 x̄ with pPN#. An
orbit that starts at such a periodic point is periodic of per
p. Fixed points are periodic orbits of period 1. The dynam
in the vicinity of a fixed point or periodic orbit can usuall
be analyzed by linearizing the mapf p around the corre-
sponding periodic point,x̄. In this way the~local! dynamics
is given by yn115Df p( x̄)yn , where yn5xn2 x̄ and
Df p( x̄) is the derivative matrix off p at the periodic point,
x̄. According to the Hartman-Grobman theorem@12#, the
linearization provides meaningful information if the period
point ishyperbolic, i.e., if the norms of all the eigenvalues o
Df p( x̄) are different from 1. The subspace spanned by
~generalized! eigenvectors ofDf p( x̄) with norm less than 1
is called thestable subspace, Es( x̄), and the one spanned b
those with norm bigger than 1 is called theunstable sub-
space, Eu( x̄). If all the eigenvalues ofDf p( x̄) have norm
less than 1, then, the periodic point isstable@26#. Moreover,
it is asymptotically stable, i.e., there is a neighborhoodU x̄ of
x̄ such that ifxPU x̄ , thenf

pn(x)→ x̄ asn→`. On the other
hand, if there is at least one eigenvalue with norm big
than 1, then the fixed point isunstable.

Given a periodic point,x̄, of a diffeomorphism,f , there
are alsoglobal stableand unstable manifolds, Ws( x̄) and
Wu( x̄), which are as smooth asf , have the same dimensio
as the subspacesEs( x̄) andEu( x̄), respectively, and are suc
thatWs( x̄) @Wu( x̄)# is tangent toEs( x̄) @Eu( x̄)# at x̄. If x̄ is
hyperbolic, then, dim„Ws( x̄)…1dim „Wu( x̄)…5dim(M),
while Ws( x̄)5$x: f pn(x)→ x̄ as n→`% and Wu( x̄)
5$x: f pn(x)→ x̄ asn→2`%. In this case, the stable and un
stable manifolds are the set ofall points that tend to the
periodic point, x̄, under forward or backward iterations o
f p, respectively. These manifolds are invariant sets wh
organization in phase space provides information about
dynamics of the system. In particular, if there is a hyperbo
fixed point,x̄, and we pick up an initial condition sufficiently
close toWs( x̄), the trajectory will approachx̄ for a while
until it will eventually move to some other place, ‘‘follow
ing,’’ perhaps, other manifolds. The stable and unsta
manifolds of a periodic point,x̄, can also intersect at point
other than x̄, which are calledhomoclinic points. A ho-
moclinic point,q, is such thatf pn(q)→ x̄ as n→6`. The
corresponding orbit is called a homoclinic orbit. The ex
tence of homoclinic orbits gives rise to very complicat
dynamics. In particular, they imply the existence of invaria
sets similar to those of the Smale horseshoe~see, e.g.,@12#,
p. 252!. Given two fixed~or periodic! points,x1 andx2, there
can be points qPWs(x1)ùWu(x2), or qPWu(x1)
ùWs(x2), which are calledheteroclinic, and are also assoc
ated to complicated dynamics.

In the preceding section, we talked aboutattractors. An
attractor is the invariant set on which the observa
asymptotic evolution ‘‘occurs.’’ More precisely, an attract
is a closed invariant set,APM, with a dense orbit and with
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55 5353CHAOS AND CRISES IN MORE THAN TWO DIMENSIONS
the property that it has an open neighborhood,U.A, which
contains a subset,U1 (U1,U), of positive Lebesgue mea
sure, such that, ifxPU1 , then f n(x)→A as n→` @12#.
This means that, if one chooses an initial condition at r
dom in U, then there is a nonvanishing probability that
forward orbit will approach the attractor@as in the case o
Fig. 1~b!, for example#. Numerically generated pictures o
attractors are based on this fact: an initial condition is pick
up at random and points of the forward orbit, withn big
enough, are drawn. Provided that this is done with no err
one obtains a picture which, to the eye, is indistinguisha
from the attractor. The set of points whose forward orb
approach the attractor is called thebasin of attraction.

Asymptotically stable fixed points or periodic orbits a
examples of attractors. As already mentioned, attractors
also be strange and the dynamics on them can be chaot
chaotic attractoris an attractor that has a dense set of~un-
stable! periodic points and exhibits sensitive dependence
initial conditions@4#. This means that two initial conditions
which are very close to one another, generate forward or
that diverge~exponentially! from one another. One way o
characterizing this sensitivity is by means of theLyapunov
exponents. These numbers quantify the average rate of
pansion and contraction along the different directions
phase space, as the system evolves. Lyapunov expon
only exist for pointsxPM which are calledregular @27#. A
point xPM is regular if there are number
l1(x).l2(x).•••.ls(x) and a decomposition of the tan
gent space ofM at x, TxM, of the form TxM5E1(x)
% •••%Es(x), such that

lim
n→`

1

n
loguu„Df n~x!…uuu5l j~x!, ~2!

for everyuPEj (x), uÞ0 and every 1< j<s @27#. The num-
bers, l j (x), are the Lyapunov exponents and they a
unique. The decomposition in theeigenspaces Ej (x) is also
unique. We call afinite-time~or time-T) Lyapunov exponent
the numberl j , obtained as in Eq.~2!, but for n finite
(n5T). A result due to Oseledec@28# states that almost ev
ery point in an attractor is regular. Moreover, all ‘‘typic
points’’ in a given attractor have the same Lyapunov ex
nents@29#. For this reason one associates the Lyapunov
ponents with the attractor. A positive Lyapunov expone
means that there is an expanding direction, and theref
sensitivity to initial conditions and chaos. The value of
positive Lyapunov exponent provides an indication of h
much two nearby orbits separate in time. Chaotic saddles
invariant sets which have a dense set of periodic orbits w
at least 1D stable manifolds, and display sensitive dep
dence on initial conditions, i.e., they have a positi
Lyapunov exponent.

Finally, we will call aHénon attractorany chaotic attrac-
tor such that all its periodic orbits are 1D unstable, and tha
smooth along the unstable manifolds@i.e., that is similar to
the chaotic attractors found for the He´non family ~1!#. We
will call a Hénon saddlea chaotic saddle that belongs to a
invariant manifold of lower dimension than the phase sp
and such that, on this manifold, it is a He´non attractor. While
a typical trajectory on a He´non attractor has only one pos
tive Lyapunov exponent, one on a He´non saddle has at leas
-
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two. In the latter case, the eigenspaces,Ej , associated to one
of the positive Lyapunov exponents are always tangent to
invariant manifold,N, on which the saddle is attracting
while those associated to the other positive exponents
transverse to it. All the examples we show in this paper ha
only two positive Lyapunov exponents, one with its eigen
pace tangent toN and the other one with its eigenspac
transverse toN.

III. FROM BIFURCATIONS OF PERIODIC ORBITS
TO HÉNON SADDLES

Let us recall how a He´non attractor may appear via
sequence of bifurcations, as a parameter is varied. For
purpose, let us consider anmD diffeomorphism that depends
on a parameter,r. For some value ofr, e.g.,r1, the attractor,
A1, is a stable fixed~or periodic! point, x̄. At r5r1, the
mD stable manifold ofx̄ is the basin of attraction of the
attractor @see Fig. 3~a!#. Let us call this basinB1. At
r5r1* , the fixed point undergoes a period doubling bifurc
tion and becomes~1D! unstable. Immediately after the bifur
cation, at r5r2.r1* , x̄ has a 1D unstable and a
(m21)-dimensional stable manifold. Meanwhile, the ne
attractor,A2, is a period 2 orbit whose basin of attractio
B2, is such that, at least part of it, is a smooth deformation
B1 @30# @see Fig. 3~b!#. At some other parameter value
r5r2* , the period 2 orbit becomes 1D unstable and the n

FIG. 3. A schematic picture of how a He´non attractor can arise
via a sequence of bifurcations. Atr5r1 the attractor is a stable
fixed point whose stable manifold is the basin of attraction,B1 ~a!.
At r5r1* , r1,r1*,r2, x̄ suffers a period doubling bifurcation an
a period 2 orbit is born. Atr5r2 the period 2 orbit is stable~it is
the new attractor! while x̄ is unstable. We show its 1D unstabl
manifold ~b!. The sequence of bifurcations goes on, until atr5rc

the attractor is chaotic, contains all the periodic orbits that w
involved in the sequence of period doubling bifurcations, which
r5rc are 1D unstable, and is smooth along the unstable manifo
~c!. At least part of the basin of attraction,Bc , at r5rc , comes
from B1 by a smooth deformation.



ti

m

n
h

a

h

o

D

it,
of
own

of
ical
ex-
e
it,
-

ons

-
of
f
a
nd

d
y

ses,
he
v-
s as

h

a
d
e
it

o
d
s

l
o

th

ap.

5354 55PABLO MORESCO AND SILVINA PONCE DAWSON
attractor is a period 4 orbit instead. The new basin,B3, is
such that, at least part of it, is a smooth deformation ofB2.
This picture goes on until, eventually, we have a chao
attractor,Ac @see Fig. 3~c!#. We do not want to describe
everything that happens for all parameter values, but at so
value,r5rc , there is a He´non attractor that contains all the
1D unstable periodic orbits that suffered the period-doubli
bifurcations just described. This attractor is the closure of t
unstable manifold ofx̄ @16# and it has one positive Lyapunov
exponent. As before, at least part of the basin of the He´non
attractor,Bc , ‘‘comes from’’ a smooth deformation ofB1.
We show a schematic picture of this process in Fig. 3, and
actual realization, for the He´non map, in Fig. 4.

Let us consider, now, a similar picture, but one in whic
the primordial fixed point,x̄, is 1D unstable~and hyperbolic!
from the very beginning. Therefore, the stable manifold
x̄ atr5r1 is an (m21)-dimensional invariant manifold. Let
us call this manifoldB1. OnB1, the fixed point,x̄, is attract-
ing. Let us suppose that, atr5r1* , x̄ suffers a period-
doubling bifurcation, immediately after which it becomes 2
unstable, while a 1D unstable period 2 orbit is born. Th

FIG. 4. An actual realization of the scheme described in t
previous figure that occurs in the He´non map @Eq. ~1!# with
b520.3. The figure on the upper left shows the attractor
r51.2 and~part of! the basin boundary. The attractor is a fixe
point indicated with a cross. The figure on the upper right corr
sponds tor51.8. At this value the attractor is a period 2 orb
~shown with crosses!. Also shown is the period 1 orbit which was
attracting atr51.2 ~indicated with a cross surrounded by a circle!,
its unstable and part of its stable manifold. The unstable manif
has two branches, each of which approaches a point of the perio
orbit. As before, part of the attractor’s basin boundary is al
drawn. The figure on the lower-left corresponds tor52.02. Here
we show the same period 1 orbit, its stable and unstable manifo
and part of the basin boundary. The attractor in this case is cha
~a Hénon attractor!. It is shown in the figure on the lower-right. We
can see that it is indistinguishable from the unstable manifold of
period 1 orbit. In all figures22.5<x<2.5 and22.5<y<2.5.
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(m21)-dimensional stable manifold of the period 2 orb
immediately after the bifurcation, is a smooth deformation
B1. Basically, the same sequence of pictures as those sh
in Fig. 3 hold in this case, but on the (m21)-dimensional
invariant manifold that, atr5r1, is the stable manifold of
x̄. In this case, the invariant set, atr5rc , is a Hénon saddle:
a chaotic saddle that is attracting on an invariant manifold
lower dimension than the full phase space, and whose typ
trajectories have two, rather than one, positive Lyapunov
ponents. This invariant manifold is a ‘‘remnant’’ of th
stable manifold of the primordial unstable periodic orb
and, on this invariant manifold, the He´non saddle is attract
ing. In fact, we have found several examples of He´non
saddles that arise in this way, via a sequence of bifurcati
out of unstable periodic orbits, in the double-rotor map.

The double-rotor map@19,20# is the return map of a sys
tem describing the evolution of two connected rods
lengthsl 1 and l 2, moving on a plane under the effect o
d kicks and damping@19,20#. One of the rods rotates about
fixed pivot, while the other one rotates around the other e
of the first rod. There are masses,m1 andm2, at the free ends
of both rods, and there is friction at both pivots~see Fig. 5!.
d kicks of amplituder are applied to one end of the secon
rod periodically, with periodT. Given this system, it is eas
to obtain a map, relating the angles (x[u, y[w) and veloci-
ties (z[u̇, w[ẇ) immediately after the (n11)th kick with
those immediately after thenth one@19#. This map is of the
form

xn115xn1M11zn1M12wn , mod~2p!,

yn115yn1M21zn1M22wn , mod~2p!,

~3!

zn115
rl 1

I 1
sinxn111L11zn1L12wn ,

wn115
rl 2

I 2
sinyn111L21zn1L22wn ,

whereMi j andLi j are elements of constant 232 matrices,
L,M , which depend on the lengths of the rods, the mas
the period of the kicks, and the friction coefficients at t
pivots @20#, andI i are the moments of inertia about the pi
ots. We keep all the parameters fixed at the same value
those used in@20#, with the exception ofr, which we vary
for different numerical experiments.
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FIG. 5. The physical system that leads to the double-rotor m
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55 5355CHAOS AND CRISES IN MORE THAN TWO DIMENSIONS
In @2# we could follow the first steps of a period-doublin
cascade out of an unstable periodic orbit of~3!. This led us to
think that this map was a good candidate for the formation
Hénon saddles. In fact, using thePIM-triple method@23,18#,
as described in the Appendix, we have been able not onl
find Hénon saddles in this map, but also to follow all th
sequence of bifurcations out of an unstable periodic orbit
lead to the formation of the saddle. In this way, we cou
generate bifurcation diagrams of nonattracting invariant s
as functions ofr, for the double-rotor map. We show a
example in Fig. 6.

The invariant sets shown in Fig. 6 are attracting inside
invariant 3D manifold,N ~which also changes withr). The
invariant set, atr56.40, is a 1D unstable and hyperbol
period 2 orbit,x̄. It is born at a ‘‘saddle-node’’ bifurcation, a
r'6.36. Actually, immediately after this bifurcation, non
of the new periodic orbits is stable: one is 1D unstable wh
the other one is 2D unstable. The invariant manifol
N~r!, on which the sets shown in Fig. 6 are attracting, co
from a smooth deformation ofWs( x̄). At r56.44, there is no
longer an invariant set that is attracting inN. The Hénon
saddle suffers a crisis atr'6.4395, when it collides with a
2D unstable periodic orbit. For larger values ofr, a
horseshoe-type chaotic saddle, with 2D unstable manifo

FIG. 6. ~a! Bifurcation diagram of invariant sets of the doubl
rotor map that are nonattracting in the full phase space, but
attracting inside an invariant 3D manifold. All points in the figu
have been obtained using the PIM-triple method.~b! Blowup of the
figure in ~a! in which the structure of windows is evident. Clearl
the diagrams are completely similar to those obtained for attrac
f
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s,

n

e
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e

s,

remains in the region previously occupied by the He´non
saddle. We show in Fig. 7 the two largest Lyapunov exp
nents associated with the invariant sets of Fig. 6~a!. There,
we see that there is always one positive exponent and a
ond one, that becomes positive when the invariant set
comes chaotic. Therefore, the second Lyapunov expone
associated to the expanding direction that is contained
N, while the first one corresponds to the expansion tra
verse to this manifold. As explained in the Appendix, t
fact that the expansion transverse toN is stronger than the
one alongN, for all values ofr, allowed us to obtain this
diagram using the PIM-triple method.

We show in Fig. 8 a projection of the He´non saddle onto
the x-z plane atr56.439. There, we can observe that t
structure is similar to that of a He´non attractor~compare with
Fig. 2!. It is smooth along one unstable direction and it ha
Cantor set structure along the stable one.

As mentioned before, the PIM-triple method was orig
nally developed for chaotic saddles of horseshoe type w
only one unstable direction@23#. However, it is based on a
series of assumptions that are fulfilled by certain He´non
saddles with two positive Lyapunov exponents. The meth
consists, first, of obtaining a point arbitrarily close to t
stable set of the saddle. This first part of the method c
verges under two assumptions. The first assumption is
we can generically intersect the stable set of the saddle
a segment. In anm-dimensional phase space, a He´non saddle
with two positive Lyapunov exponents is attracting in
(m21)-dimensional invariant manifold. Therefore, simp
dimensional arguments show that a segment can generi
intersect such a manifold, and thus, the stable set of
saddle~see the Appendix!. Moreover, the fact that we could
find a nonattracting chaotic set with two expanding dire
tions by ‘‘probing’’ the space with a segment is,per se, an
indication that the stable set of the saddle is of~at least!

re

s.

FIG. 7. The two largest Lyapunov exponents associated with
invariant sets shown in Fig. 6~a! as functions ofr. There is always
one positive exponent, which means that the sets are nonattrac
and a second one that becomes positive when the invariant se
comes a He´non saddle.
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5356 55PABLO MORESCO AND SILVINA PONCE DAWSON
(m21) dimensions, i.e., a He´non saddle. The second a
sumption of the PIM-triple method is that the intersection
the segment and the stable set consists of disconne
points. Although the invariant manifold, and thus the sta
set of the saddle, can fold onto itself, there will always
gaps in between foldings, so that the intersection of
manifold with the segment will~generically! be at most a
Cantor set. Once a point arbitrarily close to the stable se
found, a chaotic orbit, ‘‘almost on’’ the saddle, is generat
Having an invariant set with two expanding directions intr
duces new effects in this case, which are not discusse
@23#. As explained in more detail in the Appendix, we w
generate such an orbit if the expansion transverse to the
variant manifold,N, is stronger than the one alongN. All the
assumptions of the PIM-triple method also hold for 1D u
stable hyperbolic orbits. This is the reason why we co
produce the whole bifurcation diagram of Fig. 6 using th
method.

IV. CRISES INVOLVING HE´NON SADDLES
IN THE DOUBLE-ROTOR MAP

As mentioned in the preceding section, a segment
generically intersect the stable set of a He´non saddle with
two positive Lyapunov exponents. Actually, any 1D ma
fold can do it, since such a saddle is attracting on
(m21)-dimensional manifold~as before,m is the phase
space dimension!, in particular, the unstable manifold of
1D unstable periodic orbit~a periodic orbit with one expand
ing direction!. Suppose that the periodic orbit is hyperbol
Then, its stable manifold has (m21) dimensions. Therefore
it can be generically intersected by a manifold of one
more dimensions, in particular, the unstable manifold of a
periodic orbit in the He´non saddle. Thus, as described in@2#,
in such a case, it is possible to have orbits that repeat
visit the vicinity of periodic points with different numbers o

FIG. 8. A plot ofz vsx for a trajectory on a He´non saddle of the
double-rotor map withr56.439. Inset: a blowup of the region in
dicated in the figure.
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unstable directions. Furthermore, it was mentioned in@2# that
these orbits could be created as a critical parameter va
was approached, at which new intersections between the
evant manifolds were created. In fact, we show in this pap
an example of this type of crisis that occurs in the doub
rotor map.

The example we will show is a little bit more compli
cated, since we could identify three nonattracting sets t
seem to play a role in the process. We show in Fig. 9~a! a
picture of a chaotic saddle of horseshoe type, for the doub
rotor map withr55.28. The picture is actually a projection
of the saddle on thex-z plane, which was obtained using th
PIM-triple method. All the periodic orbits in this saddle hav
1D unstable manifolds~at least, all the ones that we looke
at!. For this reason, typical trajectories on the saddle ha
only one positive Lyapunov exponent. Moreover, the dist
bution of finite-time Lyapunov exponents is peaked arou
its mean value, as may be observed in Figs. 10~a! and 10~c!.
We could follow this chaotic saddle for quite a long interv
of parameter values. For 5.28<r<5.47, it coexists with~at
least! two Hénon saddles with two positive Lyapunov expo
nents, i.e., saddles in which all periodic orbits have two u
stable directions. These two He´non saddles are related by
symmetry transformation. We show a projection of them,
r55.28, in Fig. 9~b!. The distribution of the first and secon
finite-time Lyapunov exponents of this saddle are also sho
in Figs. 10~a! and 10~c!. At r5r* , with 5.47,r*,5.49, the

FIG. 9. ~a! A projection of a horseshoe saddle of the doubl
rotor map atr55.28. All the periodic orbits that we looked at in
this saddle were 1D unstable.~b! Similar to ~a! but for two Hénon
saddles atr55.28. One of them is the set on the top, the other o
the set on the bottom. They are related by a symmetry transfor
tion. All the periodic orbits that we looked at in these saddles we
2D unstable.~c! Similar to ~a! but for another horseshoe saddle
r55.40. There is also another saddle symmetrically conjugated
this one at the bottom, which we have not drawn.~d! A nonattract-
ing invariant set atr55.49 that contains both 1D and 2D unstab
periodic orbits that seems to contain the saddles in~a!, ~b!, and~c!.
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FIG. 10. Normalized histograms of the first,l1 @~a! and~b!#, and second,l2 @~c! and~d!#, finite-time Lyapunov exponents of the saddle
in Fig. 9. The lightest columns in~a! and~c! correspond to the horseshoe saddle in Fig. 9~c!, the intermediate ones to the one in Fig. 9~a!,
and the darkest ones to the He´non saddle in Fig. 9~b!. The histograms in~b! and~d! correspond to the nonattracting invariant set of Fig. 9~d!.
All histograms are normalized@i.e.,N(l) is the fraction of trajectories with that value ofl#, and have been done over a total ofN trajectories
of length 50 withN5700 for the He´non saddle and the postcrisis invariant set,N52900 for the saddle in Fig. 9~c!, andN55800 for the one
in Fig. 9~a!.
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horseshoe saddle suddenly enlarges. After this crisis, u
the PIM-triple method, we find a nonattracting chaotic
that contains both 1D and 2D unstable periodic orbits.
show a projection of this set in Fig. 9~d!. Comparing Figs.
9~a!, 9~b!, and 9~d!, it looks like the new invariant set ‘‘con
tains’’ both the horseshoe and the He´non saddles that existe
before the crisis. Actually, we have found that there is
other horseshoe saddle that also plays a role in the proc
We show a projection of this saddle in Fig. 9~c!, at
r55.40. Our simulations indicate that~a smooth deforma-
tion of! all three saddles are contained in the invariant se
Fig. 9~d!. Although we cannot prove this, we have check
numerically that a typical orbit on the postcrisis invariant
comes within a distance that is of the order of 431022 from
certain periodic orbits that belonged to the precrisis sadd
We conjecture that the unstable set of the He´non saddle in-
tersects the stable set of the horseshoe saddle of Fig. 9~a!, at
r>5.28, because typical trajectories, that start close to
Hénon saddle, spend a long time close to the horseshoe
before they eventually land on the attractor of the syst
~which, for r55.28, is a period 2 orbit!. The simulations
suggest that, at some parameter value,r** ,
5.28,r** ,5.49, the horsehoe saddles of Figs. 9~a! and 9~c!
ng
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-
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form one~indecomposable! invariant set and that, after thi
happens, the 1D unstable manifold of some of the perio
orbits in this set intersects the stable set of the He´non saddle.
Although we cannot follow numerically all the sequence
events that takes place for 5.28,r,5.49, we can conclude
that, atr>5.49~i.e., after the crisis!, there is an invariant se
that contains both 1D and 2D unstable periodic orbits. Thi
reflected in the finite-time Lyapunov exponents, whose d
tributions we show in Fig. 10. Figure 10~a! contains histo-
grams for the first finite-time exponents of the horsesh
saddle atr55.28, the other horseshoe saddle atr55.40
~light grey!, and the He´non saddles atr55.28 ~dark grey!.
Figure 10~b! contains a similar histogram, but for the post
risis invariant set~at r55.49). Figures 10~c! and 10~d! are
similar to Figs. 10~a! and 10~b!, but for the second Lyapunov
exponent. There, we observe that the distribution of the p
crisis second Lyapunov exponent is spread over both p
tive and negative values. This is an indication that there
regions where there are two expanding directions~which are
close to the 2D unstable periodic orbits!, while there are
others where there is only one~which are close to the 1D
unstable periodic orbits!. Furthermore, we have found sev
eral 1D and 2D unstable periodic orbits that, within nume
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5358 55PABLO MORESCO AND SILVINA PONCE DAWSON
cally accuracy, seemed to belong to the invariant set of
10~d!. On the other hand, both postcrisis distributions lo
like a composition of the previous ones, as those encount
in other types of crises@31#. This reinforces the idea that th
postcrisis invariant set contains the horseshoe and the H´non
saddles. We think that this is the reason why there are
and 2D unstable periodic orbits inside the same saddle
r55.49. Furthermore, using the formulas obtained in@32# to
estimate the dimension of the horseshoe saddle,Dh , at
r55.43~when both horseshoe saddles seem to be part o
same invariant set! and of the He´non stable set,Ds , we
obtain Dh'1.997 andDs'3.5. Thus, we expect them t
intersect, generically, in the 4D phase space of the dou
rotor map.

We could follow the invariant set~with 1D and 2D un-
stable periodic orbits! up tor'6.85. At this parameter value
the attractor of the map suffers a crisis, after which it in
creases significantly in size. Our numerical calculations in
cate that the invariant set we followed is inside the attrac
after this crisis. Furthermore, as shown in@2#, after the crisis,
the second finite-time Lyapunov exponent of the attracto
spread over both positive and negative values. Also in
case, we made pictures, equivalent to those in Fig. 10,
taining strikingly similar results. We then conclude that it
the presence of the He´non saddle that is ultimately respon
sible for the coexistence of 1D and 2D unstable perio
orbits inside the same chaotic attractor.

V. CONCLUSIONS

We have studied various types of nonattracting cha
sets in maps of more than 2 dimensions, maps that have
been studied very often in the physics literature. We h
shown that, in this kind of maps, both chaotic saddles
horseshoe type and He´non saddles can exist. He´non saddles
are nonattracting chaotic sets that are He´non attractors when
the dynamics is restricted to an invariant manifold of low
dimension than the phase space. This means that they
smooth along one unstable direction, while chaotic sadd
of horseshoe type are not~they are products of Cantor sets
products of Cantor sets and isolated points!. Typical trajec-
tories on He´non saddles have at least two positive Lyapun
exponents, while there are horseshoe saddles with only
positive Lyapunov exponent.

We have used the PIM-triple method to obtain numeri
trajectories on both types of chaotic saddles. Although
PIM-triple method was originally developed for saddles
horsehoe type with only one unstable direction, we ha
shown, in this paper, that it can also be used for He´non
saddles such that the strongest unstable direction is tr
verse to the manifold on which the saddle is attracting.
fact, we have shown that, using this method, we can follo
whole sequence of bifurcations on this invariant manifo
that eventually gives rise to a He´non saddle. All the ex-
amples shown in this paper correspond to the double-r
map @19#, a 4D map that describes the simple mechan
system shown in Fig. 5. As far as we know, this is the fi
time that a He´non saddle and all the bifurcations that lead
its formation are obtained numerically in any diffeomo
phism. Using the PIM-triple method we have also fou
g.
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saddles of horseshoe type with one unstable direction, in
double-rotor map.

Invariant sets that are not attracting have important effe
on the observable dynamics@7#. In particular, He´non saddles
can give rise to the existence of invariant sets that con
periodic orbits with different numbers of expanding dire
tions. Moreover, these invariant sets can exist for a wh
range of parameter values, i.e., theypersist. We have shown
an example of how an invariant set of this type can exist, d
to the presence of a He´non saddle, for the double-rotor ma
In the example, there is a crisis at which the unstable ma
fold of a periodic orbit, that belongs to a horseshoe sad
intersects the stable set of the He´non saddle. After this crisis
a new invariant set, containing periodic orbits with one a
two expanding directions, exists. This becomes evident w
the distribution of the precrisis and postcrisis finite-tim
Lyapunov exponents is studied. The distribution of the s
ond Lyapunov exponent is spread over both positive a
negative values after the crisis. It is interesting to note t
this invariant set is incorporated into the attractor at a lar
parameter value. After this, the distribution of the seco
finite-time Lyapunov exponent of a typical trajectoryon the
attractor is also spread over positive and negative values

In fact, as mentioned in@2#, typical trajectories that visit
the vicinity of periodic orbits with different numbers of ex
panding directions have finite-time Lyapunov exponents t
change sign along the orbit. If this causes the exponen
fluctuate about zero, then any noise added to the trajec
~such as the one that is unavoidable in numerical simu
tions! makes the noisy trajectory basically unshadowable@1#.
For this reason, numerically generated trajectories of
type are highly unreliable. On the other hand, if the noise
intrinsic, then the meaning of the model is at stake. Th
behaviors can be due to the presence of a He´non saddle.
Furthermore, He´non saddles are generically formed at certa
types of homoclinic bifurcations in diffeomophisms of mo
than two dimensions@21#. These reasons show the impo
tance of studying higher-dimensional maps, He´non saddles,
and the new type of dynamical behaviors they can give
to.
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APPENDIX

The PIM-triple procedure for finding nonattracting invar
ant sets,S, and, in particular, chaotic saddles, can be divid
into two steps@23#. The first one~the static problem! consists
of finding a segment,I 0, that is as small as we want and th
is as close as we want~always within numerical accuracy! to
a point in the stable set ofS, Ws(S). In order to do this, we
first choose a subset of phase space,R, called therestraining
region, which we think contains the invariant nonattractin
set,S, but no attractors.R can be multiply connected, bu
there are always open sets entirely contained in it. ThusR
also contains smooth subsets ofWs(S). For example, sup-
pose that we want to obtain the invariant set of the horses
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55 5359CHAOS AND CRISES IN MORE THAN TWO DIMENSIONS
map in the unit square.R can either be the unit square or
can be two horizontal or two vertical stripes in which t
invariant set is entirely contained~see, e.g.,@12#, p. 230!. In
either case, a set of~horizontal! segments contained in th
stable manifold ofS will be insideR. AfterR is defined, we
choose a segment,I 08,R, which, for the method to work
must intersectWs(S) transversally. Now, this will occur ge
nerically if the dimension ofWs(S) is big enough, in par-
ticular, if dim„Ws(S)…112m>0, wherem is the phase
space dimension. So, by trial and error, we will generica
find such an intersection, provided th
dim„Ws(S)…>m21. This will occur, for example, in the
case of the horseshoe map already mentioned, sincem52
andWs(S) is a Cantor set of 1D manifolds~horizontal lines!.
The same will happen for any value of the phase space
mension,m, if Ws(S) is the union of (m21)-dimensional
manifolds, as in the case of a horseshoe-type invariant
with only one unstable direction. Now, in order to find a
arbitrarily small segmentI 0,I 08 that intersectsWs(S), the
method works under the assumption that the intersec
consists of disconnected points~it has been proved in@23#
that it converges in this case!. In particular, it works for the
horseshoe map since, in that case, the intersection will b
Cantor set@unless the segment is exactly horizontal and
contained inWs(S), but the probability that this occurs in th
general case is zero#. Now, Hénon saddles have at least tw
positive Lyapunov exponents, and thus, at least two expa
ing directions. Why may the method apply? Let us consi
a Hénon saddle,S, in anm-dimensional phase space, wi
two expanding directions. Such a saddle is attracting in
(m21)-dimensional invariant manifold. Therefore,Ws(S)
will generically intersect transversally a~1D! segment. On
the other hand, although the invariant manifold, and th
Ws(S), can fold onto itself, there will always be gaps
e
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between foldings, so that the intersection of the manif
with a segment that intersects it transversely can be at mo
Cantor set. This means that we can solve the static prob
for a Hénon saddle using the PIM-triple method.

Once the static problem is solved,I 0 is iterated forward in
time by the map,f . Given that I 0 is sufficiently small,
f (I 0) will be another segment,I 18 , typically longer thanI 0.
In the case of only one positive Lyapunov exponent,I 18 will
be better aligned along the expanding direction thanI 0 and
will also intersectWs(N) transversally. The method, then
proceeds as in the previous step: a very small segm
I 1,I 18 is found that also intersectsWs(N) transversally. All
these steps are repeated so that a sequence of segmenI 0,
I 1, f (I 0), I 2, f (I 1), f 2(I 0),•••, I n, f (I n21), f n(I 0), is
obtained, all of which intersectWs(S) transversally. It can be
proved that there is a forward orbit,$xi% i>0 in Ws(S), such
that the distance betweenI i andxi is very small,; i<n and
very largen @23#. Since an orbit inWs(S) will approachS as
n→`, neglecting the first segments, we get, by this pro
dure, an approximation of an orbit inS. Furthermore, if the
segments are sufficiently small, then a plot of the seque
I 0, I 1 , . . . ,I n would be indistinguishable from the real tra
jectory made out of points. In the case of the He´non saddle,
since there are two expanding directions, the sequenc
segments will tend to align along the most unstable directi
Therefore, the variousI i will intersect the invariant manifold
on which S is attracting transversally only if the stronge
expanding direction is also transverse to this manifold. U
der such condition, the PIM-triple method can be applied
obtain Hénon saddles with two positive Lyapunov exp
nents. Moreover, the fact that we indeed find an invariant
with two positive Lyapunov exponents by ‘‘probing’’ th
space with a segment is in itself proof that its stable set i
least (m21)-dimensional.
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