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Self-replicating spots in reaction-diffusion systems
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In a recent article@Phys. Rev. Lett.72, 2797~1994!# we analyzed the phenomena of self-replicating spots in
the Gray-Scott model. In this article we present those results in detail and generalize them to a class of models
that derives from our heuristic explanation of spot replication.@S1063-651X~97!00107-4#

PACS number~s!: 82.40.Ck, 87.15.Da
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I. INTRODUCTION

In this article we discuss the self-replicating spot, a p
ticlelike phenomenon that occurs in reaction-diffusion~RD!
systems@1#. The spots consist of localized regions in whi
the concentrations of the reactants differ from the surrou
ing concentration fields. They grow, reaching a critical s
at which time they divide in two. The two resulting spo
again grow and divide. This process, which is visually sim
lar to cell division, continues indefinitely. The long-time b
havior depends on the precise values of the external con
parameters, but typically consists of a chaotic ‘‘soup’’
which many spots compete for resources as illustrated in
1. Those spots that find adequate resources continue to
and divide. Those that are unable to find adequate resou
decay into the background. The spots observed in@1# were
found during an attempt to model labyrinthine patterns in
ferrocyanide-iodate-sulfate~FIS! reaction @2#. Since then,
replicating spot patterns have been observed both num
cally and experimentally in the FIS reaction@3,4#.

There are obvious differences in the Gaspar-Showa
model of the FIS reaction@5# and of the models discussed b
us and others. This fact suggests that replication is a gen
feature characterizing a broad class of reaction-diffusion s
tems. In@6#, we presented some arguments in support of
proposition. These arguments included both a heuristic
scription of the process of replication and demonstrations
analytic features common to several related model RD s
tems. It turns out that replication is more general than
analysis accounts for. Nevertheless, we think it worthwh
to spell out the details of the theory presented in@6#.

We remark here that various aspects of the replica
phenomenon have been discussed by other authors@7,8#.
Kerner and Osipov have a large body of work on larg
amplitude dissipative structures including an analysis of
static division of one-dimensional pulses as the system
is changed. Gurevich and Mints have a body of work
replication of thermal hot spots in composite supercondu
ors. In the article by Petrov, Scott, and Showalter replicat
561063-651X/97/56~1!/185~14!/$10.00
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is described in a manner qualitatively consistent with o
analysis. The article by Doelman, Kaper, and Zegeling
complementary to and is of the greatest relevance to
present analysis. They use geometric singular perturba
methods to prove the existence of ‘‘a plethora of perio
stationary solutions’’ to the Gray-Scott model. They al
prove the nonexistence of any rigidly traveling spot so
tions: traveling spot solutions deform as they travel. This
consistent with our analysis in which the traveling spot s
lutions ultimately undergo an instability that leads to rep
cation.

Our main goal here is to present in detail and to gene
ize the asymptotic analysis that was sketched in@6#. Section
II introduces the Gray-Scott model and expands upon
qualitative picture of spot replication presented in@6#. Sec-

FIG. 1. Snapshot of the replicating spot phenomenon in t
space dimensions~from two-dimensional simulations described
@1#!.
185 © 1997 The American Physical Society
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186 56REYNOLDS, PONCE-DAWSON, AND PEARSON
tion III is devoted to developing in detail the one
dimensional asymptotic analysis of the Gray-Scott mo
that we sketched in@6#. Section IV will generalize our scal
ing results to kinetics other than the ones considered in d
in Sec. III. In Sec. V we summarize the main points of th
paper.

II. THE GRAY-SCOTT MODEL

Both the asymptotics and the qualitative arguments w
be developed in relation to the Gray-Scott model. The mo
@9# is given by

]u

]t
5¹2u2uv21A~12u!,

~1!

]v
]t

5d2¹2v1uv22Bv.

Hereu(x,t) andv(x,t) are scalar fields representing the co
centrations of two chemical species. The ratio of their dif
sion coefficients isd2 andA andB are parameters describin
a feed from an external reservoir with the fixed concen
tionsu51 andv50. We now present the heuristic picture
spot replication that describes the behavior observed in
~1!.

We begin by considering a region of ground where so
flammable liquid fuel (u) is continuously seeping in from
reservoir maintained at unit concentration. This effect
modeled by the termA(12u) in Eq. ~1!. This diffuses rap-
idly relative to the temperaturev. If the fuel is depleted
locally it will diffuse in from the sides to bring the level bac
up. We refer to this effect as the ‘‘lateral’’ or ‘‘diffusive’’
feed.

We now consider the effect of increasing the fuel’s te
peraturev, which at equilibrium is a constant, say,v50.
The fuel seeps up so slowly~i.e.,A is small! that if the entire
domain is ignited the fuel will flare up and burn out.~A
mathematical model would have only one fixed point: fu
concentration equal to 1 and temperature equal to 0.! The
kinetics of the fuel and fire are excitable, i.e., if the fuel
warmed by the sun, it will not do anything special, relaxi
back to its equilibrium value when the sun goes down, bu
it is perturbed by a blowtorch, we expect it to start burni
and the temperature to increase~which is to say that the
system exhibits autocatalytic behavior!. Such behavior is, for
example, given by the local kineticsu̇52uv21A(12u),
v̇5uv22Bv.

Finally, any fire that starts will spread diffusively acro
the field. We will require that the diffusion constant for th
process is much smaller than that of the fuel spreading;
this reason, we include the small parameterd2 in front of the
diffusion term v̇5d2¹2v1uv22Bv.

Consider what happens when a localized region of
fuel field is ignited. The fire will slowly begin to spread, un
it is consuming all the fuel it can get. As the fuel is deplet
in the burning region, it creates a gradient in the fuel co
centration, which results in the fuel diffusing into the bur
ing spot from the sides. Note that the lateral feed is esse
since the external feed is not sufficient by itself to keep
fire burning. In essence, the nonburning regions around
l
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spot act as integrators of the feed, channeling the collec
fuel into the spot. Thus every spot has a quiescent z
around it, which collects the fuel required to keep it burnin

Consider what occurs as the strength of the external f
is varied. For low feed strengths, the spot remains localiz
consuming all the fuel that diffuses into it. A finite regio
can support several spots provided the distance betw
them is great enough that they can collect sufficient fuel.
the feed strength is increased, an isolated spot increase
size in order to consume all of the fuel it receives. As t
spot widens, it will eventually reach a point where the late
feed is inadequate to maintain its center in the hig
temperature state. In this situation, the temperature at
center of the spot will drop, leading to a double-bump
spot. This structure may be thought of as two nascent sp
each with an asymmetric flux distribution. The spot eith
moves towards regions of higher flux until the flux distrib
tion is equalized or increases to the point where an additio
replication occurred.

This model gives, within a reaction diffusion framewor
the classical mechanism of size selection through comp
tion between the rates of growth of the surface area and
volume @10#. This mechanism is related to the ‘‘activato
inhibitor’’ model @11#, with the fuel playing the role of in-
hibitor. It is important to note, however, that this is not
Turing instability, but rather a different type of structure
an excitable system. We note that this description is not m
ried to any particular set of kinetics; any kinetics that provi
these qualitative features should do. We will in fact demo
strate replicating structures in other models.

III. ANALYTIC SOLUTIONS IN THE LIMIT d!1

We now turn to analytic solutions of the system~1! in the
limit d!1 that correspond to the evolution observed in Fi
2 and 3. We can see from these figures that the spatial
main is divided into ‘‘inner’’ or spot regions wherev is large
andu is small and ‘‘outer’’ regions whereu andv are closer
to their fixed point values~u51, v50!. In the outer regions,
all the extrema ofu andv are maxima and minima, respec
tively. Thus all the maxima ofv and minima ofu occur in
the inner regions. In this section we determine how the d
ferent quantities scale withd and obtain the equations o
motion that the rescaled quantities satisfy in the differ
regions. We also show that the solutions in the different
gions can be ‘‘matched’’ so that they go smoothly into o
another. We discuss the main features of the solutions
we obtain in this way and compare them with those fou
via numerical simulations of the original set of equations~1!
for very smalld. This comparison shows very good agre
ment.

A. Scalings

In order to determine howu, v, x, and the velocity of the
spotsC scale withd, we performed a series of numeric
simulations for different small values ofd. Then, by plotting
the characteristic length scalesx and the maximum and mini
mum values ofu and v in the different regions and the
velocity C as functions ofd we extracted the scaling rela
tions.~The scaling can also be determined analytically with
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56 187SELF-REPLICATING SPOTS IN REACTION- . . .
few assumptions about the nature of the solutions.! We find
that v in;d21, C;d, uin;xin;d, uout;xout;1, andvout is
transcendentally small. The subscripts ‘‘in’’ and ‘‘out’’ refe
respectively, to the inner and outer regions.

The simulations also show that there are two characte
tic time scales. The spots evolve slowly over long-time
tervals and then divide and replicate on a fast time sc

FIG. 2. Space-time plot ofu and v for a simulation withA
50.02, B50.079, andd250.01. ~a! U1at vs x with a54
31024. ~b! V1bt vs x with b53.231023.

FIG. 3. Space-time plot ofV similar to Fig. 2, but forA
50.004, B50.063, and d250.01. V1bt vs x with b53.2
31023.
s-
-
e.

Since the spots travel anO(1) distance at anO(d) velocity,
we conclude that the slow time scale isO(d21). The solu-
tions that we construct are valid only during these long sl
intervals, but they do predict when and why replication o
curs. As we show later, these slowly varying solutions
such thatu has a unique extremum in each outer and in
region ~maxima in the outer and minima in the inner r
gions!.

B. Rescaled quantities and equations of motion

Taking into account all these facts, we derive now a si
plified set of equations that determine the evolution o
single spot in the interval@x0

M ,x1
M#. Herex0

M andx1
M are the

locations of two successive maxima ofu that are, in general
functions of the slow@O(d21)# time variable. Any point in
the spot can identify its position. We will call this poin
x1
m . We will show that it differs from the location of the
unique minimum ofu in this interval by anO(d) quantity.
The pointx1

m is also a function of the slow time variable. Th
interval @x0

M ,x1
M# is divided into three regions: the outer re

gions to the right and left of the spot and the inner reg
centered atx1

m . As we show later, the single-spot solutio
can be used to construct an array of moving spots on a la
~possibly infinite! domain.

Given the observed scalings, we define

t in5Bt[dBt, ~2!

xin[
AB
d

@x2x1
m~t in!# ~3!

in the inner region and

tout5t[dt ~4!

in the outer ones. We also introduce the following expa
sions ofu andv in powers ofd :

uin5dAB(
i>0

d iuin
~ i11! , ~5!

v in5d 21AB(
i>0

d iv in
~ i11! , ~6!

uout5(
i>0

d iuout
~ i ! ~7!

and assume

vout50. ~8!

We introduce the expansions~5!–~8! and the rescaled co
ordinates~2!–~4! in the evolution equations~1!. Equating
terms with equal powers ind yields the following hierarchy
of equations. In the outer regions, forO(d0),

F ]2

]x2
2AGuout~0!52A, ~9!

and forO(dn), n>1,
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188 56REYNOLDS, PONCE-DAWSON, AND PEARSON
F ]2

]x2
2AGuout~n!5

]uout
~n21!

]tout
. ~10!

In the inner regions, forO(d21),

]2uin
~1!

]xin
2 2uin

~1!v in
~1!250,

~11!

]2v in
~1!

]xin
2 1c~t in!

]v in
~1!

]xin
2v in

~1!1uin
~1!v in

~1!250;

for O(d0),

LS uin~2!

v in
~2!D 5S 2

A

B3/2,

]v in
~1!

]t in

D ; ~12!

for O(d1)

LS uin~3!

v in
~3!D

5S 2c~t in!
]uin

~1!

]xin
1
A

B
uin

~1!1uin
~1!v in

~2!212uin
~1!v in

~2!uin
2

]uin
~2!

]t in
2uin

~1!v in
~2!222v in

~1!v in
~2!uin

~2!
D ;

~13!

and forO(dn), n>2,

LS uin~n12!

v in
~n12!D

5S ]uin
~n21!

]t in
2c~t in!

]uin
~n!

]xin
1
A

B
uin

~n!1@uinv in
2 #~n!

]uin
~n11!

]t in
2@uinv in

2 #~n!
D ; ~14!

where we have defined the linear operator

L[S ]2

]xin
22v in

~1!2

v in
~1!2uin

~2!

22uin
~1!v in

~1!

]2

]xin
2 1c~t in!

]

]xin
2112uin

~1!v in
~1!D ,

~15!

the rescaled velocityc(t in)[AB(]x1
m/]t in)5C/dAB, and

@uinv in
2 #~n![@uinv in

2 #~n!2~v in
~1!2uin

~n12!12uin
~1!v in

~1!v in
~n12!!,

where @uinv in
2 # (n) is the sum of the terms ofO(1) in the

expansion ofuinv in
2 /B3/2dn. The boundary conditions, re

quired to complete the definition ofL, are specified in the
following subsection and Appendix B.

C. Matching and boundary conditions

Now we need to solve each equation of the hierarchy
the appropriate region and then ‘‘match’’ the inner and ou
n
r

solutions where the regions meet. The slow time variab
tout andt in enter only parametrically. Therefore, each equ
tion is an ordinary differential equation~ODE! with coeffi-
cients ~e.g.,c! that are actually functions oftout or t in . In
order to solve the ODE’s we need to supplement them w
boundary conditions, which will also be functions oftout or
t in . The matching of the solutions in the different regio
determines these boundary conditions. For this reason,
will first analyze how the solutions behave in the ‘‘matc
ing’’ region and then deduce the boundary conditions t
allow the construction of a solution uniformly valid in th
domain@x0

M ,x1
M#. For the clarity of the presentation we con

centrate in this section on the leading-order equations.
higher-order calculations are discussed in Appendix A.

From both the left and right outer regions, the matchi
regions correspond to the limitx'x1

m . In the inner region
the left and right matching regions correspond to the lim
xin→6`. The condition vout50 implies that v in→0 as
xin→6`. Thus, if in Eqs.~11! we neglect the terms that ar
nonlinear inv in , we find

]2uin
~1!

]xin
2 50, ~16!

]2v in
~1!

]xin
2 1c~t in!

]v in
~1!

]xin
2v in

~1!50. ~17!

Equations~16! and ~17! imply that

uin
~1!;6L6xin1M6 , ~18!

v in
~1!;v6` exp@~2c/27Ac2/411!xin# as xin→6`,

~19!

whereL6 , M6 , andv6` are functions oft in . Using Eqs.
~18! and ~5!, we find that

uin5d~6L6xin1M6!1O~d2!, ~20!

in the matching regions@12#.
In order to determine the behavior of the outer solutio

in the matching regionsx'x1
m , we Taylor expand them

aroundx5x1
m . We define

M6
~n!~tout![uout6

~n! ~tout,x1
m!, n>0 ~21!

and

L6
~n!~tout![

]uout6
~n21!

]x
U
x5x

1
m
, n>1, ~22!

where the subscripts2 and1 correspond, respectively, t
the outer regions to the left and right of the spot. Using th
definitions and Eq.~3!, we then write the outer solutions i
the matching regions as
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56 189SELF-REPLICATING SPOTS IN REACTION- . . .
uout6
~0! 5M6

~0!1L6
~1!~x2x1

m!1•••5M6
~0!1dL6

~1!xin1O~d2!,

~23!

uout6
~1! 5M6

~1!1O~d!,

from which we obtain

uout65uout6
~0! 1duout6

~1! 1•••

5M6
~0!1d~L6

~1!xin1M6
~1!!1O~d2!. ~24!

Thus, in order to haveuout5uin in the matching regions, we
find from Eqs.~20! and ~24! that

M6
~0!~tout!50, ~25!

L6
~1!~tout!56BL6 , ~26!

and

M6
~1!~tout!5ABM6 . ~27!

Thus, this discussion shows that the appropriate bound
conditions for Eqs.~11! are

]uin
~1!

]xin
→6L6 ,

~28!

v in
~1!→0 as xin→6`,

while those for Eqs.~9! and ~10! are

]uout2
~n!

]x
U
x5x

0
M

5
]uout1

~n!

]x
U
x5x

1
M

50,

~29!

uout2
~n! ux5x

1
m25M2

~n!~tout!, uout1
~n! ux5x

1
m15M1

~n!~tout!,

given the fact that we are looking for solutions such th
uout has maxima atx0

M andx1
M . Equations~25!–~27! deter-

mine how the boundary conditions of the inner and ou
equations are related.

D. Construction of the single-spot solution

We now show how to obtain the single spot solution up
O(d) in u andO(d21) in v for a case in whichx0

M and
x1
M do not change with time. This holds, in particular, wh
x0
M50 andx1

M→` ~i.e., a spot moving into an infinite me
dium!. In order to simplify the notation, since we focus o
the leading-order terms, from now on we drop the sup
scripts~1! from the inner solutions, unless otherwise note
The construction of the single-spot solution to all orders
discussed in Appendix B.

Equations~9! and~10! subject to the boundary condition
~29! can be solved explicitly to all orders and for alltout’s.
To leading order we find

uout2
~0! ~x!512

cosh@A1/2~x2x0
M !#

cosh@A1/2~x1
m2x0

M !#
, ~30!
ry

t

r

r-
.
s

uout1
~0! ~x!512

cosh@A1/2~x2x1
M !#

cosh@A1/2~x1
m2x1

M !#
, ~31!

where we have used Eq.~25!. Once we have the solution
uout6
(0) (tout), we can calculate thefluxesof u into the spot to
leading order ind, L6

(1) , by means of Eq.~22!. As the reader
will notice, they provide a link between the analytic solutio
that we discuss in this section and the heuristic explana
of spot replication presented in Sec. II. If we further use E
~26!, we find

L25
A1/2

B
tanhA1/2~x1

m2x0
M !,

~32!

L15
A1/2

B
tanhA1/2~x1

M2x1
m!.

Notice that, sincex0
M<x1

m<x1
M , then 0<L6<A1/2/B. As

one would expect intuitively, the fluxesL6 are monotonic
bounded functions of the distance from the spot to the a
cent maxima.

Given the fluxesL6 into the spot at a particular timet̃,
the boundary conditions~28! are completely specified
Therefore, in principle, we can solve Eqs.~11!. We do this
numerically by a shooting method. Solving Eqs.~11! deter-
mines the values ofc andM6 ~see Appendix B!.

Using Eqs. ~32! and the definition of c, c(t in)
5AB(]xm/]t in), we find

]L6

]t in
57c~t in!ABS AB22L6

2 D . ~33!

Sincec is uniquely determined in terms ofL6 by solving
Eqs.~11!, then Eq.~33! can be integrated to findL6 at any
time t in which in turn can be used to obtainx1

m(t in) and
c(t in). Therefore, by this procedure, we knowL6 , c, and all
their t derivatives at any time. Knowing this andM6 , which
we also get by solving Eq.~11!, we can completely specify
uout6
(1) ( t̃). The derivativesL6

(2) of uout6
(1) can then be used to

integrate Eq.~12! as we explain in Appendix B. In this way
the solution up to orderd in u andd21 in v is obtained as a
function of t.

E. The inner equations and their solutions

We now describe the properties of Eqs.~11! and of the
solutions that satisfy the boundary conditions~28!. We first
note that the feed term ofu, A(12u), is completely absen
from Eqs.~11!. This agrees with our heuristic picture of sp
formation: a spot’s structure is determined by the late
fluxes of fuel into it, which to this order areL2

(1) andL1
(1) .

The absence of the feed term also allows us to scale the
B out of the equations, such that the solutions for differe
values ofB are related by a simple rescaling of the variabl
Another feature of the equations is that]2uin /]xin

2>0 for all
xin due to the fact thatuin and v in are never negative. This
means thatuin can only have one minimum and no oth
extremum. Thus we cannot describe pulse division of thu
field using the inner equations alone. However, we can
tain solutions with different number of extrema inv in . In
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190 56REYNOLDS, PONCE-DAWSON, AND PEARSON
particular, we are able to predict spot replication since
splitting is always preceded byv in going from having one to
having three extrema.

We mentioned before that solving Eqs.~11! and ~28!
gives the velocityc as a function ofL6 . In general, there is
not a uniquec for each pair~L2 , L1!, but a discrete set o
values. Of all the possible solutions, we will describe on
those that we think are relevant for spot replication, unl
otherwise noted. Even if we restrict ourselves to these ca
the surfacec(L2 , L1) has various sheets that are inte
twined in a complicated fashion. We describe its struct
using cuts of constantL1 . Note that due to the symmetry o
the equations and of the boundary conditions, if there i
solution withL25L1 , L15L2 andc5c0 then there is also
a solution withL25L2 , L15L1 and c52c0 . Thus plots
with constantL2 can be obtained from those with consta
L1 by simply changing the sign ofc. We show in Fig. 4~a!
a cut of constantL151 and in Fig. 4~b! another one with
L151.7901~these values were the ones used for the sim
lations shown in Figs. 3 and 2, respectively!. In both cases
we observe two curves, but while in Fig. 4~a! they intersect
at L25L1 , c50, in Fig. 4~b! they do not intersect at all
Moreover, the value ofc for the solid line curve in Fig. 4 is
never zero. We show how this intersection disappears in
5, where we have again plottedc vsL2 for various values of
L1 between 1 and 1.7901. A smooth change occurs asL1 is
increased betweenL151 andL151.334: the dashed curv
goes from crossing the linec50 only once~at L25L1! to
crossing it three times ~preserving the crossing a
L25L1!. We do not show this change in Fig. 5, but it is n
hard to imagine how it occurs. We do show how both curv
behave atL151.334 and 1.3<L2<1.38 in Fig. 5~a!. There
we can see that for some range of values ofL2 there are four
different solutions: three on the dashed curve and one on
solid one. The two curves still cross atL25L1 , c50,
which means that there are two stationary solutions@13#.
These solutions are both symmetric, one single bumped
the other double bumped. Figure 5~b! corresponds toL1

51.3385. There we see that there are two intervals ofL2

with four coexisting solutions. In one of these intervals thr

FIG. 4. Plot ofc as a function ofL2 for ~a! L151 and ~b!
L151.7901.
e
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solutions lie on the dashed curve and one on the solid o
while in the other interval the situation is reversed.

The two curves approach one another asL1 is increased
and so do the intervals with four solutions. AtL1'1.3387
@Fig. 5~c!# the intervals merge, the two curves come togeth
and the solutions on both of them become equal at the
point of intersection. AsL1 is increased further, two ‘‘new’’
solid and dashed curves can be distinguished, which do
intersect. They separate as shown in Fig. 5~d!, which corre-
sponds toL151.34. Note that half of each of the new curv
shown in this figure ‘‘comes from’’ the solid curve of Fig
5~a! while the other half comes from the dashed one.
L1 is increased further, the ‘‘loop’’ of the upper curv
shrinks and finally disappears. This occurs atL1'1.347,
which is shown in Fig. 5~e!. Also at this point the two sym-
metric solutions withL25L1 and c50 become equal and
disappear asL1 is further increased. The absence of sy
metric solutions withc50 may be observed in Fig. 5~f!;
which corresponds toL151.38. We also observe that th
singularities in the derivative of the upper curve disappea
L1 is increased.

F. Putting the pieces together

We now match the inner solutions to the outer ones
determine the dynamics of the patterns. As before, we
strict ourselves to cases in whichx0

M andx1
M are time inde-

pendent. For simplicity, we further assume thatx1
M→`, the

extension to finitex1
M being straightforward. Under these a

sumptions, Eq.~32! implies thatL1 is also time independent
Thus we can readily use Figs. 4 and 5 to study the evolu
of the whole solution. Equations~32! also determine that 0
,L2<L15A1/2/B at all times. Therefore, the inner solu
tions with L2.L1 are not relevant for this case.

Let us first consider a case withA1/2/B51 @Fig. 4~a!# and
inner solution lying on the solid curve. Assuming that in
tially x1

m is finite, thenL2(0),L1 and c(0).0. Thus, ac-

FIG. 5. Plot ofc as a function ofL2 for ~a! L151.334, ~b!
L151.3385, ~c! L151.3387, ~d! L151.34, ~e! L151.347, and
~f! L151.38.
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cording to Eq.~33!, L2 will increase steadily,L2→L1 , and
c will decrease,c→0, ast→`. Therefore, the system ap
proaches a symmetric stationary solution asymptotically
time. A similar situation holds if the inner solution initiall
lies on the dashed curve of Fig. 4~a!, but in this case the
system would go to a double-bumped solution, if it we
stable~which it turns out not to be!.

Let us now consider a case withA1/2/B51.7901 @Fig.
4~b!#. If initially the inner solution lies on the solid curve an
x1
m is finite, thenL2(0),L1 andc(0).0 as before. How-
ever, in this case, whileL2 also increases, approachingL1

asymptotically in time,c goes to a nonzero value. Th
means that the spot, were it stable, would continue to m
forever at an almost constant speed. On the other hand, i
inner solution lies initially on the dashed curve andx1

m is
finite, thenv(x) approaches an asymmetric stationary so
tion for which c50 and L25L*'1.256. If initially L2

,L* , then L2 will increase andc will decrease with in-
creasing time, while the situation will be reversed if initial
L2.L* .

How do these behaviors compare with the numeri
simulations of Eqs.~1!? We can compare theL151 case
with the simulation of Fig. 3 and theL151.7901 case with
the simulation of Fig. 2 before the first splitting.~The com-
parison is done on half the spatial range spanned by
simulation!. In both cases we observe that after the init
transient dies out, the system approaches a situation in w
the inner solution lies on the solid curves of Figs. 4~a! and
4~b!. Indeed, the analytical solutions are in very good agr
ment with the numerical ones, as we will show.

Now, there is a major difference between the casesL1

51 andL151.7901. While in the first case the analytic
solution describes the evolution observed in the simula
for all times, in the second case, the agreement lasts
between splittings. As mentioned before, the dynamics d
ing splittings cannot be described within the assumptions
our analytical solutions since the splitting transition occ
on a fast time scale.

Given these results, we might then ask the following t
questions. First, why does the numerical simulation alw
‘‘choose’’ an inner solution that lies on the upper curve
Second, why does spot splitting occur forL151.7901? In
addition, related to this, does the analytical solution prov
any hint on when a splitting is about to occur? The answe
these question depends on the stability of the solutions
we discuss in the next subsection.

G. Stability: How spot splitting arises

We interpret the splitting of the spots as an instabil
of the spot solutions just described that occurs on
fast time scalet. To demonstrate this, we calculate the s
bility of the solutions of Eq.~1!. We introduce a perturbation
to the base solution:u(x,t)→u(x,t)1j(x,t)exp@(l/B)t#,
v(x,t)→v(x,t)1h(x,t)exp@(l/B)t#, where j;O(d) and
h;O(d21) in the inner regions andj;O(1) andh50 in
the outer ones. Note that the perturbations evolve on the
time scale, whereas the base solutionsu andv vary only on
the slow time scalet. Linearizing Eq.~1!, transforming to
the inner coordinates, and keeping only terms to leading
der in d yields
n

e
he

-

l

e
l
ch

-

n
ly
r-
f
s

s

e
o
at

e
-

st

r-

]2j

]xin
22v in

2 j22uinv inh50,

~34!

]2h

]xin
2 1v in

2 j12uinv inh1c
]h

]xin
2h5lh.

In the outer region, the linearized equations allow only t
null solution to leading order ind. Matching this to the inner
region perturbations yields the boundary conditions

]j

]xin
→0 as xin→6`,

~35!

h~xin!→0 as xin→6`.

For a given value ofL1 andL2 , we determine the sta
bility of the solution by calculatinguin andv in numerically
and then computing the eigenvaluesl of a spatial discretiza-
tion of the operators~34! and ~35!. A positive l implies
instability. We know that there is always a zero eigenva
due to the translational symmetry of the equations. This p
vides a useful check on our numerics since the zero eig
mode is proportional to the derivatives]uin /]xin and
]v in /]xin .

In particular, we have looked at the stability of the sol
tion branches plotted in Figs. 4 and 5. We show some of
results in Fig. 6, where we have plotted the maximum eig
valuea of the operators~34! and~35! as a function ofL2 for
various values ofL1 , with solid ~dashed! curves corre-
sponding to solid~dashed! curves of Figs. 4 and 5. Figur
6~a! corresponds to the solutions of Fig. 4~a!, for which L1

51. There we can see that the solid curve solution is sta
while the other one is unstable. This explains why only t
solution is observed in numerical simulations of the set~1!.
This situation ~i.e., a stable solid curve and an unstab

FIG. 6. Plot of the maximum growth rate of the instabilitiesa as
a function ofL2 for the solution branches of Figs. 4 and 5 with~a!
L151, ~b! L151.334, ~c! L151.3387, ~d! L151.34, ~e! L1

51.38, and~f! L151.7901. Dashed and solid lines correspon
respectively, to dashed and solid lines in Figs. 4 and 5.
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192 56REYNOLDS, PONCE-DAWSON, AND PEARSON
dashed one! continues to hold if we further increaseL1 until
we reach the point at which there are three different soluti
on the solid curve for the same values ofL2 andL1 @see,
e.g., Figs. 5~b! and 5~c!#. At this point, some of the solution
on the solid curve are unstable, as may be observed in
6~b!. We also see that all the solutions on the lower curve
Fig. 5~c! are unstable. When the solid and dashed curve
the c vs L2 plot are rearranged~see Fig. 5 and its explana
tion!, the stability also changes. The solutions on the n
solid curves are stable for low enough values ofL2 , but
become unstable for large values ofL2 . This may be ob-
served in Fig. 6~c!, where we have plotted the values ofa for
the solutions of Fig. 5~e!. There we see that although th
solutions on the dashed curve of Fig. 5~e! remain unstable
for L2P@1.3, 1.38#, the values ofa decrease continuousl
from a50.15 atL251.3 to a'0.01 atL251.38. On the
other hand, there are stable solutions on the solid curv
Fig. 5~e! for all L2,1.3476, but all the solutions on thi
curve are unstable forL2.1.3476. This explains why a
L151.7901, when there is a one to one correspondence
tween solutions on the solid curve and values ofL2 @see Fig.
5~f!#, the solutions on this curve go from being stable
small values ofL2 to being unstable at large values ofL2

@see Fig. 6~e!#. As we have already mentioned, the caseL1

51.7901 corresponds to the numerical simulation of Fig
before the first splitting. Thus we conclude that the splitti
occurs because the solution becomes unstable.

The stability analysis in this section is somewhat differe
from the standard linear analyses that are the foundatio
bifurcation theory. Here the analysis is of the model th
arises when the evolution occurs on a slow time scale.
obtain the base solution assuming that time scales
O(d21) and we thus approximate it by a solution of the fi
set of equations in the hierarchy~9!–~14!. We then look for
instabilities that grow on anO(1) time scale, and for this

FIG. 7. Plot of the maximum growth rate of the instabilitya as
a function of the location of the spot in rescaled coordinatesxm for
the solution on the solid curve of Fig. 4~b!, which has L1

51.7901. We observe that the onset of the instability occurs
xm'7.8.
s

ig.
f
of

w

of

e-

t

2

t
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t
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t

reason we modify the equations accordingly, as descri
before. An instability in this case implies that it is impossib
to split the original set of equations~1! into the hierarchy
~9!–~14!. It also implies that our approximate base soluti
is no longer ‘‘close’’ to the actual solution of the full set~1!.
This breakdown of the model precludes the type of analy
that are usually done in bifurcation theory~indices, etc.!.

H. Comparison with the numerical simulations

We have compared the analytical solutions with those
tained from numerical simulations of the original equatio
~1!. We have found very good agreement both in the ‘‘form
of the spotsuin

(1)(xin) and v in
(1)(v in) and in their velocity

c(t in). We have also observed that spot splitting occurs a
the onset of the instabilities. This means that the stabi
calculation allows the prediction of the occurrence of sp
tings. All these properties are an indication that the analy
is essentially correct.

We illustrate some of these results with Figs. 7 and
Figure 7 is a plot of the maximum growth rate of the ins
bility a as a function of the location of the spot in rescal
coordinatesxm for the solution on the solid curve of Fig
4~b!, which hasL151.7901. This analytical solution is to b
compared against simulations withA50.02 andB50.079.
Figure 8 is a plot of the spot location in rescaled coordina
xm vs t in for this analytical solution; a simulation withA
50.02, B50.079, andd250.01; and a simulation withA
50.02,B50.079, andd250.0001. We can immediately ob
serve the good agreement among all curves before the oc
rence of splittings. This means that the analytical solut
gives a good approximation of the numerical one betwe
splittings. On the other hand, if we compare Figs. 7 and
we observe that the onset of the instability of the analyti
solution occurs before the splitting and that the time de
between both events decreases withd. This behavior high-
lights the predictive value of the stability calculation. Th
stability calculation is done under the assumption that
instabilities grow on a fast time scale. It is clear that th
assumption is violated immediately after the onset, where
growth rate is as small as we wish. Therefore, there is a t
interval on which our simplified model with two separa
time scales does not hold. Since the slow time scale is
O(d21), we expect the simplified model to be valid after th
growth rate gets bigger thand. As is clear from Fig. 8, the
rescaled timet at which this occurs decreases withd. This
means that the transient with no separate time scales
smaller withd. Thus we expect the stability analysis to b
more accurate asd decreases. In fact, this may be observ
in Fig. 8, where it is clear that the onset of the instabil
gives a better estimate for the time of splitting asd gets
smaller.

I. Construction of the N-spot solution

So far we have considered a single spot moving into
infinite medium. However, our solutions describe correc
the evolution observed between splittings in simulations w
any number of spots. Suppose that we want to describe
evolution ofN spots in the interval@0,̀ # that are located a
xi
m(t in), 1< i<N. We are interested in the case in whichu
has a maximum atx5x0

M50 and another one atx

at
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-
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FIG. 8. Plot of xm vs t in
[t/B for a simulation with A
50.02, B50.079, andd250.01;
a simulation with A50.02, B
50.079, andd250.0001, and the
analytic solution that correspond
to these values ofA and B ~i.e.,
L151.7901!. A comparison with
Fig. 7 shows that the splitting oc
curs after the onset of the instabi
ity.
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5xN
M→` for all t in . The coordinates of all the other maxim

of u,xi
M , 0, i,N, are functions oft in . Assuming the or-

deringxi21
M ,xi

m,xi
M , 1< i<N, the variousxi

M ’s andxi
m’s

are related by

xi
M5

xi11
m 1xi

m

2
, 1< i<N21. ~36!

Thus, using an extension of Eqs.~32! to the case ofN spots
and Eq. ~36! we can write the rescaled fluxesL6 i[
6L6 i

(1)/B into the i th spot as

L215
A1/2

B
tanh~A1/2x1

m!,

L2 i5
A1/2

B
tanhSA1/2

2
~xi

m2xi21
m ! D , 1, i<N

~37!

L1 i5
A1/2

B
tanhSA1/2

2
~xi11

m 2xi
m! D , 1< i,N

L1N5
A1/2

B
,

from which we find

]L2 i

]t in
5

AB
2

@ci~t in!2ci21~t in!#S AB22L2 i
2 D , 1< i<N

]L1 i

]t in
5

AB
2

@ci11~t in!2ci~t in!#S AB22L1 i
2 D , 1< i,N

~38!

]L1N

]t in
50,
where, as before,ci5AB(]xi
m/]t in) andc050. TheN-spot

solution can be constructed in almost the same way as we
with the single spot one. Given the distances between s
or the fluxes ofu into each of them, we can solve Eqs.~11!
for each spot separately. This determines the values ofci and
of the other parameters of the solution as a function of
fluxes. This information can then be used to integrate E
~38!. Here is the main difference with respect to the sing
spot case: now the time evolution of the various spots
coupled by Eqs.~38!. Once the fluxes and the velocities a
known as functions oft in , we can go to higher orders as i
the single-spot case.

IV. OTHER MODELS

An analysis similar to the one presented in the preced
section can be carried out for a whole class of models
which Eqs.~1! are a particular example. The evolution equ
tions for the models in this class can be written as

]u

dt
5¹2u2uavb1A~12u!,

~39!

]v
dt

5d2¹2v1ugve2Bv,

wherea>0, b>0, g.0, e.1, anda(e21)<bg. Also in
this more general case we can divide the space into inner
outer regions of widthO(d) andO(1), respectively. In the
outer regionsu is of O(1) andv is transcendentally small
while in the inner ones,u;d2(p21)/@bg2(a21)(e21)# and v
;d2g/@bg2(a21)(e21)#. We can obtain a hierarchy of equa
tions equivalent to Eqs.~9!–~14! if we introduce the same
rescaled coordinates as before and power series expan
for u andv consistent with the new scalings. In this way, t
equations to leading order ind are Eq.~9! in the outer and
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]2uin
~1!

]xin
2 2uin

~1!a
v in

~1!b
50,

~40!

]2v in
~1!

]xin
2 1c~t in!

]v in
~1!

]xin
2v in

~1!1uin
~1!g

v in
~1!e

50

in the inner one where the velocityc defined as before.
The outer equations can be solved to all orders. Howe

we cannot ensure the existence of a solution to Eqs.~40! in
the general case. If such a solution exists, then the matc
and the construction of the whole solution can be carried
as before. On the other hand, we cannot ensure that
solution would be ‘‘attracting’’ in the same way it is for Eq
~1!. However, in all the cases we tried we observed s
replication in the simulation of the corresponding Eqs.~39!.
We show an example in Fig. 9, where we have plot
v(x) at different times for a model witha50, b51, g51,
e52, A50.3, B50.08, andd250.005.

V. CONCLUSIONS

We have presented the calculations contained in@6# in
detail and shown how they generalize to cover a class
systems that can be described by the fuel and fire pict
The key element for spot replication is the multivaluedn
of c(L2,L1) and the disappearance of thec50 branch of
solutions when the fuel flux exceeds a critical value.

Ours is not the only theory of spot replication. The ex
tence of nontrivial stationary solutions that approach
fixed valueu51, v50 as uxu→` in the Gray-Scott mode
has also been analyzed by Doelman, Kaper, and Zege
@7#. They prove the existence of single- and multiple-pu
solutions in the infinite line. They also prove that traveli
pulses of the same typecannotexist. The authors conclud
that this nonexistence is somehow related to splitti
‘‘while the numerically observed moving pulses begin to
semble the non-existing@sic# traveling solitary pulses more
and more, they must undergo some transformation, suc
pulse-splitting@sic#.’’ This is similar to what we have found
in our stability analysis, since in our case a fast develop
instability means the nonexistence of a solution with the ti

FIG. 9. Space-time plot ofv for a model of the form 39 with
a50, b51, g51, e52, A50.3, B50.08, andd250.005. V
1bt vs x with b53.231023.
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scale separation we had assumed.
Hagberg and Meron@8# also see spot replication in

modified Fitzhugh-Nagumo model. This model has also b
analyzed in this context by Muratov and Osipov@14#. The
analysis in@8# is centered around the nonequilibrium Isin
Bloch transition: a bifurcation from a static front to a pair
counterpropagating Bloch waves. This transition is in
sence a pitchfork bifurcation in which thec50 solution
loses stability to solutionsc56A«, where« is the distance
from the bifurcation. In their work spot replication occu
when the velocity of a propagating curved front changes s
as a function of curvature along the front. Thus the variat
of curvature along the front is a key element in the analy
of Hagberg and Meron. However, one of the experimen
observations is of a growing disk of highpH. Eventually the
center of the disk collapses, leaving a propagating annu
This effect has not been observed in the modified Fitzhu
Nagumo model, which forms the basis of the work by Ha
berg and co-workers. It seems unlikely that it will be o
served since no replication has been observed in the
dimensional modified Fitzhugh-Nagumo equations. The f
that the annuli have curved fronts should not make mu
difference since the curvature is constant along the front

In a key respect our analyses are similar in thatc is a
multivalued function of either extrinsic or intrinsic param
eters~such as flux and curvature! and the stability of thec
50 solution changes at a bifurcation point. However, in o
case thec surface has many different sheets that are in
twined in a complicated fashion as can be seen by the
shown in Fig. 5, whereas in the case considered by Hagb
and Meron the staticc50 solution undergoes a pitchfor
bifurcation. As far as qualitatively matching the experimen
we do not do a particularly good job either since our sp
correspond to spots of high concentration of the autocatal
species and the experimentally observed spots are spo
high pH. Since H1 is presumably the autocatalytic speci
our picture does not compare well.

Lee and Swinney@4# have performed numerical simula
tions of the four-variable Gaspar-Showalter@5# model in one
space dimension and find spot replication also. There
qualitative differences between Lee and Swinney’s simu
tions and their experiments. In his experiments, collidi
fronts repel and in their simulations they annihilate. Anoth
difficulty in reconciling the experiments and simulations
that in the simulations replication was found only when t
diffusion coefficient of H1 was set lower than the other sp
cies. The absence of a mechanism that slows down the
fusion of H1 relative to the other species makes it doubt
that the simulations provide an accurate mirror of the exp
ments. We also remark that Lee and Swinney’s simulati
are not well described by either our work or the work
Hagberg and Meron. The null clines of the two-variab
Gaspar-Showalter model bear little in common with eith
the Gray-Scott null clines or the Fitzhugh-Nagumo n
clines.

Currently there are no results, either analytical or nume
cal, in full qualitative agreement with the experimental r
sults. Since there are qualitative differences between
analyses, the experiments, and Lee and Swinney’s nume
simulations we conclude that the replication phenomeno
more general than demonstrated by the current analyses
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APPENDIX A

We show in this appendix how the solutions in the inn
and outer regions can be matched to all orders. In orde
determine how the inner solutions behave in the match
regions, we neglect, as before, all the terms that are nonli
in v in in Eqs.~11!–~14!. We find Eq.~17! for v in

(1) and

]2v in
~n!

]xin
2 1c~t in!

]v in
~n!

]xin
2v in

~n!5
]v in

~n21!

]t in
for n.1,

~A1!

]2uin
~1!

]xin
2 50, ~A2!

]2uin
~2!

]xin
2 52

A

B3/2, ~A3!

]2uin
~3!

]xin
2 52c~t in!

]uin
~1!

]xin
1
A

B
uin

~1! , ~A4!

and

]2

]xin
2 uin

~n12!5
]uin

~n21!

]t in
2c~t in!

]uin
~n!

]xin
1
A

B
uin

~n! for n>2.

~A5!

Equation ~A1! implies that v in
(n)→P6`

(n) (xin)exp@(2c/2
7Ac2/411)xin# as xin→6`, where the variousP6`

(n) (xin)
are polynomials of degreen21 with coefficients that are
functions oft in . The solutions to Eqs.~A2!–~A5! determine
how v in behaves in the matching regions.

In order to find the behavior ofuout in the matching re-
gions, we expand, as before, the differentuout

(n)’s in power
series inx aroundx5x1

m . We obtain

uout
~n!5 (

k>0
uout

~k,n!
~x2x1

m!k

k!
, ~A6!

where we have defineduout
(k,n)[]kuout

(n)/]xkux5x
1
m. ~Notice that

theuout
(k,n)’s are functions oftout.! Inserting these expansion

in Eqs.~9! and~10! and equating terms with equal powers
x2x1

m we find

uout
~2,0!5Auout

~0,0!2A,
~A7!

uout
~k12,0!5Auout

~k,0! , k>1
r
to
g
ar

uout
~k12,n!2Auout

~k,n!5B
]uout

~k,n21!

]t in
2cABuout~k11,n21! ,

n>1, k>0, ~A8!

where we have used the relationst in5Btout and ]x1
m/]tout

5ABc.
Using the recurrence relations~A7! and ~A8! we will

show how the inner and outer solutions can go smoothly i
one another. For this purpose we insert the expansions~A6!
and the definition ofxin , given by Eq.~3!, into Eq.~7! to find

uout5 (
n,k>0

dn1k

k!
uout

~k,n!
xin
k

Bk/2 . ~A9!

We now define

w~ i !5
1

AB (
n,k>0;n1k5 i

1

k!
uout

~k,n!
xin
k

Bk/2 . ~A10!

Using this definition, we can rewrite the outer solutions
the matching regions as

uout5AB(
i>0

d iw~ i !. ~A11!

Thus we see from Eqs.~5! and ~A11! that in order to get
solutions such that in the matching regions satisfyuout5uin
we need that

w~0!50, ~A12a!

w~ i !5uin
~ i ! , i>1. ~A12b!

Equation~A12a! implies thatuout
(0)(x5x1

m)5uout
(0,0)50, which

is exactly condition~25!. It can be shown, after some alge
bra, that if thew( i )’s are defined as in Eq.~A10! with
w(0)5uout

(0,0)50 and theuout
(k,n)’s satisfying Eqs.~A7! and

~A8!, then thew( i )’s are solutions of Eqs.~A2!–~A5!. This
means that if we choose boundary conditions for the in
and outer regions such that all thew( i )’s satisfy Eqs.~A12! at
one particular value ofxin in the matching region, then th
equality ~A12! will hold for all xin in the matching region.

The recurrence relations~A7! and~A8! also show that all
the functionsuout

(k,n)(t in) with k>2 are uniquely determined
by the functionsM (n)(t in) and L

(n)(t in), n>0, where we
have used the definitions~21! and ~22!. Thus, using Eqs.
~A7!–~A9! we can writeuout in the matching region entirely
in terms ofc, the variousL (n) andM (n), and theirt deriva-
tives. Using Eqs.~A7!, ~A8!, and ~A10! we can construct a
solution to Eqs.~A2!–~A5!, and thereforeuin in the matching
region, in terms of the same quantities. Moreover, solutio
constructed in this way will satisfyuout5uin in this region.
Consequently, this scheme gives us a prescription of h
uout and uin should behave in the matching region so th
they go smoothly into one another.

APPENDIX B

We sketch in this appendix how to obtain the single-s
solution up to any desired order whenx0

M and x1
M are time
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independent. We start by discussing the solutions in the o
regions. Given the boundary conditions~29!, we can write
these solutions in the following way. In the left outer regi
x0
M<x<x1

m ,

uout2
~0! ~x!512

cosh@A1/2~x2x0
M !#

cosh@A1/2~x1
m2x0

M !#
,

~B1!

uout2
~n! ~x!5M2

~n!
cosh@A1/2~x2x0

M !#

cosh@A1/2~x1
m2x0

M !#

1E
x0
M

x1
m

dy@G~x2x0
M ,y2x0

M !

1G~x2x0
M ,2y1x0

M !#

3
]uout

~n21!

]tout
~x,tout!, n>1,

where we have usedM2
(0)50 and defined

G~w,w8!5
1

AA
„sinh~A1/2j8!$cosh~A1/2j!

2coth@2A1/2~x1
m2x0

M !#sinh~A1/2j!%…, w8,w

~B2!

G~w8,w!5G~w,w8!,

wherej5w1x1
m2x0

M and j85v81x1
m2x0

M . Analogously,
the solutions in the right outer regionx1

m<x<x1
M read

uout1
~0! ~x!512

cosh@A1/2~x2x1
M !#

cosh@A1/2~x1
m2x1

M !#
,

~B3!

uout1
~n! ~x!5M1

~n!
cosh@A1/2~x2x1

M !#

cosh@A1/2~x1
m2x1

M !#

1E
x1
m

x1
M

dy@G~x2x1
M ,y2x1

M !

1G~x2x1
M ,2y1x1

M !#

3
]uout

~n21!

]tout
~x,tout!, n>1,

with G(w,w8) given by Eq.~B2!, but with j5w1x1
M2x1

m

and j85w81x1
M2x1

m .
We now focus on the solutions to the inner equations,

which we need to specify the boundary conditions. Acco
ing to the discussion in Appendix A, the appropriate boun
ary conditions are

]uin
~n!

]xin
5

]w6
~n!

]xin
,

~B4!

v in
~n!→0 as xin→6`,

wheren>1 and the variousw6
(n) must be calculated as in Eq

~A10! with uout6
(k,n) , respectively. It follows from Eqs.~B1!–
er

r
-
-

~B3! and~A10! that the derivatives]w6
(n)/]xin , n>1, do not

depend onMn . In fact, they can be completely specified
terms of the parametersA and B, the functions $M6

( l ) ,
l,n%, the distancesx1

m2x0
M and x1

m2x1
M @or the fluxesL6

through Eq.~32!#, and theirt derivatives. Thus the boundar
conditions foruin

(n) can be written completely in terms of th
same quantities. In particular, forn51, they are given by Eq
~28!. Then, since solving the inner equations f
(uin

(n) ,v in
(n)) determines the values ofM6

(n) ~see the discussion
below!, we need to solve the inner equations at each or
for all timesbefore we can move to the next order.

Although we cannot solve the inner equations analy
cally, we can still describe how to carry on the constructi
of the whole solution up to any desired order as follows. L
us choose, at one particular timet̃, a value for the distance
x1
m2x0

M andx1
m2x1

M . Given these distances, we can imm
diately calculate the outer solutionsuout6

(0) , using Eqs.~30!
and ~31!, and the fluxesL6 , using Eq.~32!, at that same
time. Given the fluxes, we can integrate numerically E
~11! in order to find a particular solution (u* ,v* ) that satis-
fies the boundary conditions~28! at that time. Let us write
this solution in a way such that

u*;L6xin1M6* ,
~B5!

v*;v6`* expS 2c7Ac214

2
xinD

in the matching regionsxin→6`. Suppose, without loss o
generality, that the origin of coordinates is such th
]uin* /]xin50 at xin50. Then, any pair of functions of the
form

ũ~xin!5u* ~xin2z!, ṽ~xin!5v* ~xin2z! ~B6!

is also a solution of Eqs.~11! with asymptotic behavior

ũ;L6xin1M̃6 ,
~B7!

ṽ; ṽ6` expS 2c7Ac214

2
xinD as xin→6`,

where

M̃65M6* 2L6z,
~B8!

ṽ6`5v6`* expS c6Ac214

2
z D .

Thus any translation of the original solution of the form~B6!
is a solution of Eqs.~11! that satisfies the boundary cond
tions ~28! and can be matched to the left and right ou
solutions up to this order. So a general solution of Eqs.~11!
is a function ofz of the form~B6!–~B8!, wherez is the point
at which ]uin

(1)/]xin50. It is clear that whileM̃6 and ṽ6`

change withz, c andL6 remain invariant. Therefore, as w
mentioned before, we can integrate Eq.~33! without know-
ing the exact value ofz. We proceed by noting that a nu
merical integration of Eq.~12! requires that we specify seve
constants: the boundary parametersL6 , M̃6 , ṽ6` and the
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velocity c. In addition, due to the translational invariance
Eq. ~12!, there is a degenerate family of solutions differin
only in their shift from the originz. The numerical procedure
consists of shooting the solutions into the origin from th
asymptotic behaviors atxin;6` @Eq. ~B7!# ~using a suit-
ably large value ofxin in place ofxin;6`!. At the origin,
there will be four matching conditions: the continuity
ũ,ṽ and their first derivatives. We introduce a fifth matchi
condition to break the translational degeneracy by requir
]ũ/]xin50 at xin50 ~this has the effect of settingz50 and
M̃65M6* !. If we now fix the values ofL6 ~by specifying
the locations of the spots! we see that we have five fre
parameters to vary such that the five boundary conditions
satisfied, which implies that there will be a discrete spectr
of acceptable values forM6* , ṽ6` , andc. Numerically we
accomplish this by using an Adams-Bashforth solver to in
grate the equations, while varying the parameters usin
Powell method~see@15# for details on these methods and t
subroutines used!.

This integration givesc andL6 @andL6
(1) via Eq.~26!# as

functions oft in . Also, we can formally writeM6 andv6`

as in Eq.~B8! for all times with z an unknown function of
t in . Thus, using Eqs.~26!, ~27!, ~32!, ~B1!, and~B3!, we can
write the solutionsuout6

(1) and its derivativesL6
(2) , at all times,

in terms of L6
(1)(t in), c(t in), and the unknown function

z(t in). In particular, theL6
(2) read

L6
~2!52~M6* 1z!L6

~1!1
c

2
L6

~1!S 12
L6

~1!2

A
D

3F AAL6
~1!

A2L6
~1!2

1arctanhS L6
~1!

AA D G . ~B9!

Thus, using Eqs.~B4!, ~A1!, and ~B9!, we can write the
boundary conditions for Eq.~12!:

]uin
~2!

]xin
52

A

B3/2 xin1
L6

~2!

B
,

~B10!

v in
~2!→0 as xin→6`

at all times in terms of the same quantities@15#.
Now, Eq. ~12! is linear and we know thatLw50 for

w5S ]uin
~0!

]xin
]v in

~0!

]xin

D . ~B11!

The existence of this zero mode ofL is due to the transla
tional invariance of Eqs.~11!. Due to this zero mode, we ca
also see that if there is a solution (u** ,v** )T of Eq. ~12!,
then it is not unique since any function of the form@u**
1a(]uin

(0)/]xin), v** 1a(]v in
(0)/]xin)#

T with a an arbitrary
r

g

re

-
a

real function oft in is also a solution. Now, the boundar
conditions are not ‘‘translationally invariant’’ in the follow
ing sense. In the hypothetical case that we could solve
equations at a given timet̃ for an interval of values of
L6
(2) , then the different solutions would not be related by

spatial translation. Therefore, we expect Eq.~12! to be solv-
able only for certain values ofL6

(2) or, equivalently, certain
values ofz(t in).

This discussion shows that we first need to ensure that
~12! is indeed solvable. In order to do this, we transform o
problem so as to have homogeneous boundary conditi
For this purpose we define

S pqD5S uin~2!2S 2
A

2B3/2 x
21L2

~2!x f2~x!1L1
~2!x f1~x! D

v in
~2!

D ,
~B12!

where f6(x)→1 for x→6`. For example, we may choos
f2(x)5(12tanhx)/2 and f1(x)5(11tanhx)/2. Therefore,
we now need to solve the equation

LS pqD5S 2
A

2B3/2 x
2v in

~1!2

]v in
~1!

]t in
1

A

2B3/2 x
2v in

~1!2
D

2LS L2
~2!x f2~x!1L1

~2!x f1~x!

0 D ~B13!

subject to the boundary conditions@16#

S ]p

]xin
q
D 50 for xin→6`. ~B14!

The zero modew satisfies these new boundary condition
namely,]w1 /]xin505w2 asxin→6`. Then, the operator
adjoint to L, L* also has a zero modew* such that
]w1* /]xin505w2* asxin→6`. Then, for Eq.~B13! to be
solvable we need its right-hand side to be orthogonal tow*
~see, e.g., Ref.@17# and Krischer and Mikhailov@7#!. The
orthogonality condition will establish a relationship betwe
L2
(2) andL1

(2) at each value oft in , from which, in principle,
we should be able to determine the value ofz(t in).

Assume now that we have determinedz(t in) and found a
solution to Eq.~B13! or, equivalently, to Eq.~12!. Then, as
we mentioned before, we can add an arbitrary multiple of
zero mode ofL and still have a solution. This arbitrary mu
tiple can be determined at the next order by exactly the sa
technique that we have just described, namely, by requi
solvability of Eq.~13!, which is linear and involves the sam
operatorL. Clearly, at each order we will have the sam
arbitrariness, in the sense that we can add any multiple of
zero mode ofL and still have a solution. A solvability con
dition at the following order will then determine this mu
tiple.
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