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Influence of phase-space localization on the energy diffusion in a quantum chaotic billiard
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The quantum dynamics of a chaotic billiard with moving boundary is considered in this paper. We found a
shape parameter Hamiltonian expansion, which enables us to obtain the spectrum of the deformed billiard for
deformations so large as the characteristic wavelength. Then, for a specified time-dependent shape variation,
the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the
energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the
distribution of energy spreads diffusively for the first oscillations of the bounday)=2Dt). We studied
the diffusion constanD as a function of the boundary velocity and found differences with theoretical predic-
tions based on random matrix theory. By extracting highly phase-space localized structures from the spectrum,
previous differences were reduced significantly. This fact provides numerical evidence of the influence of
phase-space localization on the quantum diffusion of a chaotic sypBii63-651X99)01706-7

PACS numbses): 05.45.Mt, 03.65.Sq, 05.30.Fk

I. INTRODUCTION vature distributions or avoided crossing distributions.
We studied the quantum dynamics of the Bunimovich sta-

The quantum dynamics of a classically chaotic system iglium billiard with oscillating walls and calculated the diffu-
at present a topic of very active interest. Specially, with thesion constanD as a function of the boundary velocity. Dif-
great development in artificially fabricated small devices aderences with theoretical predictions were found. For small
quantum dot§1], where quantum manifestation of classical velocities of the boundary, the system diffuses more than
chaos[2] plays an important role. predictions. In this regime, the existence of bouncing ball

Systems governed by a parameter-dependent Hamiltonig#ates enables coherent transport of probability, so the diffu-
H(/) are excellent models to study quantum manifestationsion is enhanced. On the other hand, for large velocities, the
of classical chaos. Dynamical localizati¢B] and phase- System diffuses less than predictions. We propose phase-
space localizatiortscarring phenomend4,5] have been in- space localization as the possible mechanism to reduce dif-
vestigated in those systems. Recently, Wilkingehstudied ~ fusion in this regime. These assertions are supported with
the dispersion of the energy in a generic nonintegrable sygiumerical simulations on the stadium billiard where the most
tem when the parameter is time dependent. He observed thi@calized states in the region under study were extracted. In
it spreads diffusively and found asymptotic theoretical ex-this case, the system behaves in good agreement with the
pressiongusing random matrix theoyfor the diffusion con-  theory.
stant in the limits of large and small velocities of the param-  The outline of the paper is as follows. To make it self-
eter. Numerical experiments performed in a random matrixéontained, in Sec. Il we give a short introduction to the main
model were in good agreement with those predictions. Théesults obtained previously for the diffusion of the energy in
physical motivation of these studies is the possibility of mod-generic chaotic systems. In Sec. Ill we show how to expand
eling the quantum dissipation of a finite-size system of nonthe Hamiltonian of a 2D planar billiard in powers of the
interacting fermions, based on that microscopic diffusive beshape parameter. In Sec. IV we give a detailed numerical
havior of the energy dispersidg]. study of the diffusion constam as a function of the velocity

In this paper, we treat the dispersion of the energy in d)f the bOUndary for the stadium billiard. Section V is devoted
more realistic system: a two-dimensional chaotic billiardto final remarks. We include an Appendix with the expres-
with moving boundary. It is not a simple numerical task to Sions required to obtain the parameter Hamiltonian expan-
solve the time-dependent Schinger equation for a two- Sion in the stadium billiard.
dimensional(2D) billiard with moving boundary7]; spe-
cially because itis very _Iengthy from the computationa_ll po_int Il. QUANTUM ENERGY DIFFUSION IN CHAOTIC
of view. We found a simple shape parameter Hamiltonian SYSTEMS
expansion that enables us to obtain the spectfum to
second-ordgrand wave functions of the deformed billiard Let H(/) be a parametric Hamiltonian related to a ge-
for deformations so large as the characteristic wavelength ineric chaotic system for alf’. The parameter” is a time-
the working energy region. Using that expansion and defindependent functiorr’(t). We restrict to systems with time-
ing a shape oscillatory motion, the quantum dynamic of aeversal symmetry where the statistical properties of the
particle inside the billiard reduces to a system of coupledspectrum are well described by the eigenvalues of ensembles
linear differential equations, which can be integrated di-of Gaussian orthogonal random matrid@&. At any (1),
rectly. On the other hand, this expansion can be used tthe system admits an energy spectrum given by the eigen-
obtain efficiently static properties of the spectrum like cur-value problem for the instantaneous Hamiltonian,
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P (7 (1)),

The system is prepared &t 0 in a highly excited eigenstate
¥,(7(0),r) of the HamiltonianA (~(0)). The state for time

t can be expressed in the basis of eigenstates of the instanta-

neous HamiltoniahEg. (2.1)], the so-called adiabatic basis,

V(D=2 a,() i, (1,0,
Y73
The dispersion of the energy for the considered state is

A’E(D)=2 |a,(D(E(/())-EMD (2.2
M

where E(t)=(¥|E|¥)==X ,|a,(1)[?E (7 (1)) is the expec-
tation value of the energy as a functiontof
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FIG. 1. Schematic figure showing the curvilinear coordinate sys-
tem on the boundary of the stadium billiard. On the dashed line a
deformation of the billiard is shown. The variations of the boundary
are described by the functiars, 6).

r(s,8)=rq(s)+z(s,o)n, (3.2

with ry(s) the parametric equation fdr, andn the outward

Wilkinson [6] observed that the dispersion of the energyp,ormal unit vector tq atro(s) (see Fig. 1 In the Appendix
exhibits a diffusive growth when it is averaged over many,, o givez(s, 8) for the stadium billiard.

states, that is,

(AE)(t)=2Dt.

Let{,(r); n=1.2,... N} be the eigenfunctions of the
billiard defined by{ with eigenwave numberk, around
ko (lk,—ko|<Ak~perimeter/area). Taking?/2m=1, we

. . _ 2 .
Using random matrix theory for the statistical properties ofimmediately see from Eq3.1) thatH,, =k} . The eigen-

the spectrum, he predicted that the diffusion constaist an

universal function ofp (the mean energy densjty:, /, and
the mean value of the off-diagonal elementsobf/ 9/ that

he calledo. The dimensionless parameter p%4/ o is a
measure of the adiabaticity of the variation in the Hamil-
tonian. He found the following asymptotic form of the dif-
fusion constant for small and large

1
275451 (3/4) pTth if k<1

(2.3
if k>1.

IIl. HAMILTONIAN EXPANSION FOR DEFORMED
BILLIARDS

This section is devoted to obtain a Hamiltonian expansion,,
for a particle of massn inside a shape parameter-dependent,;

planar billiard. For variations=/"—/, of the parameter

around/’y, we propose the following expansion in the basis

of eigenfunctions at’,

!
wv?

H,(/ o+ 8)=(H,,+&H) 12)5,,+8 H (3.2

with 6,,=1 andd,,,=0 for u+# v. This allows us to express
the eigenfunctions of the deformed billiard in terms of the

functions vanish o and can be extended outside the bil-
liard in a well-behaved way by using the following expan-
sion:

Ibu 3
$ulto(s) Tz =2— L(1y(9)+0(2°). (33
Moreover, to each functiog,(r) we associate the scaling
function ¢,,(kr/k ). This family of functions depending on
the scaling parametek verifies Helmholtz equation with
wave-numbek.

For infinitesimal variations of the boundary, it is valid to
use perturbation theory to obtain the eigenfunctions and ei-
genvalues of the deformed billiard. With those aproximated
solutions we will obtain a Hamiltonian expansion in powers
of &, which allows us to extend the range of deformations to
the order of the wavelength (2ko).

Let ,(r,5) be the eigenfunction of the deformed billiard
tained frome ,(r) by a continuous variation of the param-
er. As we go to obtain the spectrum up to second order in
8, we express), in terms of ¢, up to first order,

k.(6) . ( K.(6)

K, k
with k() the wave number for whick,(r,5) vanishes on
the deformed boundaryEqg. (3.2]. Then, by expanding
around/’,, we have

+6 > CL,

v(# )

Pu(r,6)=o,

14

eigenfunctions at’y. Then, when the parameter changes as a

function of time, the dynamical evolution of the particle can

be integrated easily using a standard Runge-Kutta method

(see Sec. V.

Let ¢ be a smooth by pieces closed curve defining a pla-
nar billiard. We use a curvilinear coordinate system around

the boundary withs along ¢ and z perpendicular to it as
(z=0 on¢). Consider now that the boundary is deformed
and the changes are parametrized by

d
0= 2 1(5).0
J
S [Kira 2 (9] 1(9))

+ 2 Cdukuro(s)k,), (3.4
v(# p)
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where primes indicate derivation with respecttat/, and ) | | ! ! |
r,=r.n. In what follows, we omit the argumerftq(s)) of

8.5

‘g}/
o

the normal derivatives and drop terms including derivatives - .~
of second order or more. In particular, we take R NI M! -
o, (Kurolk,)=(k,/k,—1)d¢,/dn. Then, multipying Eg. 2 .,,-."
(3.4 by d¢,/dn and integrating orf, we have 10 -....W 'V’r'
2 S
dep R TN AT s
I = (12 = _ ’ K <
H,.=(,) }ggz (S)< on | ds 5 - ”/l}“\ B
N .I
To obtain the last expresion it is necessary to use the follow- 0| mi"’** |
ing quasiorthogonality relatiof], QT 7~ —
'''' Fearies . < T
. e
é % ﬁq’),, rndS . (kﬂ kV)O(l) g - i T T T - T
c on an 2k, OB —(kMJrkV) ' 0.85 09 085 14 17.05 1.1 115
Now, multiplying Eq.(3.4) by d¢,/dn and integrating or, FIG. 2. Approximated spectruigsolid lineg obtained from Eq.
we obtain (3.1) is compared with the exact ortdots for the stadium billiard
with fixed area.
(k,t+k,) d,, I
2 2\ _ lad v ’ M v
Cun(ku =K== =% — jggz (S50 7n ds IV. NUMERICAL RESULTS

We have considered the desymmetrized stadium billiard
By perturbation theory the last expresion would He,;  with radiusr and straight line of length. The boundary only
however, it is not symmetrical with respect o and v.  depends on the shape parametera/r (the area is fixed to
Working to first order ind it is sufficient to replace the factor the value 1 /4). The parameter’ oscillates harmonically

(k,*k,)/2k, by one(we assume thgk,—k,|<ko); but to  around/=1 with frequencyw and amplitudex, that is,
second order it is not the case. Consider two states at the

same distance frork,, ; that is,k. =k, * €. Then, the factor /(t)=1+ asin(owt).
in question(to first order in€) is 1+ €/2k, . To solve the _ _ _ _
prob|em’ we define the Symmetrica| factors, Section 1l shows universal expressions fbr in the
asymptotic limits ofk; therefore,x is a good quantity to
AL=2—(k,+k,)/2Kg, characterize the quantum dynamics of a specific chaotic sys-

tem. In order to calg:ulate the coefficieBt we solved the
which give the same asymmetrical contribution to the state time-dependent Schdinger equation for different initial
from states+. On the other hand, we stress that for genericconditions,
nonintegrable billiards and for any nontrivial deformati@n S
. . . . . . . . . ’r‘ ~ )
dilation is trivial) the interaction is of long-range. So, taking i% =R/ ()P (t,r). 4.1)

into acount the finite dimension of the basis, we suggest o

multiplying the nondiagonal elements by the following cut-
off (®°): A very efficient way(computationally to solve Eq. 4.1 is to

use the parameter expansion of the Hamiltonian obtained in
O =exd —2(k2 — k%)% (koAk)?]. Sec. lll. The solution¥(r,t) is expanded in the basis of
# g eigenfunctions ar’(0)=1,
Finally, nondiagonal Hamiltonian elements acquire the ex-

pression W(r,t)=2, b,(t)d,(r). (4.2
M

g, 0P,
Jan dn

ds. Although ¢,,(r) satifies boundary conditions fef(0)=1, it
does not cancel outside the bounddsge Eq.(3.3)]. Of
course, the amplitude of the oscillations is limited to values
of the order of the wavelength. After replacing E4.2) in
Eq. (4.1, we obtain the system of differential equatigas],

ro_ Cf '
Hp,v__q);w A,uv %gz (s)

Working as before, to obtaihl;’m we multilply equation
0=d?y,/d/?(ry(s),0) by d¢,/dn and integrate it org.

The result is

HMM: 2H,,

. —i
’ 2 —_ %
¢ an
This system was integrated using a standard fourth-order
Figure 2 compares the approximated spectrum obtained frolRunge-Kutta method, and the dispersion of the energy is
Eqg. (3.1 with the exact one for the Bunimovich stadium evaluated using Eq.(2.2 at times t=2nw/w (n

billiard; the agreement is excellent. =0,1,2...). WetakeZi=1 andm=1/2. Then, we used a
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FIG. 3. Dispersion of the energlA?E) vst (time) for w=0.4.
The average is over ten initial states. The solid line is the best linear 9 | : | | :
fit used to estimate the diffusion constdtite slope corresponds to 0.85 09 095 1 1.05 1.1 1.15
2D). {

. . . , FIG. 5. The same spectrum as in Fig. 2 without the bouncing-
basis of 103 odd-odd eigenfunctions arouqg=47.3 at”" 5 states with wave numbeks=46.4589, 47.1943, 47.4220, and

=1 (see Fig. 2 Time evolutions were stopped before the 47,7548 av'=1.
wave functions had spread into the tails of the spectrum.

As an example, Fig. 3 shows the dispersion of the energyy| states. The figure shows theoretical predictions in solid
(A%E) for @=0.4 and«=0.05. The average is over ten gyqight lines for a generic chaotic system with time-reversal

initial states. They were chosgn near the center pf the SPegymmetry[Eq. (2.3, and we can observe significant differ-
trum. It is observed clearly a linear spreadiiffusive be-  onces with the numerical data.

havio of the dispersion of the energy for the first oscilla- |, order to directly see the influence of localized eigen-

tions of the boundarythe slope being equal to®); later,  fnctions on the quantum dynamics of the system, we ex-
the spread goes slowly and eventually saturates. This saturgiacted from the spectrum the most localized states. This pro-
tion phenomenon is associated with the fact that the eigensequre is very simple by using the Hamiltonian expansion

functions of the evolution operator for one perideloquet  presented in Sec. Ill. In order to extract stiteve remove
stateg, which are localized in energy, inhibit the spread of 5imply row and columij from the Hamiltonian matrix. If at
energy for long time$3,11,12. /=1 this state collides in an avoided crossing it is necessary

Figure 4 shows a log-log plot of the diffusion constént q first do the transformation explained in REf]. We have
as a function ofc, which is proportional to the mean value of g yeq bouncing-ball states witk=46.4589, 47.1943,
the boundary velocity|/'|)=2aw/ . Simulations were per- 47.4220, and 47.7548, all of them At=1 (see Fig. 2 The
formed for w=0.05, 0.1, 0.2, 0.4, 1, 2, 5, 10, 20, and 40, resulting spectrum is shown in Fig. 5. In the same way as
with «=0.05(filled circles. In all the cases the average was before, we have calculated the diffusion constant éor
over ten initial conditions. Error bars were calculated using=0.2, 0.4, 1, 5, 10, and 20 with=0.05, and foro=0.2,
the standard deviation of the average in the ensemble of inB.4, 10, 20, 40, and 60 wita=0.09. In this case, the results
are very close to theoretical predictions except for the high-
est values ofv (see Fig. 4.

V. FINAL REMARKS

We have studied the spreading of the energy dispersion in
the Bunimovich stadium billiard with oscillating walls. To
the best of our knowledge this is the first computation of
diffusion on a quantum chaotic system. We arrived at that
possibility by using a Hamiltonian expansion, which we de-
velop in this paper.

inD

) : ‘ ‘ Numerical simulations show that the energy spreads dif-
-5.5 -3.5 -1.5 0.5 25 fusively for a number of oscillationginear behavior and
In x then saturates. We calculated the diffusion coefficiging

FIG. 4. Log-log plot ofD vs k. The (@) correspond to the slope of the initial linear behavipfor different velocities of
stadium billiard fore=0.05. 0.1. 0.2. 0.4. 1. 2. 5. 10. 20. and 40. the boundary, observing significant differences with theoret-

For the case in which bouncing-ball stateee textwere removed, i¢@l predictions based on random matrix theory.

the (¢) correspond tav=0.2, 0.4, 1, 5, 10, and 20 with=0.05 In the adiabatic regiméslow boundary velocitigs the

and the ) correspond tav=0.2, 0.4, 10, 20, 40, and 60 witf system diffuses more than predicted. We associate these dif-
=0.09. The asymptotic theoretical predictions for a generic chaotiderences to the existence of states strongly localized in phase
system with time-reversal symmetry is shown in solid lifigs.  space(their Wigner or Hussimi distributions are strongly lo-
2.3]. Errors smaller than the symbols are not plotted. calized. In particular, we refer to bouncing-ball states,
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which are strongly localized in momentum space. The interball (or states living in a classically regular region, which are
action between these states and generic chaotic ones is mucbnnected to chaotic states by tunnelindiffusion will be
smaller than the typical interaction between generic state@anomalous in the adiabatic regime.

This fact is reflected on the occurrence in the spectrum of

structures surviving parametric variation; that is, straight ACKNOWLEDGMENTS

lines interrupted by very small avoided crossir(gee Fig.

2). Then, having in mind that in this regime Landau-Zener This work was partially supported by UBACY(TW35),
transitions [13,7] are the mechanism of diffusion, those APCT PICT97 03-00050-01015, and SECYT-ECOS. We
straight lines behave like channels allowing a coherent trangvould like to thank A. Fendrik, C. Lewenkopf, and M. Sa-
port of probability to a wide range of energy in each oscil-raceno for useful discussions.

lation. In order to confirm numerically the above explanation

we have extracted from the spectrum those bouncing ball APPENDIX

states living in the region under study. In this case, the sys-

tem diffuses according to the theory. Certainly, classical bil- " this appendix we show the parametrization used to de-
liards with a bouncing-ball continuous family of orbits dis- SC"ibe the deformation of the desymmetrized stadium bil-

play anomalous diffusion tofL4]. liard. The area is fixed to the valud=1+ /4, so the
As the velocity increases, Landau-Zener probability tranPoundary only depends on the shape parameétea/r. A

sitions across small avoided crossings approach exponeR9INtTo=(X,y) on the boundary at'o=1 is given in terms
tially one. Then, if the system starts in a bouncing-ball state@f the curvilinear coordinate system defined in Sec(ste
it moves essentially up and down by a straight line without™'9- D,
mixing. And this situation mimics the evolution of a regular
system where diffusion is known to be very smidlb]. In x(s)=
the spectrum without bouncing-ball states, observed diffu-
sion agrees with theorfin Fig. 4, the solid line with highest
slope reasonably well. However, for high velocities simula-
tions and theory fall apart again, showing the beginning of y(s)=[
saturation for the diffusion process.

Recently we have proposéd] the elimination of avoided
crossings as the natural mechanism to uncover localizedihen, if the deformed boundaries are described by(E@),
structures embedded in the eigenfunctions of chaotic Hamilit is a geometrical problem to show tha(s, 5)=6z'(s)
tonian systems. Precisely, we have shown that many scars df 6°2"(s)/2, with
short periodic orbits are uncovered in the stadium billiard
transforming the parametric spectrum in a set of smooth _i
curves that cross among them. As we mention above, the 2A
elimination of avoided crossings can be carried out dynami- Z'(s)= 1
cally by increasing the boundary velocity; that is, when the (1_ _) sin(s—1)— = if s>1
probability transition is practically one. In the light of this, 2A 2A
saturation of diffusion is expected in chaotic systems for
high velocities as a consequence of these localized structur@¥
associated to short periodic orbits. This saturation phenom- r
enon was studied in a model of banded matrides]; how- i it s<1
ever, the authors have not justified the use of banded matri- 4A2
ces in terms of phase space localization.

In conclusion, we have verified that asymptotic expres- 7(s)={ ——1+
sions(2.3) for the energy diffusion in a chaotic system work A
very well in a wide range of boundary velocities except for 1 1 (

S if s<1
1+sin(s—1) if s>1,

1 if s<1
cogs—1) if s>1.

if s<1

high velocities where diffusion saturates. Moreover, if the - -
system includes a fraction of localized states like bouncing L 2A2 A
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