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Influence of phase-space localization on the energy diffusion in a quantum chaotic billiard
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The quantum dynamics of a chaotic billiard with moving boundary is considered in this paper. We found a
shape parameter Hamiltonian expansion, which enables us to obtain the spectrum of the deformed billiard for
deformations so large as the characteristic wavelength. Then, for a specified time-dependent shape variation,
the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the
energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the
distribution of energy spreads diffusively for the first oscillations of the boundary (^D2E&52Dt). We studied
the diffusion constantD as a function of the boundary velocity and found differences with theoretical predic-
tions based on random matrix theory. By extracting highly phase-space localized structures from the spectrum,
previous differences were reduced significantly. This fact provides numerical evidence of the influence of
phase-space localization on the quantum diffusion of a chaotic system.@S1063-651X~99!01706-7#

PACS number~s!: 05.45.Mt, 03.65.Sq, 05.30.Fk
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I. INTRODUCTION

The quantum dynamics of a classically chaotic system
at present a topic of very active interest. Specially, with
great development in artificially fabricated small devices
quantum dots@1#, where quantum manifestation of classic
chaos@2# plays an important role.

Systems governed by a parameter-dependent Hamilto
H(l ) are excellent models to study quantum manifestati
of classical chaos. Dynamical localization@3# and phase-
space localization~scarring phenomena! @4,5# have been in-
vestigated in those systems. Recently, Wilkinson@6# studied
the dispersion of the energy in a generic nonintegrable
tem when the parameter is time dependent. He observed
it spreads diffusively and found asymptotic theoretical e
pressions~using random matrix theory! for the diffusion con-
stant in the limits of large and small velocities of the para
eter. Numerical experiments performed in a random ma
model were in good agreement with those predictions. T
physical motivation of these studies is the possibility of mo
eling the quantum dissipation of a finite-size system of n
interacting fermions, based on that microscopic diffusive
havior of the energy dispersion@6#.

In this paper, we treat the dispersion of the energy i
more realistic system: a two-dimensional chaotic billia
with moving boundary. It is not a simple numerical task
solve the time-dependent Schro¨dinger equation for a two-
dimensional~2D! billiard with moving boundary@7#; spe-
cially because it is very lengthy from the computational po
of view. We found a simple shape parameter Hamilton
expansion that enables us to obtain the spectrum~up to
second-order! and wave functions of the deformed billiar
for deformations so large as the characteristic wavelengt
the working energy region. Using that expansion and de
ing a shape oscillatory motion, the quantum dynamic o
particle inside the billiard reduces to a system of coup
linear differential equations, which can be integrated
rectly. On the other hand, this expansion can be used
obtain efficiently static properties of the spectrum like c
PRE 591063-651X/99/59~6!/6579~6!/$15.00
is
e
s
l

an
s

s-
hat
-

-
ix
e
-
-
-

a

t
n

in
-

a
d
-
to
-

vature distributions or avoided crossing distributions.
We studied the quantum dynamics of the Bunimovich s

dium billiard with oscillating walls and calculated the diffu
sion constantD as a function of the boundary velocity. Dif
ferences with theoretical predictions were found. For sm
velocities of the boundary, the system diffuses more th
predictions. In this regime, the existence of bouncing b
states enables coherent transport of probability, so the d
sion is enhanced. On the other hand, for large velocities,
system diffuses less than predictions. We propose ph
space localization as the possible mechanism to reduce
fusion in this regime. These assertions are supported w
numerical simulations on the stadium billiard where the m
localized states in the region under study were extracted
this case, the system behaves in good agreement with
theory.

The outline of the paper is as follows. To make it se
contained, in Sec. II we give a short introduction to the m
results obtained previously for the diffusion of the energy
generic chaotic systems. In Sec. III we show how to expa
the Hamiltonian of a 2D planar billiard in powers of th
shape parameter. In Sec. IV we give a detailed numer
study of the diffusion constantD as a function of the velocity
of the boundary for the stadium billiard. Section V is devot
to final remarks. We include an Appendix with the expre
sions required to obtain the parameter Hamiltonian exp
sion in the stadium billiard.

II. QUANTUM ENERGY DIFFUSION IN CHAOTIC
SYSTEMS

Let H(l ) be a parametric Hamiltonian related to a g
neric chaotic system for alll . The parameterl is a time-
dependent functionl (t). We restrict to systems with time
reversal symmetry where the statistical properties of
spectrum are well described by the eigenvalues of ensem
of Gaussian orthogonal random matrices@8#. At any l (t),
the system admits an energy spectrum given by the eig
value problem for the instantaneous Hamiltonian,
6579 ©1999 The American Physical Society
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6580 PRE 59D. A. WISNIACKI AND E. VERGINI
Ĥ„l ~ t !…cm„l ~ t !,r …5
km

2
„l ~ t !…\2

2m
cm„l ~ t !,r …. ~2.1!

The system is prepared att50 in a highly excited eigenstat
cn„l (0),r … of the HamiltonianĤ„l (0)…. The state for time
t can be expressed in the basis of eigenstates of the inst
neous Hamiltonian@Eq. ~2.1!#, the so-called adiabatic basi

C~r ,t !5(
m

am~ t !cm„l ~ t !,r ….

The dispersion of the energy for the considered state is

D2E~ t !5(
m

uam~ t !u2@Em„l ~ t !…2E~ t !#2, ~2.2!

whereE(t)[^CuEuC&5(muam(t)u2Em„l (t)… is the expec-
tation value of the energy as a function oft.

Wilkinson @6# observed that the dispersion of the ener
exhibits a diffusive growth when it is averaged over ma
states, that is,

^D2E&~ t !52Dt.

Using random matrix theory for the statistical properties
the spectrum, he predicted that the diffusion constantD is an
universal function ofr ~the mean energy density!, \, l̇ , and
the mean value of the off-diagonal elements of]H/]l that
he calleds. The dimensionless parameterk5r2\ l̇ s is a
measure of the adiabaticity of the variation in the Ham
tonian. He found the following asymptotic form of the di
fusion constant for small and largek:

D5H 225/4pG~3/4!
1

r3\
k3/2 if k!1

p
1

r3\
k2 if k@1.

~2.3!

III. HAMILTONIAN EXPANSION FOR DEFORMED
BILLIARDS

This section is devoted to obtain a Hamiltonian expans
for a particle of massm inside a shape parameter-depend
planar billiard. For variationsd[l 2l 0 of the parameter
aroundl 0, we propose the following expansion in the ba
of eigenfunctions atl 0,

Hmn~ l 01d!.~Hmm1d2Hmm9 /2!dmn1d Hmn8 , ~3.1!

with dmm51 anddmn50 for mÞn. This allows us to expres
the eigenfunctions of the deformed billiard in terms of t
eigenfunctions atl 0. Then, when the parameter changes a
function of time, the dynamical evolution of the particle c
be integrated easily using a standard Runge-Kutta me
~see Sec. IV!.

Let z be a smooth by pieces closed curve defining a p
nar billiard. We use a curvilinear coordinate system arou
the boundary withs along z and z perpendicular to it ats
(z50 on z). Consider now that the boundary is deform
and the changes are parametrized by
ta-

f

-

n
t

a

od

-
d

r ~s,d!5r 0~s!1z~s,d!n, ~3.2!

with r 0(s) the parametric equation forz, andn the outward
normal unit vector toz at r0(s) ~see Fig. 1!. In the Appendix
we givez(s,d) for the stadium billiard.

Let $fm(r ); m51,2, . . . ,N% be the eigenfunctions of the
billiard defined byz with eigenwave numberskm around
k0 (ukm2k0u<Dk;perimeter/area). Taking\2/2m51, we
immediately see from Eq.~3.1! that Hmm5km

2 . The eigen-
functions vanish onz and can be extended outside the b
liard in a well-behaved way by using the following expa
sion:

fm„r 0~s!1zn…5z
]fm

]n
„r 0~s!…1O~z3!. ~3.3!

Moreover, to each functionfm(r ) we associate the scalin
function fm(kr /km). This family of functions depending on
the scaling parameterk verifies Helmholtz equation with
wave-numberk.

For infinitesimal variations of the boundary, it is valid t
use perturbation theory to obtain the eigenfunctions and
genvalues of the deformed billiard. With those aproxima
solutions we will obtain a Hamiltonian expansion in powe
of d, which allows us to extend the range of deformations
the order of the wavelength (2p/k0).

Let cm(r ,d) be the eigenfunction of the deformed billiar
obtained fromfm(r ) by a continuous variation of the param
eter. As we go to obtain the spectrum up to second orde
d, we expresscm in terms offn up to first order,

cm~r ,d!5fmS km~d!

km
r D1d (

n(Þm)
cmnfnS km~d!

kn
r D ,

with km(d) the wave number for whichcm(r ,d) vanishes on
the deformed boundary@Eq. ~3.2!#. Then, by expanding
aroundl 0, we have

05
dcm

dl
„r 0~s!,0…

5@km8 r n /km1z8~s!#
]fm

]n
„r 0~s!…

1 (
n(Þm)

cmnfn„kmr 0~s!/kn…, ~3.4!

FIG. 1. Schematic figure showing the curvilinear coordinate s
tem on the boundary of the stadium billiard. On the dashed lin
deformation of the billiard is shown. The variations of the bounda
are described by the functionz(s,d).
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where primes indicate derivation with respect tol at l 0 and
r n[r .n. In what follows, we omit the argument„r 0(s)… of
the normal derivatives and drop terms including derivativ
of second order or more. In particular, we ta
fn(kmr 0 /kn).(km /kn21)]fn /]n. Then, multipying Eq.
~3.4! by ]fm /]n and integrating onz, we have

Hmm8 [~km
2 !852 R

z
z8~s!S ]fm

]n D 2

ds.

To obtain the last expresion it is necessary to use the foll
ing quasiorthogonality relation@9#,

R
z

]fm

]n

]fn

]n

r nds

2kmkn
5dmn1

~km2kn!

~km1kn!
O~1!.

Now, multiplying Eq.~3.4! by ]fn /]n and integrating onz,
we obtain

cmn~km
2 2kn

2!52
~km1kn!

2kn
R

z
z8~s!

]fm

]n

]fn

]n
ds.

By perturbation theory the last expresion would beHmn8 ;
however, it is not symmetrical with respect tom and n.
Working to first order ind it is sufficient to replace the facto
(km1kn)/2kn by one~we assume thatukm2knu!k0); but to
second order it is not the case. Consider two states at
same distance fromkm ; that is,k65km6e. Then, the factor
in question~to first order ine) is 17e/2km . To solve the
problem, we define the symmetrical factors,

Amn522~km1kn!/2k0 ,

which give the same asymmetrical contribution to the statm
from states6. On the other hand, we stress that for gene
nonintegrable billiards and for any nontrivial deformation~a
dilation is trivial! the interaction is of long-range. So, takin
into acount the finite dimension of the basis, we sugg
multiplying the nondiagonal elements by the following cu
off (FCf):

Fmn
Cf 5exp@22~km

2 2kn
2!2/~k0Dk!2#.

Finally, nondiagonal Hamiltonian elements acquire the
pression

Hmn8 52Fmn
Cf Amn R

z
z8~s!

]fm

]n

]fn

]n
ds.

Working as before, to obtainHmm9 we multilply equation
05d2cm /dl 2

„r 0(s),0… by ]fm /]n and integrate it onz.
The result is

Hmm9 5
3~Hmm8 !2

2Hmm
2 R

z
z9~s!S ]fm

]n D 2

ds.

Figure 2 compares the approximated spectrum obtained f
Eq. ~3.1! with the exact one for the Bunimovich stadiu
billiard; the agreement is excellent.
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IV. NUMERICAL RESULTS

We have considered the desymmetrized stadium billi
with radiusr and straight line of lengtha. The boundary only
depends on the shape parameterl 5a/r ~the area is fixed to
the value 11p/4). The parameterl oscillates harmonically
aroundl 51 with frequencyv and amplitudea, that is,

l ~ t !511 a sin~vt !.

Section II shows universal expressions forD in the
asymptotic limits ofk; therefore,k is a good quantity to
characterize the quantum dynamics of a specific chaotic
tem. In order to calculate the coefficientD, we solved the
time-dependent Schro¨dinger equation for different initial
conditions,

i\
]C~ t,r !

]t
5Ĥ„l ~ t !…C~ t,r !. ~4.1!

A very efficient way~computationally! to solve Eq. 4.1 is to
use the parameter expansion of the Hamiltonian obtaine
Sec. III. The solutionC(r ,t) is expanded in the basis o
eigenfunctions atl (0)51,

C~r ,t !5(
m

bm~ t !fm~r !. ~4.2!

Althoughfm(r ) satifies boundary conditions forl (0)51, it
does not cancel outside the boundary@see Eq.~3.3!#. Of
course, the amplitude of the oscillations is limited to valu
of the order of the wavelength. After replacing Eq.~4.2! in
Eq. ~4.1!, we obtain the system of differential equations@10#,

ḃm~ t !5
2 i

\ (
n

Hmn„l ~ t !…bn .

This system was integrated using a standard fourth-o
Runge-Kutta method, and the dispersion of the energy
evaluated using Eq. ~2.2! at times t52np/v (n
50,1,2, . . . ). Wetake \51 andm51/2. Then, we used a

FIG. 2. Approximated spectrum~solid lines! obtained from Eq.
~3.1! is compared with the exact one~dots! for the stadium billiard
with fixed area.
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basis of 103 odd-odd eigenfunctions aroundk0547.3 at l
51 ~see Fig. 2!. Time evolutions were stopped before th
wave functions had spread into the tails of the spectrum

As an example, Fig. 3 shows the dispersion of the ene
^D2E& for v50.4 anda50.05. The average is over te
initial states. They were chosen near the center of the s
trum. It is observed clearly a linear spreading~diffusive be-
havior! of the dispersion of the energy for the first oscill
tions of the boundary~the slope being equal to 2D); later,
the spread goes slowly and eventually saturates. This sa
tion phenomenon is associated with the fact that the eig
functions of the evolution operator for one period~Floquet
states!, which are localized in energy, inhibit the spread
energy for long times@3,11,12#.

Figure 4 shows a log-log plot of the diffusion constantD
as a function ofk, which is proportional to the mean value o
the boundary velocitŷu l̇ u&52av/p. Simulations were per-
formed for v50.05, 0.1, 0.2, 0.4, 1, 2, 5, 10, 20, and 4
with a50.05~filled circles!. In all the cases the average w
over ten initial conditions. Error bars were calculated us
the standard deviation of the average in the ensemble of

FIG. 3. Dispersion of the energŷD2E& vs t ~time! for v50.4.
The average is over ten initial states. The solid line is the best lin
fit used to estimate the diffusion constant~the slope corresponds t
2D).

FIG. 4. Log-log plot ofD vs k. The (d) correspond to the
stadium billiard forv50.05, 0.1, 0.2, 0.4, 1, 2, 5, 10, 20, and 4
For the case in which bouncing-ball states~see text! were removed,
the (L) correspond tov50.2, 0.4, 1, 5, 10, and 20 witha50.05
and the (s) correspond tov50.2, 0.4, 10, 20, 40, and 60 witha
50.09. The asymptotic theoretical predictions for a generic cha
system with time-reversal symmetry is shown in solid lines@Eq.
2.3#. Errors smaller than the symbols are not plotted.
y

c-

ra-
n-
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,

g
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tial states. The figure shows theoretical predictions in so
straight lines for a generic chaotic system with time-rever
symmetry@Eq. ~2.3!#, and we can observe significant diffe
ences with the numerical data.

In order to directly see the influence of localized eige
functions on the quantum dynamics of the system, we
tracted from the spectrum the most localized states. This
cedure is very simple by using the Hamiltonian expans
presented in Sec. III. In order to extract statej, we remove
simply row and columnj from the Hamiltonian matrix. If at
l 51 this state collides in an avoided crossing it is necess
to first do the transformation explained in Ref.@4#. We have
removed bouncing-ball states withk546.4589, 47.1943,
47.4220, and 47.7548, all of them atl 51 ~see Fig. 2!. The
resulting spectrum is shown in Fig. 5. In the same way
before, we have calculated the diffusion constant forv
50.2, 0.4, 1, 5, 10, and 20 witha50.05, and forv50.2,
0.4, 10, 20, 40, and 60 witha50.09. In this case, the result
are very close to theoretical predictions except for the hi
est values ofv ~see Fig. 4!.

V. FINAL REMARKS

We have studied the spreading of the energy dispersio
the Bunimovich stadium billiard with oscillating walls. T
the best of our knowledge this is the first computation
diffusion on a quantum chaotic system. We arrived at t
possibility by using a Hamiltonian expansion, which we d
velop in this paper.

Numerical simulations show that the energy spreads
fusively for a number of oscillations~linear behavior! and
then saturates. We calculated the diffusion coefficient~the
slope of the initial linear behavior! for different velocities of
the boundary, observing significant differences with theor
ical predictions based on random matrix theory.

In the adiabatic regime~slow boundary velocities!, the
system diffuses more than predicted. We associate these
ferences to the existence of states strongly localized in ph
space~their Wigner or Hussimi distributions are strongly lo
calized!. In particular, we refer to bouncing-ball state

ar

ic

FIG. 5. The same spectrum as in Fig. 2 without the bounci
ball states with wave numbersk546.4589, 47.1943, 47.4220, an
47.7548 atl 51.
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which are strongly localized in momentum space. The in
action between these states and generic chaotic ones is
smaller than the typical interaction between generic sta
This fact is reflected on the occurrence in the spectrum
structures surviving parametric variation; that is, straig
lines interrupted by very small avoided crossings~see Fig.
2!. Then, having in mind that in this regime Landau-Zen
transitions @13,7# are the mechanism of diffusion, thos
straight lines behave like channels allowing a coherent tra
port of probability to a wide range of energy in each osc
lation. In order to confirm numerically the above explanati
we have extracted from the spectrum those bouncing
states living in the region under study. In this case, the s
tem diffuses according to the theory. Certainly, classical
liards with a bouncing-ball continuous family of orbits di
play anomalous diffusion too@14#.

As the velocity increases, Landau-Zener probability tra
sitions across small avoided crossings approach expo
tially one. Then, if the system starts in a bouncing-ball sta
it moves essentially up and down by a straight line witho
mixing. And this situation mimics the evolution of a regul
system where diffusion is known to be very small@15#. In
the spectrum without bouncing-ball states, observed di
sion agrees with theory~in Fig. 4, the solid line with highes
slope! reasonably well. However, for high velocities simul
tions and theory fall apart again, showing the beginning
saturation for the diffusion process.

Recently we have proposed@4# the elimination of avoided
crossings as the natural mechanism to uncover local
structures embedded in the eigenfunctions of chaotic Ha
tonian systems. Precisely, we have shown that many sca
short periodic orbits are uncovered in the stadium billia
transforming the parametric spectrum in a set of smo
curves that cross among them. As we mention above,
elimination of avoided crossings can be carried out dyna
cally by increasing the boundary velocity; that is, when t
probability transition is practically one. In the light of thi
saturation of diffusion is expected in chaotic systems
high velocities as a consequence of these localized struc
associated to short periodic orbits. This saturation phen
enon was studied in a model of banded matrices@16#; how-
ever, the authors have not justified the use of banded m
ces in terms of phase space localization.

In conclusion, we have verified that asymptotic expr
sions~2.3! for the energy diffusion in a chaotic system wo
very well in a wide range of boundary velocities except
high velocities where diffusion saturates. Moreover, if t
system includes a fraction of localized states like bounc
S.
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ball ~or states living in a classically regular region, which a
connected to chaotic states by tunneling!, diffusion will be
anomalous in the adiabatic regime.
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APPENDIX

In this appendix we show the parametrization used to
scribe the deformation of the desymmetrized stadium
liard. The area is fixed to the valueA511p/4, so the
boundary only depends on the shape parameterl 5a/r . A
point r 05(x,y) on the boundary atl 051 is given in terms
of the curvilinear coordinate system defined in Sec. III~see
Fig. 1!,

x~s!5H s if s<1

11sin~s21! if s.1,

y~s!5H 1 if s<1

cos~s21! if s.1.

Then, if the deformed boundaries are described by Eq.~3.2!,
it is a geometrical problem to show thatz(s,d).dz8(s)
1d2z9(s)/2, with

z8~s!5H 2
1

2A
if s<1

S 12
1

2AD sin~s21!2
1

2A
if s.1

and

z9~s!55
3

4A2
if s<1

1

A
211S 12

1

2AD 2

sin2~s21!1

1

2A2
2

1

A S 12
3

4AD sin~s21! if s.1.
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