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Biological neural communications channels transport environmental information from sensors through
chains of active dynamical neurons to neural centers for decisions and actions to achieve required functions.
These kinds of communications channels are able to create information and to transfer information from one
time scale to the other because of the intrinsic nonlinear dynamics of the component neurons. We discuss a
very simple neural information channel composed of sensory input in the form of a spike train that arrives at
a model neuron, then moves through a realistic synapse to a second neuron where the information in the initial
sensory signal is read. Our model neurons are four-dimensional generalizations of the Hindmarsh-Rose neuron,
and we use a model of chemical synapse derived from first-order kinetics. The four-dimensional model neuron
has a rich variety of dynamical behaviors, including periodic bursting, chaotic bursting, continuous spiking,
and multistability. We show that, for many of these regimes, the parameters of the chemical synapse can be
tuned so that information about the stimulus that is unreadable at the first neuron in the channel can be
recovered by the dynamical activity of the synapse and the second neuron. Information creation by nonlinear
dynamical systems that allow chaotic oscillations is familiar in their autonomous oscillations. It is associated
with the instabilities that lead to positive Lyapunov exponents in their dynamical behavior. Our results indicate
how nonlinear neurons acting as input/output systems along a communications channel can recover informa-
tion apparently “lost” in earlier junctions on the channel. Our measure of information transmission is the
average mutual information between elements, and because the channel is active and nonlinear, the average
mutual information between the sensory source and the final neuron may be greater than the average mutual
information at an earlier neuron in the channel. This behavior is strikingly different than the passive role
communications channels usually play, and the “data processing theorem” of conventional communications
theory is violated by these neural channels. Our calculations indicate that neurons can reinforce reliable
transmission along a chain even when the synapses and the neurons are not completely reliable components.
This phenomenon is generic in parameter space, robust in the presence of noise, and independent of the
discretization process. Our results suggest a framework in which one might understand the apparent design
complexity of neural information transduction networks. If networks with many dynamical neurons can re-
cover information not apparent at various waystations in the communications channel, such networks may be
more robust to noisy signals, may be more capable of communicating many types of encoded sensory neural
information, and may be the appropriate design for components, neurons and synapses, which can be indi-
vidually imprecise, inaccurate “devices.”

PACS numbe(s): 87.10+e, 89.70+c, 05.45-a

I. INTRODUCTION dynamics[1]. The process of “information creation” is in-
timately associated with the instabilities that allow chaotic

The transmission of sensory information from the envi-behavior of these nonlinear systems: two states of the sys-
ronment to decision centers through neural communicationtem, indistinguishable because only finite resolution observa-
channels requires a high degree of reliability and sensitivitytions can occur, may through the action of the instabilities of
from networks of heterogenous, often inaccurate, sometimehe nonlinear dynamics find themselves in the future widely
unreliable components. The properties of the channel itselseparated in the state space, and thus distinguishable. Infor-
assuming the sensor is accurate, must be richer than convemation about different states that was unavailable at one time
tional channels studied in engineering applications. Thosenay become available at a later time. However, it is impor-
channels are passive and, when of high quality, can relagant to recall that this “new” information is only about the
inputs accurately to a receiver. neuron itself.

Neural communications channels are composed of dy- In this paper, we examine the role of this aspect of non-
namically active elements capable of complex autonomoubnear systems when they are part of a communications
oscillations. Individually, nonlinear neurons can create infor-chain. Our interest is in information transmission channels
mation in a way that is familiar in the study of nonlinear that model the actions of realistic neurons and realistic syn-

aptic connections among them. We show that information
that may be unavailable or “lost,” or hidden below obser-
* Author to whom correspondence should be addressed. vational resolution at one waystation on the neural chain,
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may be recovered at a later waystation and thus become use- In addition, some neurons produce spikes in bursts, and
ful again. Our discussion of the transmission properties ofhis can also be seen as a special code. For example, there is
active neural channels is phrased in the context of an ideasome evidence that in the hippocampus, relevant information
ized channel composed on one neufh that receives in- is carried by bursts rather than single spik&4], and more
formation in the form of a spike train and passes this ongenerally, burst firing is an efficient and reliable way to
modulated by its own dynamics, through a realistic synaps@ropagate impulses in neural networks with low connection
to a second neuroN2. When the synapse and the receiverStrengths. Further, in some situations the details of the spik-
neuron are properly tuned, information that is hiddenat "9 Within a burst can also be relevant.

is again available aN2. In a quantitative fashion, we show Different codes yield different numerical values for our
that the average mutual information between the sensory Si%}forr_natlon measures, an_d for some complex cases, as with
nal sequence and2 can belarger than the average mutual ursting neurons, the cho_lce of neural COdG‘T’ say the timing of
information between the sensory signal sequence Mhd _bursts or the timing of spikes, may determlng the amount of
Further, this information recovery is quite robust in the pa_mformauon that is conveyed by the neural signal.

rameter space of the neurons and the synapse and it persift§on. t?e Othfr hand, it appfearsfthat even when (:'ne celglcu;
when noise is added to both the incoming sensory signal ang s Information measures free from any assumption abou

the output of the synaptic connection what are the relevant features of the signals, there is a critical
While the model is made much simpler than a realisticdependence on the time resolution of the discretize{fidi)

neural channel, it serves to illustrate in a concrete way thﬁqsfg(rjmlgti(r)enp:ﬁgggﬂpegs t:fe iéﬁ?er\r/]egfoiclztl?rr: t?]Zt(Ieimli?Ef ilndf?al
role of nonlinear oscillations of communications channel y

components. In this paper, we focus on neural communica@'tely accurate time resolution and infinitely long signals.

tions channels and particulars of biological neural informa—Clearly realistic biological systems must cope with the ab-

tion encoding, but we anticipate that the lessons of this papesfencr:a O.f th|stlr:jetallzedbsnuﬁc_lona ?urﬂr}r_]odel results suggest
may prove of value to the design of other, more familiar,melc ta;]r)lsms at may etL.‘ : Itzeh or ! f's purtposet. for i
information transmission channels. n this paper, we investigate how information transfer in

In establishing our model, we must delve a bit into issued active information channel depends on the coding as-

associated with the manner in which information from sen-SUMPtions and how different neural codes can Interact in
ple neural models. We study a system of two spiking-

sory systems is encoded in a neural system. Understandi " th unidirectional i The intrinsi
neural codes is a major issue in neuroscigr®elt is gen- d rsting neur(;)?s Wi tunl rec |on? coulp Ing. he.m r|fn3|c h
erally agreed that the natural framework in which to quantify yn?”r‘]'civa? h N ﬁndr%gé ggnf[ﬁi lon atornng v?/ Cw?llln r? V‘T'IUC
the communication process between neurons is informatio e;t gn; reilgtiiprgee?surerﬁenct)Withsf}sr?/i?eetirﬁe reesolufiocr)1 can
theory [3-5], which is a powerful tool for the analysis of - . .

y[3-5) P y lead to the striking result that information “lost” after the

input-output relations, and has proven to be useful in mea: : ds t ke train inout b d
suring the efficiency and reliability of several neural system IrSt néuron responas to a spike tramn input can beé recovere
fter the second neuron acts on the output of the first neuron.

[6—9]. To calculate the usual information measures, such h hanism for thi it has b indicated ab o

entropy and mutual information, minimal assumptions about € mechanism for this resuit has been indicated above. Une

the nature of the neural code are required. In principle, neur onsequence of this work is that familiar results of informa-
' lon theory for passive channels need careful examination in

signals are continuous functions of time, but they can only, . L . ) ;
transmit a finite amount of information because of theth.e'.r apphpatlon to neural mform:_:ltlon transport. We will ex-
%hcnly indicate an example of this below.

bounded accuracy of biological systems and the unavoidabl . .
noisy environment. Only some features or events of the sig- We speculate that nature takes advantage of this ability to

nal are transmitted and carry the relevant information. Fo ecover hidden information in order to develop reliable neu-

most neurons, the generation of an action potefiaspike ral lr:_fotr):natlon tr?nsmlssuorl_ systems nec_essarlly tbU|It with
is the most important event in its behavior, and it is generallyunre lable synaptic connections among ihaccurate compo-

agreed that the action potential is the fundamental unit Oper_;_ts.. . ved as follows: In th t secti
information for the nervous system. Traditionally, it is ar- IS paper IS organized as follows: In the next section, we

gued that other details of the sensory signal, such as thrgview some results from information theory relevant for our
particular waveforms of spikes, are not relevant, and that th&vork. In Se_c. I, we present our mode_ls for bursting neurons
information that is not carried by the spike train is lost. and synaptic connections. Section IV is devoted to the results

On the other hand, it appears that there is not a uniqu8f our S|mucl)at|ons e}tnd th§ calcmljlapon of th;. mformglt!onth
neural code10]. Although the idea of a “rate code” has measures. Our results and conclusions are discussed in the

been widely accepted since the seminal work of AdfiEH, final Sec. V. An appendix contains some technical details

there is strong experimental evidence that in certain neurzﬁbogt evaluating information theoretic quantities in our sys-

systems the precise timing of the spikes also plays a signiﬁ—ern

cant role in the communication procd4®,13. Moreover, it

is not clear at all if the information processing is always Il. MEASURES AND REPRESENTATIONS
performed by single neurons or if population coding is OF NEURAL INFORMATION
needed. It is possible that both types of coding are present in
neural systems. In that case, different neural subsystems can
have different codes. The neural communications channel In this paper, we are concerned with information transfer
must be flexible enough to accommodate this variety in @among neurons and the role of neurons as active dynamical
reliable manner. elements of a network in achieving reliable communication

A. Representing neural signals
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of information from sensory input to processing or decisionsymbols;. The symbol alphabet is all possible words, here
centers. It is assumed here that all relevant information igll binary numbers oL bits, and we sum over that alphabet.
contained in the time course of the membrane poterfigl ~ An analogous expression with(r;), the probability of oc-
of the neurons. This we take as the “neural signal” of thecurrence of a particular response sequence, is used to calcu-
component neurons in our networks. Chemical signalindate the entropy of the receiver neuron
among neurons may follow some of the patterns we discuss
here, but we do not consider that here. _

In principle, neural signals are continuous in time and H(R)= rEJ p(rj)logz p(r))- @
should be treated by continuous information thedty].
However, we employ a discrete treatment sit@econtinu- The conditional entropy for the response sequeRce
ous treatment of complex signals with unknown distributionsgiven a stimulus sequenis
cannot be implemented in practid®) in a real environment
signals cannot be transmitted and decoded with infinite ac- H(RIS)=—2, p(s)> p(rjls)log, p(rils), (3
curacy, andc) there is much experimental evidence that in s T
most neurons all the relevant information is carried by action ] - N
potentials. Statemer(t) suggests we can use a discrete am_wherep(rj|s_i) is the conditional prqbablllty of occurrence of
plitude coding that records the presence or absence of actidie wordr; in the output system given that the wasdoc-
potentials and disregards details of the action potential wave&urs in the input. This entropy is also called noise entr@y
forms. For example, we might use a binary code indicatind?€cause it quantifies the variability of the response for a
whether there is an action potentid) or not(0). A continu-  fixed stimulus. _ N
ous coding in time is still possible, but we adopt a further !N @ symmetric manner, we define the conditional entropy

discretization in time based d) and (b). of the stimulus when the response is known as

We need to specify a particular rule to translate the mem-
brane potential as a function of timgt) into a discrete H(S|R)=—E P(rj)z p(silr)log, p(sirj). (4
sequence of symbolss{,s,,S3,...). The symbols (or T Si

words occur at some definite timig, but can typically con- . . .
tain information about the past. Here, p(si|r;) is the conditional probability for the wors

Concretely, we take windows of lengthin the time se- [N the stimulus, when the response is known to rhe
ries and divide them int& bins of durationAt=T/L. We H(SIR) is also called stimulus equivocatidig], since it

assign the value 1 or 0 to each bin according to the occyrduantifies the uncertainty about the stimulus sequence that
rence or nonoccurrence of soreeent for example, an ac- remains having seen the response sequence. Both conditional
tion potential in that bin. Thus, if we have a time series of€Ntropies are positive semidefinite aHqS|R)<H(S) and
lengthNAt, we can havéN— L +1 words ofL bits, counting H(RIS)<H(R), because the observation of the response
overlapping intervals, in each window of length We use (stimulug cannotincreasethe uncertainty about the stimulus
the term “event” instead of action potential because for (FESPONSE o , o
more complex signals we can choose different types of 1N€ essential quantity in evaluating a communications
events as we will see in the next section. For a particulaFN@nnel is the average mutual information between the
time series, our rules comprised of the choice of an event an%l_t'mUIUS sequence and the response sequef&R)
of the quantitiesT and At define a certaircoding spacan ~ — ! (R,S). Itanswers the question: On average how much, in
which the usual information measures, such as entropy angftS: do we know about the stimulus sequence, having ob-
mutual information, are computed. In this paper, we will S€Tved the response sequencevioe versa It is the critical
inquire how these information measures depend on thg'€asure of the ability to recover information encoded in the
choice of such @oding space stimulus from observations of the response. It admits many
Our information source is taken to be a synaptic inputequwalent formg18]. We use two that involve the condi-

spike train translated into the discrete space of stirguli tonal entropies

Th.e mformatlpn chgnnel is composed of.a neuron that re- I(SR)=H(S)—H(SIR), )
ceives the spike train, a synaptic connection, and a receiver

that_|s another neuron. The receiver neuron memprane poten- I(R,S)=H(R)—H(R|S). (6)
tial is translated to the space of responseg (ising our

encoding rules. This quantity is also positive semidefinite, as follows
from the inequalities of the previous paragraph.
B. Ideas from information theory: The expressions) and (6) admit two slightly different
A summary of required results interpretations. In the firstH(S) represents the maximum

We review now some ideas from information theory. Theinformation that could be encoded ahqS|R) can be inter-

entropy, in bits, associated with a given sequence of stimufPreted as the information lost in the communication process.
is given by In the secondH(R) corresponds to the maximal information

that could be received antdl(R|S) can be seen as the part of
this information that is independent of the stimulus.
H(S)= _g p(si)log, p(si), D We will also make use of the normalized average mutual
' information, which quantifies the efficiency of the informa-
wherep(s;) is the probability of occurrence of the word or tion transmission:
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I1l. NEURON MODEL, STIMULUS MODEL,
AND SYNAPSE MODELS
A. Neuron model
We work with a four-dimensional model of a spiking-
bursting neuron. This is an extension of the Hindmarsh-Rose

S R R2 ) .
—GRD % IRLRY ) model of thalamocortical neurofi$9], and it was developed

KSR2) to reproduce the observed complex behavior of isolated neu-

FIG. 1. Schematic diagram of our model of a neural informationlrogstfrorpr;he st(()jrr}atogfls_trlct%angltlon OJ tre Callfobrnla Spmﬁtl
transmission channel. The synaptic stimulus current sequéiise obster. 1he model contains the intraceliuiar membrane voit-

injected into the bursting neurdwil. that is unidirectionally coupled 29€ X(t) and several currents represented as polynomials
to a second bursting neurdi2 through an excitatory chemical @mong the dynamical variables in the vector field of the dif-
synapseCH. Both neurons are modeled by the four-equation modeiferential equations. The polynomial form came from an at-
(99—(12). The synaptic input and the chemical synapse are detet€Mpt[19] to simplify the complicated current-voltage rela-
mined by Egs.(13) and (14)—(15), respectively. We analyze the tionships of Hodgkin-Huxley conductance based models by
average mutual information between the stimulus and the responggoviding accurate polynomial representations of these

neuronsl (S,R1) andl(S,R2) as well ad (R1,R2). current-voltage relations within the limited dynamical range
of neural activity. The equations take the fof20]
E(R,S)=I(R,S)/H(S). (7) dx(t) ) .
T=y(t)+3x(t) —X(t)°—2z+Jgc+I(1), 9)
This is dimensionless and, sint¢®(S) is the maximum dy(t)
amount of information that_can be encodedsB(R,S) 3(; =1-5x(t)2—y(t)—gw(t), (10)
=<1. E(R,S)=0 means the stimulus and the response system t
are independent, and all incoming information is lost in the
channel.E(R,S)=1 means there is perfect matching be- dz(t)
tween stimulus and response, so all information is preserved qr ~ M2+ 4 +hi], 11

in transmission.
The last item from information theory that we will find
useful for our work is the so-called “data processing in- dw(t) —
: L Pre 9 ——=v[—w(t)+3{y(t) + 1], (12)
equality” theorem[6]. If we have a communication chain in dt
which the stimulusS is transmitted first to a receiver with
response sequend®l and then this response sequence iswhere g,h,/,u, and v, are parameters chosen to ke
transmitted in turn to a second receptor with response se=0.0278, h=1.605, /=1.619, u=0.002 15, and v
guenceR2, the theorem states that =0.0009. We use these parameter values for our model neu-
rons throughout this papedy. will be varied as required.
The dynamical variabl&(t) represents the membrane poten-
I(S,R2)<I(S,R1). (8) tial, y(t) is a “fast” recovery current, and(t) andw(t) are
two slow adaptation variablesr& u<<1). w(t) represents
very slow exchange of intracellular calcium between the cy-
This result has a clear intuitive meaning: Information nottoplasm to the endoplasmic reticuludy, corresponds to an
present at the intermediate waystation along the communicanjected dc current and will be our main control parameter.
tions chain and not seen in the sequeRdie cannot be re- J(t) represents the synaptic input for the neuron. As in other
covered further along in the response sequékzelnforma- models of bursting neural activity, this model requires the
tion lost cannot be recovered. combination of slow £,w) and fast k,y) subsystems. The
In our work this last result plays an important role. We fast subsystem alternates between quiescent and periodic be-
will study a model of a neural processing chain, as displayethavior as the variablez and w change, giving rise to the
in Fig. 1 where the neuron elements along the chain arbursting behavior.
active nonlinear systems able to create information when The isolated neuron, witd(t)=0, displays a wide vari-
running autonomouslyl]. In our model, a synaptic inpil® ety of dynamical behaviors controlled by the paramétgr.
is injected into the first neuromN1l. This is connected For the model parameters given above we obséivquies-
through an excitatory chemical synagSel to a second neu- cent membrane voltage fdy.<0.73 and bistability in state
ronN2. The synaptic input is the stimulus sequeBder our  space near a subcritical Hopf bifurcation Ji.=0.82; (b)
system, and the membrane potentials of the neurons are tiperiodic bursting for 0.8 J4.<3.0; (c) chaotic bursting for
response®R1 andR2. We calculate the conditional entropies 3.0<J4.<3.25; and(d) continuous spiking fody.>3.25.
and average mutual informations among these three stages: This last regime is very interesting. It models an excitable
[(S,R1), I(S,R2), andl(R1,R2). cell near the boundary of chaotic bursting, since a small per-
Now we turn to some details of the models adopted forturbation can induce short bursting sequeri@ig. This ex-
our bursting neurons, for the synaptic input sequence and faritable regime will be the main region that we will explore in
the chemical synapse. the next section.
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B. Stimulus model

We represent a stimulus input as a train of spikes arriving  dt

atN1:
t—t;
Ji() =30, G)(t—ti)(T g (=67 (13
|

with amplituded,, firing timest;, and a characteristic decay

time 7. ®(x) is the Heaviside function®(x)=1, for x

>0, and®(x)=0 for x<0. We will use inhibitory input
(Jo<0). The firing times are drawn from a constant distri-

dx(t
Xy ( ):yl(t)+3X1(t)2_xl(t)3_Zl(t)+Jd°1+Jl(t)’

dy,(t
3:11: ):1_5X1(t)2_y1(t)_gW1(t),
dzy(t)
1= = a2, + 4xy (D) + ],
dw;(t) ,
S = w0+ 3y () + 1T

bution of interspike intervals with no dependence on the past
firing times. We will use some standard interspike intervalfor the chemical synapse

histograms(ISIH), such as exponential decays, as distribu-

tions fr_om which to draw the interspike intervals,. but we will dn(t) = @ (X, (1) — X)) (X1 (1) = X¢) — @n(t):
also discuss cases where we used an ISIH with a bimodal dt

distribution. The main question we ask of our model neural

communications channel is how the information content of@nd for N2

the stimulus spike train is represented in the response se-

quenceR1 atN1 and in the response sequerR2 atN2. %:yz(t)+3x2(t)2—xz(t)3—zz(t)+Jdc2+J2(t),
C. Synapse model dy,(t) )
For the chemical synapse we adopt a simple model de- a1 X o) —gwi(t),
rived from first-order kinetic§22], but also incorporating
dynamics in the neurotransmitter concentratirgt). An ac- dz,(t)
tion potential from N1 rising above threshold(t)>x,, qr ~ MmO+ 4{x(D) +hi],
stimulates the release of neurotransmitters with concentra-
tion n(t) in the synaptic cleft. The neurotransmitters bind to dws(t)
ligand-gated cation channels increasing the conductance in T=v[—W2(t)+3{y2(t)+/}],
the postsynaptic membrane of the receiving neuhti.
When all the channels are open, the conductance reaches {{gn
maximum valuegy. The conductance is an increasing func-
tion of the neurotransmitter concentratiorft) saturating Jo(Xrep — X1(1))
whenn(tyeng. . P07 Texd A —nof1’
We represent the simple kinetics of the neurotransmitter
as In Fig. 2 we display a short section of a time series show-
ing the stimulus),(t) and the membrane potentiadgt) and
dz(tt) =@ (X4 (1) = X)) (Xq (1) = Xep) — @n(t), (14) xz(t)_. Both neurons, _absent i_nputs, are _p_laced in the
continuous-spiking excitable regime. The inhibitory synaptic

where« is a loss rate for the neurotransmitter a®@x) is

spike input inducelyperpolarizationsit lowers the value of
X41(t). This stimulates hyperpolarizations k2 through the

the Heaviside function. In response to this release of neurdg2xcitatory chemical synapse. The coincidence of spikes in
transmitter, we model the postsynaptic current going intdhe input with hyperpolarizations in tiél depends od, as

neuronN2 as

gO(Xreu - Xl(t))
1+exg —A(n(t)—ng)]"

Jo(t)= (19

well as the past history.

After hyperpolarization by the stimulus, the spiking is
very fast and theN1 is less able to hyperpolarize. This re-
sults in arefractory periodfor the occurrence of another
hyperpolarization. This refractory period will set a limit to
the maximum information transfer in the bursting coding

The parameters,, andx,., are thresholds for the neuro- SPace. As we will see in the next section, the match between

transmitter release and the reversal current, respectively. WaPikes in the input and hyperpolarizations in the neurons can
use a sigmoidal function for the saturating conductance oPe closely related to the information transfer through our
N2. A andn, determine the steepness and the midpoint ofnodel channel.

this saturation.

Our model neural information transmission system con- IV. NEURAL CODES

sists of nine dynamical variablgx,(t),yy(t),z(t),w(t)),

k=1,2 andn(t). One current, the stimulu3,(t), is speci-
fied, and the other curredt(t) is determined by, (t) and

n(t). The full system of equations reafts N1,

AND INFORMATION TRANSMISSION

Now we turn to the calculation of the various average
mutual information values indicated in Fig. 1. We investigate
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F ] looking at the neural signal through a window in time with
; ] bins of sizeAt and settings;=1 if there is an event in that
€ 330 ] bin ands;=0 otherwise. We will calM the total number of
- C ] words used in the simulation. For computational reasons we
C ] are limited to windowd_<16. But even with this limitation
3381 3 the number of all possible words in the product spaeput-
L5 outpud where we compute the conditional entropies is big
1 enough M>10") to require extensive calculation.
2 05 With our spike train synaptic inpul;(t) an eventis al-
M0 ways taken to be the occurrence of a peak or,Jgr0, a
05 valley. We will work with two differentcoding spacegor
M the neural responseg(t) andx,(t): bursting coding space

(abbreviated BCE in which a hyperpolarization is thevent
in the time series, and spiking coding spaedbreviated
SCS, in which theeventis the occurrence of a spike.

The main neuron operating region explored will be the
continuous spiking regime near the boundary of the chaotic
bursting region; this is the excitable region. In this regime,
the spikes ofl;(t) can induce hyperpolarizations in the neu-
rons(see Fig. 2 In this region, the BCS is more natural, and
we begin with that. Subsequently we investigate SCS with
the neurons in the same parameter region.

In the following subsections we will show how a straight-

FIG. 2. Time series of the synaptic inpdif(t), the membrane forward calculation of the information measures for theses
potential of the first neuror, (t) and the membrane potential of the two coding spacesan lead to some striking results.
second neurom,(t), for the model system governed by E¢8)—

(15). Parameter values for each neuron, for the excitatory chemical ) )
synapse, and fa#(t) are given in the text. A. Bursting coding space

If we place N1 in the continuous spiking regime, the
the information connection between our spike train stimulusspikes of the synaptic input can induce some hyperpolariza-
and each respond¢S,R1) andl(S,R2) as well as the in- tions, provided that the system is not too far from the burst-
formation connection between the two response locationsg regime atly.,~3.25. The continuous spiking of the first
(R1,R2). Our interest lies in how these quantities dependheuron stimulates an almost constant rate of neurotransmitter
on the choice of the coding space, on the time resolution  releasen(t). This leads to continuous excitation of the sec-
on the word sizd., on the stimulus ensemble, on the regionond neuron through the chemical synapse. We can choose a
in parameter space where we operate our response neurongjue ofJy. such that the second neuron is in the continu-
and on the level of disturbance of the transmission by addieus spiking regime as long as it receives the excitation from
tive noise inJ4(t) andJ,(t). the first neuron. WhemM1 undergoes a hyperpolarization,

To evaluate the entropies and average mutual informan(t) decreases and so does the synaptic excitation in the
tions for our communications system, we need to calculatsecond neuron. This perturbation can induce, in turn, a hy-
the probabilities of occurreng&(s;), p(rj), andp(s;,r;) of perpolarization in the second neuron. In this way, an event in
binary words for a particular choice abding spaceThis  J;(t) can induce an everthyperpolarizationin N1 and fol-
space is defined by our choice for awentin the neural lowing that induce an event iN2.
signal; for example, one hyperpolarization or one spike or We have described, in a very simplified way, how infor-
both, the time resolutioAt, and the word sizé. From the  mation can be transferred from the input sequebt@ough
synaptic input];(t) we can evaluat@(s;). The frequencies two consecutive sections of our channel: from the stimulus to
of occurrence of events in the response neurons comes frothe output sequend®l of N1, and from there to the output
encodingx,(t) andx,(t). We evaluate these from integrat- sequence oR2 of N2. From the description of the previous
ing our nine degree of freedom dynamical system and theparagraph it might appear that we can only observe an event
counting the number of appearances of the possible coding N2 if there is an event ifN1. From the conventional point
words. In the limit of an infinite number of samplegr)) of view of information theory, if the transmission from the
=n(r;)/M, wheren; is the number of observations of the source of a pattern of spikes 8i“failed” in the first part of
word r; in the output andM is the total number of samples. channel, this cannot be recovered in the second part of the
For finite integration times we always underestimate the reathannel and the data processing inequdHgy. (8)] holds for
value of the entropy, since we are neglecting most of theour information transmission chain.
small terms in the sum of Eq@1). A correction term and an However, we are dealing with dynamical systems, and we
estimation of the error were derived|[i23,24). The formulas no longer have a passive information channel. When the
for these corrections are discussed in the Appendix. Mostransmission of a spike from the input fails to be sensed at
simulations were stopped when the estimated error was le$$l, the first neuron has no hyperpolarization or equivalently
than one percent of the observed entropy value. no event in the BCS. However, the rate of spiking\t is

As we explained in Sec. Il, we construct our binary wordsslightly modified as can be seen in Fig. 2. This information is

X,(0)

0 1000 2000 3000 4000 5000 6000 7000 8000

t (arb. units)
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lost for the BCS form of coding, but preserved in the dynam- a)
ics of N1. It can be utilized downstream to induce an hyper- 5| .
polarization inN2, leading to recovery of the “lost” infor- BT TITSTITR
mation. UEEE e

Actually, the chemical synapses are highly sensitive to__ 048 T e ’
variations in the spiking rate since they are basically integra—@iL e A
tors with a nonlinear saturating function. We can place our& 93
synaptic threshold, so thatN2 can detect these small varia- r 1
tions in the spiking rate oN1, and undergo hyperpolariza- 02 T
tion. In the series displayed in Fig. 2, we chose the param- - .
eters in order to have a sensitive second neuron, able t g¢.1 _’/\
recover these “lost” events. The parameter values we usec ! ! ! | . . !
areJo= —0.05(inhibitory) and 7= 10, for the sensory input; 40 60 80 100 120 140 160 180
Xn=—1, @=0.05, for the neurotransmitter dynamics; and At (arb. units)
00=0.1, X, =3, A=50, andny=4 for the postsynaptic b)

current J,(t). The dc currents placingyl andN2 in the ' ' ' o N M. -
excitable region ardy.; = 3.4 andJy= 3.4. With these pa- 05 R i
rameter values and no input signal(t) =0, both neurons i P T
were spiking continuously. 04r &7 1

As can be seen in Fig. 2, most of the input spildeé&t) 2 I + .
are lost in the BCS oN1 x,(t), but almost all of them are & 03 .
recovered in the BCS dfi2 x,(t). This will lead us to the ™ L y

striking result that, for this coding space, the data processing g3 4

inequality (8) no longer holds. The information “lost” in the
0if ]

first part of our channel is recovered in the second part, anc
hence the average mutual informatibfs,R1) between the , , , , , ,

stimulus andN1 will be lessthan the average mutual infor- 2 4 6 8 10 12 14 16
mation between the stimulus a2, 1(S,R2). So we find L (bits)
that

FIG. 3. Dependence of the normalized average mutual informa-
IBCYS,R2)>1BCY S R1), (16) tions in the burstingcoding space(@) as a function of the time
resolutionAt and(b) as a function of the size of the window size in

. . L bins L. In (a) we plot the normalized average mutual information
which contradicts the data processing inequélily We call between the stimulus and the first neurB(S,R1) (solid line),

this resu_lt theinformation _recovery_inequality between the stimulus and the second nel¢8,R2) (dotted ling,
By using the superscript BCS in E(L6) we stress that and between the two neuro§R1,R2) (dashed ling In (b) we

this result holds in the bursting coding space and with they ot only E(S,R1) (diamonds andE(S,R2) (crossesas a function
dynamical scenario described above. Below we analyze thgr | The lines show the least-squares fit to the foff

robustness of the information recovery inequality as a func—g e-\o for each normalized average mutual information.

tion of the injected DC currents and show it holds over broad

operating regimes for the neurons. events.E(R1,R2) is more sensitive at hight where reso-
From the point of view of the BCS there is sorhiglden  [ution is degraded.

information inx,(t) related to the stimulus that can be re-  On the other han€&(S,R1) andE(S,R2) monotonically

vealed by means of the dynamical behavior of the chemicahcrease with the window size, approaching a constant

synapse antl2. As we pointed out, this “lost” information asymptotic value. To study this dependence we fidé¢dat

is likely to be coded in the interspike intervals inside thethe optimal time resolutiodt=40. Using a least-squares fit

bursts. We will address this issue in Sec. IV B. to the form E.—Ege "o, we found E..(S,R1)=0.149
The information recovery inequalit{l6) is not a conse- +0.001 andE..(S,R2)=0.528+0.002.

qguence of finite time resolution, because the lost events in In what follows, the calculated values of normalized av-

N1 cannot be recovered in the BCS for any window size orerage mutual information are reported at fixedndAt, and

any time resolution. It was our selection of what constitutegshey are unbiased, unless we explicitly state otherwise. All

an event in defining the BCS that is responsible for the viovalues will be taken at\t=40, theoptimal value, and by

lation of the data processing inequality. To verify this, we extrapolation at. —o. We also use the bias corrections de-

have calculated the normalized average mutual informationgived in the appendix. Th& —o extrapolation cannot be

I(S,R1) andI(S,R2) for a wide range of values df and  applied to the entropies as they grow with

At. These results are displayed in Fig. 3. The information It appears that the average mutual informatiemen the

recovery inequality(16) holds for all the values explored.  normalized version(7)] is also stimulus-dependent. The ef-
As one can see in Fig.(8, the normalized average mu- ficiency of the information channel depends on the statistics

tual informations between the signal and the two neurongf the input. Thus, we also need to specify the properties of

E(S,R1) andE(S,R2) are only weakly dependent akt. the input we are using. The results derived above were ob-

There is a small maximum att~40, which corresponds to tained using a signal with maximal entropy for a specified

the optimum resolution in time for the hyperpolarization average interspike interval. As shown[Rl, this corresponds
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FIG. 4. Transmission of a complex synaptic signal through the F!G- 5. Dependence ont of the normalized average mutual
neural information chain. The original interspike interval histograminformation valuesE(S,R1) (solid) and E(S,R2) (dashed in the
(ISIH), shown in the solid line, displays two characteristic times. SPiKing coding spacéor the same parameter region as Fig. 3.

For the neurons, we calculated the histogram of times between
events, here hyperpolarizations, in the parameter region describatiteger number of spikes. Even when the interspike intervals
in Sec. IVA. The bimodal structure is lost in the first neuron are variable, they follow a rigid sequence.
(dashed ling but almost completely recovered in the second one It is still possible that our information recovery inequality
(dotted ling. Histograms were obtained from a simulation with a result(16) depends on the particular choice of stimulus en-
total integration time oft,,,=2x10°. There were over £10°  semble, as this is true for most of information measures. We
events in the stimulus, fGvents inR1, and about 5% 10° events  first used a maximum entropy stimulus that has maximum
in R2. potential information to transfer and a mean information rate
that was “tuned” to give a maximum rate of information
to an exponential probability distribution in the number of transfer. This means that the average interspike interval of
spikes within a window. The mean interspike interval wasthe stimulus is greater than the refractory period of the neu-
approximately equal to the mean bursting rate of the systenons but not big enough to lower the rate of information
near the chaotic region; here this is about 400 time units. transfer. It is unlikely that stimulus signals in nature all have

Now we want to study a richer input. We assume that themaximum entropy, so we also investigated a richer input
incoming signal is originated by senewal processthat is,  signal with two characteristic times and verified that the in-
the stimulus is completely determined by its interspike timeformation recovery inequality still holds.
interval probability distribution or histogram, called an ISIH.
There are many different characteristic ISIHs in real neurons.
To illustrate how changing the ISIH affects the communica-
tion process, we examined a bimodal distribution for spike We suggested in Sec. IV A that the “lost” information in
intervals inJ;(t). In our simulations, the interspike times the BCS ofN1 could be stored in modulations of the spike

B. Spiking coding space

t;—t;_, were drawn from the distribution rate within a burst and then recovered N2 through the
dynamical action of the nonlinear neurons. A careful inspec-
t—t,)2 t—t,)2 tion of the time series strongly supports this hypothesis. One
W(t):wo[exp{ _(_ +Cq exr{—( ) H might expect then that studying the SCS where each event
1 72 corresponds to one action potential we would recover the

(17 data processing inequalit§8). In this subsection, we will
show that this is not the case. The information recovery in-
wheret; andt, are characteristic times;; and =, decay equality (16) holds for large parameter regions even when
times for the peaks;,, is a parameter controlling the relative we use SCS.

height of the peaks, and/, is an overall normalization fac- We keep the same parameter values noted in Sec. IV A.
tor. We usedt,=200, t,=600, r,=70, 7,=200, andc,;,  Since now we are dealing with a significatively smaller typi-
=0.76. cal time interval between events, we need a high time reso-

In Fig. 4, we display the ISIH of the synaptic input and lution. This requiresAt less than the minimum interspike
also the computed histograms of time intervals betweelnterval. We also need to increase the word size because in
eventdor each neuron output. This figure illustrates in a verythe input signal the events are still slow. In all calculations in
clear way the recovery of the “lost” information. The bimo- the SCS we adopt a word size of 16 bits. This, in turn,
dal structure is completely lost in the interspike interval dis-increases the integration time, as explained in the appendix.
tribution atN1 (dashed lingand recovered accurately in the ~ We first explore the dependence of the information mea-
interspike interval distribution ai2 (dotted ling. The left ~ sures onAt. In Fig. 5, we show the normalized average
peak atN2 is somewhat decreased from its value in themutual information values oE(S,R1) andE(S,R2) in the
stimulus because of the refractory effect that we mentione&CS. For some intermediatets we recover the data pro-
earlier. Note that the histograms of the interevent times focessing inequality8). However, for smallAt we have the
the neurons display a multipeaked structure. The origin obame result as in the BCS, recovery of “lost” information
this structure arises because the bursts always possess expressed by the information recovery inequality). The
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FIG. 6. Contour plot of the relative efficien&ydefined by Eq. L i
(19) as a function of J4¢1,J4c2). The nonshadowed region corre-
sponds to £>1), where the information recovery inequality is sat-

isfied. Of special interest are the regions label@d: continuous
spiking, explored in Sec. IV A and IV BB) periodic bursting and
(C) periodic spiking(see text

X, (1)

crossing of thee(S,R) values results because spiking after a
hyperpolarization is faster iN2 than inN1. Since we cov-
ered a wide range oAt there is some intermediate region 25 500 1000 1500 2000 2500 3000
where the time resolution is high enough to resolve all the t (arb. units)

spikes inN1 but less able to resolve the spikesNR.

FIG. 7. Time series of the synaptic inpi(t), the membrane

Forl Ag:e_s; than tthllla fmglmuméntersplke Intert\llqal Nﬂf potential of the first neuror,(t) and the membrane potential of the
namely,at=s, we still in a can recover the Inior- - go.5q neurom,(t), for the model system governed by E¢3)—

mation ch_)St” by '_\ll' This mer?lns tha’_[ using SCS we also (15) in the periodic bursting region described in Sec. IMr€gion
have the information recovery inequality B in Fig. 6).

IS€YS,R2)>15CYS,R1). 18 . . . . . :
1 ) 1 ) (18 information recovery inequality generically, not as a special

We will discuss a possible explanation of these results iffircumstance. It is remarkable that the information recovery
Sec. V. inequality (16) holds for quite different dynamical behaviors
of N1 andN2. The region labeled in Fig. 6 corresponds to
the excitable regime studied in the previous two sections.
Here, E(S,R2) reaches its optimal value. The regi@nis

So far, we explained how the chemical synapse can bassociated with periodic bursting when there is no input. In
tuned to convert small variations in the spiking ratéNdf to  regionC the relative efficiency diverges, because the average
hyperpolarizations ilN2. It may seem that this was a fortu- mutual information between the stimulus and the first neuron
nate choice of parameter values, and that one might be umoes to zero. In this regim&l1 is spiking continuously with
likely to observe this phenomenon in a real environment. Imo apparent hyperpolarizations, nevertheless some hyperpo-
this section, we want to explore the robustness of our resultiarizations related to the stimulus are observeN# This is
in parameter space and with additive noise in the synaptian extreme case of the phenomenon that we are describing.
currentsJ;(t). We explore here only variations in the exter-  As an example of the hidden information for a different
nal dc currentdy.; andJye as the mode of operation of the region in parameter space, we display in Fig. 7 the time
individual autonomous neurons is so dependent on these cwseries of the stimulus and the two neuron signals for our
rents. system with parameter valudg.;=2.2 andJy=3.7. This

We first calculate the average mutual information valuesorresponds to regioB in Fig. 6. In the absence of inputi1
[(S,R1) andI(S,R2) using the BCS as a function &f¢; and N2 are synchronized in the periodic bursting regime.
and Jy., for a fixed sensory inpul,(t) with interspike in- When a small inhibitory input sequence is adddg=

C. Robustness of the results in parameter space

tervals drawn from a bimodal distributiodt=40, andL —0.05, the periodic bursting iN1 is almost unchanged;
=10. In order to clarify our results we define the ratio only the spiking rate is slightly modified. By contrast, the
behavior ofN2 is dramatically altered. Some normal hyper-
E3yet Jges) = E(S,R2) (19) polarizations are missing, and the spiking rate shows strong
del»Yde2/ ™ E(SR1)’ modulation. In this regime, the efficiency is lower than that

corresponding to the continuous spiking regime explored in
which is the relative transmission efficiency as seefRht the previous sections. However, the average mutual informa-
and atR2 for sensory sequencé& When&>1 we satisfy tion in the BCS between the stimulus ahN® is E(S,R2)
the information recovery inequalityl6), while the data pro- =0.018 but still greater than between the stimulus sequence
cessing inequality8) is associated witlf<<1. andN1 E(S,R1)=0.009. Even when the information trans-
We display a contour plot df(Jgc1,Jdgc0) in Fig. 6. There  mission is not really very good, the information recovery
is a wide region wher&€>1. Thus, the system satisfies the inequality can hold.
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a) : : : : the same resonant peaks as before, but now these peaks cor-
respond to an optimal noise level for the transmission of the
025, . signal.
Other nonlinear processes have shown enhanced informa-
02F ™ 7 tion transmission characteristics in the presence of noise. In
= ™ [25], the authors observed this in the case of a nonperiodic
¢ 015t : 7 stochastic resonance. The resonant peaks in the mutual infor-
mation as a function of the noise level were studied in
0.1 4
[26,27].
0.05 i Our situation is different. In the case of stochastic reso-
“ nance the effect occurs because of noise, while here noise
Lo08 T o0 it 5T o1 may er)hance an exi;ting effect.. The _enhan'qgme.nt is associ-
’ . ’ ) ated with the stimulation of nonlinear instabilitiesN1 and
D (arb. units) . . . . .
b) in N2 beyond those acting when noise is absent in the
' ' ' ' Jac1:Jde2 regime where periodic spiking bursting is seen. In
012l _ that regime limit cycle behavior is quite stable a\@d can-
I not operate long enough to enhance information “hidden” at
0.1 S0 T N1. The Lyapunov exponents of the processes in this
0.08 ] Jyc1,Jde regime are too small. Noise, however, may in-
~ crease the effectiveness of the required instabilities, and as
% 0.06 we see, it often does. We expect this stochastic enhancement
of channel capacity by noise to hold only for an intermediate
0.04 : o :
range of noise levels. If the noise is too small, the induced
0.02 instability is not large enough. If the noise is too large, the
- . . . . signal is swamped in the usual manner and channel capacity
1e-06 1le-05 0.0001 0.001 0.01 0.1 is lowered.
D (arb. units)

. ] . V. DISCUSSION
FIG. 8. Normalized average mutual informatiB(S,R1) (con-

tinuous ling and E(S,R2) (dotted ling as a function of the vari- Information transmission in neural circuits involves active
anceD of white noise added to the synaptic curredigt) and  nonlinear elements. These can create information when they
J,(t). (see Sec. IV € (a) Noise-inhibited information transfer in operate autonomouslyl] and, as we have shown in this
the continuous spiking regiody.; = 3.4 andJy,=3.4. (b) Noise-  paper, recover it when they act as input/output elements as
enhanced information transfer in the periodic bursting redign ~ part of an information transmission system. In our models

=2.2 andJy,=3.7. we have explicitly demonstrated that the average mutual in-
formation between an input sequence, cal®bere, and a
D. Robustness in the presence of synaptic noise response sequend®?2 at a neurorN2 downstream of an-

gther response neurddl can be greater than the average

Now we explore how the information measures change a . . .
we add some noise to the system. In standard informatioWUtual information between the stimulus sequence and the
response sequené&dl atN1. This is expressed in oumfor-

theory one normally expects that the average mutual infor-—>" . )
mation will decreasavhen noise is added. We will show that Mation recovery inequality

this is not always the case for a dynamical information trans- 1(S,R2)>1(S,R1), (20)
mission channel.

We add Gaussian white noise with zero mean and variwhich can only hold when the communications channel, here
anceD to the synaptic currentd;(t) and J,(t). We will  the unidirectional sequence stimuludN1—N2, contains
study both the continuous spiking and periodic bursting reactive elements. In any passive communications channel, the
gime fixing At=40 andL =10 in the BCS. corresponding inequality, called the data processing inequal-

In the continuous spiking region we previously explorediity, is precisely the opposite.

Jac1=3.4, Jyo=3.4, the efficiency value€(S,R1) and This is not fundamentally a paper about information
E(S,R2) are quite high. In particulaE(S,R2) is limited by  theory, and the model system in which we calculate average
the refractory time only. Therefore, the addition of noise can-mutual information between stimulus and response uses re-
not further increase this efficiency. In Figa8we show the alistic, hopefully accurate despite being simplified, models of
dependence of the(S,R1) andE(S,R2) on the noise level. the neurons, the excitatory chemical synapse between neu-
Although in this case the noise inhibits the communicationrons, and the input sensory sequence of spike trains. We
process, the inequality recovery inequality) still holds for  have held to a connection with the underlying biological
low and intermediate noise levels. Note that each curve hasguestions by assuming that only the arrival times of the
resonant peak for a noise amplitude®#0.01. spikes in the sensory signals are important and only the

Next we look at the periodic bursting region whekg,, membrane voltage variations of the neural dynamics matter.
=2.2 andJy»,=3.7. The efficiency values are quite low  Within this framework we have had to make a number of
here. In this case, the addition of noisehanceshe trans-  specific choices about how we represent or encode the stimu-
mission of information, as shown in Fig(t8. We observe lus and response sequences, and by no means have we ex-
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hausted the possibilities. Our results demonstrate, however, Our results open the interesting question of whether clas-
that with two quite realistic choices of finite coding spacessic average mutual information is an adequate measure of the
for representing the sequences there are regions of neurdmierdependence of variables in active dynamical systems.
and coding parameter space where the information recoveM/hile we do not have an answer to this matter, we recall that
inequality holds: information apparently unavailable to adverage mutual information is not able to distinguish be-
reader of the neural code at one location along the informatween two signals that are directly connected and two signals
tion transmission line is recovered further along the transWith & common inpu{29,30. Average mutual information
mission line. contains neither dynamical nor directional information. We
We argue that both the reduced representation of thé'® working with nonlinear oscillating systems with many

stimulus in the finite coding space and the active propertied€drees of freedom, and with the usual application of infor-

of neurons are responsible for the information recovery jn.mation theoretic ideas we are only observing some features

equality. By selecting a particular feature of only one dy_of a single variable. In order to have a complete description

namical variable of the neuron and discretizing in time weOf information processing in active neworks, it may be that

. . a new approach that takes into account all the intrinsic dy-
are neglecting other degrees of freedom and allowing th'ﬁamics igpneeded y

information hiding in the first response neuron. On the other \a\;rons acting as active dynamical systems are not just

hand, the unstable trajectories of the second response neurpRmation transducers. They can enrich their input signals

allow the further recovery of the hidden information by ang communicate on different time scales. Neural systems

means of the mechanism explained above. are nonequilibrium systems; They can make use of their un-
The same mechanism has been shown to lead to the pogmble trajectories to encode information throughout their en-

sibility of enhanced performance in the presence of channelre available state space. That they can show information

noise completely different from passive channels we are facreation and recovery, expressed quantitatively by our infor-

miliar with. We are not certain of the biological relevance of mation recovery inequality, in distinction to properties estab-

this feature of active transmission channels, but it may provéished for passive communications channels, should not sur-

of interest in the design of useful communications channelprise us[31]. Instead these aspects of nonlinear activity

in other contexts. should provide an interesting framework for understanding
It is also apparent that in a wide region of parameter spacthe rich properties of realistic neural networks.

(see Fig. 6 our chain of two dynamically active neurons is a

better information transducer than the first neuron alone. In ACKNOWLEDGMENTS
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It is worth noting that even when we are working with

nonlinear neural systems that can be chaotic, we are not
studying the time asymptotic behavior on any attractor of the APPENDIX

autonomous system because of the highly complex time- g most straightforward way to estimate the information
dependent input which, mathematically, does not permit aty,q 45 res Eqg1)—(7) is to use empirical probabilities, such
tractors. Instead the nonlinear information transmission netésq(r-)zn(r-)/M wheren(r ) is the number times that the
work is cqntinuou_sly exploring different. transients. The word rJ was (J)bserved anl ié the total number of samples.
amount of information that can be stored in these trans'ent‘fhesejestimates are affected by random error in numerics but
is considerably greater than the information carried by they g, by 5 systematic error or bias. The bias can be estimated
autonomous attractors alone given finite time and amphtudcﬁom a numerical experiment and written as a series expan-
resolu_tlon._ For a single model_neuron of the type we haveion in inverse powers o [23]. Here we report just the
used in this paper, these transient trajectories live in a fo“rreading correction term for the entropy and average mutual

dimensional state space. There is certainly enough “room information. Let us writeH ,(R) and y(R,S) as the biased

in that spda(t:)e to sttorbel the t‘fhldde?’t’r:nform?tmn thatt ma)k/ bleestimation usingM samples of the actual entropy(R) or

recovered by unstable actions of thé noniinear network e eélverage mutual informationR,S). Then, the lowest order

ments. It is also feasible that natural systems use these traps ; ;
. . ) . . orrections are given by

sients to enrich their behavidi28]. Some experimental

methods to calculate information transfer, such as the “direct c

method” [15], often neglect this, repeating the same stimu- H(R)~Hy(R) + R (A1)

lus many times. 2MIn2’
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(Csg—Cs—Cr+1) many samples are needed in order to reach any desired ac-
oM In2 ) (A2) curacy. For medium-sized wordls< 16 the simulations were
stopped when the bias was smaller than one percent of the
where theC'’s represent the number of relevant words with estimated information measure. For words with 16 or more
finite probability in the various sampling spaces. Since theits the bias terms become more important but remain less
actual probabilities are unknown, we estimated the numbethan ten percent.
of relevant words by the number of different observed words. The random errors, or, at the lowest order, the variance of
We calculate these approximate bias terms as a function dhe observed information measures can also be estimated
M. In most cases, the numerators of the bias terms relax tilom numerical experiments. The formulas are derived in
their M — oo value very rapidly. Then we can estimate how[24] and read

I(R,S)~1y(R,S)—

10
oy= \/H ;1 [log,a(rj) +HwTa(r[1—q(r;)] (A3)
1 &3 asar) |
a=\— 2 2 |loggp——+ly acsi,rpll—a(s;,ril (A4)
M =1j=1 q(SI!rJ)

where theg'’s are the estimated probabilities. For exampligs; ,r;) is the number of times that the wosgin the stimulus was
followed by the word ; in the output, divided by the total number of samples. For the integration time used in our work these
errors were even smaller than those associated with the bias.
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