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Biological neural communications channels transport environmental information from sensors through
chains of active dynamical neurons to neural centers for decisions and actions to achieve required functions.
These kinds of communications channels are able to create information and to transfer information from one
time scale to the other because of the intrinsic nonlinear dynamics of the component neurons. We discuss a
very simple neural information channel composed of sensory input in the form of a spike train that arrives at
a model neuron, then moves through a realistic synapse to a second neuron where the information in the initial
sensory signal is read. Our model neurons are four-dimensional generalizations of the Hindmarsh-Rose neuron,
and we use a model of chemical synapse derived from first-order kinetics. The four-dimensional model neuron
has a rich variety of dynamical behaviors, including periodic bursting, chaotic bursting, continuous spiking,
and multistability. We show that, for many of these regimes, the parameters of the chemical synapse can be
tuned so that information about the stimulus that is unreadable at the first neuron in the channel can be
recovered by the dynamical activity of the synapse and the second neuron. Information creation by nonlinear
dynamical systems that allow chaotic oscillations is familiar in their autonomous oscillations. It is associated
with the instabilities that lead to positive Lyapunov exponents in their dynamical behavior. Our results indicate
how nonlinear neurons acting as input/output systems along a communications channel can recover informa-
tion apparently ‘‘lost’’ in earlier junctions on the channel. Our measure of information transmission is the
average mutual information between elements, and because the channel is active and nonlinear, the average
mutual information between the sensory source and the final neuron may be greater than the average mutual
information at an earlier neuron in the channel. This behavior is strikingly different than the passive role
communications channels usually play, and the ‘‘data processing theorem’’ of conventional communications
theory is violated by these neural channels. Our calculations indicate that neurons can reinforce reliable
transmission along a chain even when the synapses and the neurons are not completely reliable components.
This phenomenon is generic in parameter space, robust in the presence of noise, and independent of the
discretization process. Our results suggest a framework in which one might understand the apparent design
complexity of neural information transduction networks. If networks with many dynamical neurons can re-
cover information not apparent at various waystations in the communications channel, such networks may be
more robust to noisy signals, may be more capable of communicating many types of encoded sensory neural
information, and may be the appropriate design for components, neurons and synapses, which can be indi-
vidually imprecise, inaccurate ‘‘devices.’’

PACS number~s!: 87.10.1e, 89.70.1c, 05.45.2a
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I. INTRODUCTION

The transmission of sensory information from the en
ronment to decision centers through neural communicat
channels requires a high degree of reliability and sensiti
from networks of heterogenous, often inaccurate, someti
unreliable components. The properties of the channel its
assuming the sensor is accurate, must be richer than con
tional channels studied in engineering applications. Th
channels are passive and, when of high quality, can re
inputs accurately to a receiver.

Neural communications channels are composed of
namically active elements capable of complex autonom
oscillations. Individually, nonlinear neurons can create inf
mation in a way that is familiar in the study of nonline
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dynamics@1#. The process of ‘‘information creation’’ is in-
timately associated with the instabilities that allow chao
behavior of these nonlinear systems: two states of the
tem, indistinguishable because only finite resolution obser
tions can occur, may through the action of the instabilities
the nonlinear dynamics find themselves in the future wid
separated in the state space, and thus distinguishable. I
mation about different states that was unavailable at one t
may become available at a later time. However, it is imp
tant to recall that this ‘‘new’’ information is only about th
neuron itself.

In this paper, we examine the role of this aspect of no
linear systems when they are part of a communicati
chain. Our interest is in information transmission chann
that model the actions of realistic neurons and realistic s
aptic connections among them. We show that informat
that may be unavailable or ‘‘lost,’’ or hidden below obse
vational resolution at one waystation on the neural cha
7111 ©2000 The American Physical Society
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may be recovered at a later waystation and thus become
ful again. Our discussion of the transmission properties
active neural channels is phrased in the context of an id
ized channel composed on one neuronN1 that receives in-
formation in the form of a spike train and passes this
modulated by its own dynamics, through a realistic syna
to a second neuronN2. When the synapse and the receiv
neuron are properly tuned, information that is hidden atN1
is again available atN2. In a quantitative fashion, we sho
that the average mutual information between the sensory
nal sequence andN2 can belarger than the average mutua
information between the sensory signal sequence andN1.
Further, this information recovery is quite robust in the p
rameter space of the neurons and the synapse and it pe
when noise is added to both the incoming sensory signal
the output of the synaptic connection.

While the model is made much simpler than a realis
neural channel, it serves to illustrate in a concrete way
role of nonlinear oscillations of communications chann
components. In this paper, we focus on neural commun
tions channels and particulars of biological neural inform
tion encoding, but we anticipate that the lessons of this pa
may prove of value to the design of other, more famili
information transmission channels.

In establishing our model, we must delve a bit into issu
associated with the manner in which information from se
sory systems is encoded in a neural system. Understan
neural codes is a major issue in neuroscience@2#. It is gen-
erally agreed that the natural framework in which to quan
the communication process between neurons is informa
theory @3–5#, which is a powerful tool for the analysis o
input-output relations, and has proven to be useful in m
suring the efficiency and reliability of several neural syste
@6–9#. To calculate the usual information measures, such
entropy and mutual information, minimal assumptions ab
the nature of the neural code are required. In principle, ne
signals are continuous functions of time, but they can o
transmit a finite amount of information because of t
bounded accuracy of biological systems and the unavoid
noisy environment. Only some features or events of the
nal are transmitted and carry the relevant information.
most neurons, the generation of an action potential~or spike!
is the most important event in its behavior, and it is genera
agreed that the action potential is the fundamental uni
information for the nervous system. Traditionally, it is a
gued that other details of the sensory signal, such as
particular waveforms of spikes, are not relevant, and that
information that is not carried by the spike train is lost.

On the other hand, it appears that there is not a uni
neural code@10#. Although the idea of a ‘‘rate code’’ ha
been widely accepted since the seminal work of Adrian@11#,
there is strong experimental evidence that in certain ne
systems the precise timing of the spikes also plays a sig
cant role in the communication process@12,13#. Moreover, it
is not clear at all if the information processing is alwa
performed by single neurons or if population coding
needed. It is possible that both types of coding are prese
neural systems. In that case, different neural subsystems
have different codes. The neural communications chan
must be flexible enough to accommodate this variety i
reliable manner.
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In addition, some neurons produce spikes in bursts,
this can also be seen as a special code. For example, the
some evidence that in the hippocampus, relevant informa
is carried by bursts rather than single spikes@14#, and more
generally, burst firing is an efficient and reliable way
propagate impulses in neural networks with low connect
strengths. Further, in some situations the details of the s
ing within a burst can also be relevant.

Different codes yield different numerical values for o
information measures, and for some complex cases, as
bursting neurons, the choice of neural code, say the timin
bursts or the timing of spikes, may determine the amoun
information that is conveyed by the neural signal.

On the other hand, it appears that even when one ca
lates information measures free from any assumption ab
what are the relevant features of the signals, there is a cri
dependence on the time resolution of the discretization@15#
used in representing the stream of action potentials. Id
information measures are achieved only in the limit of in
nitely accurate time resolution and infinitely long signa
Clearly realistic biological systems must cope with the a
sence of this idealized situation. Our model results sugg
mechanisms that may be utilized for this purpose.

In this paper, we investigate how information transfer
an active information channel depends on the coding
sumptions and how different neural codes can interac
simple neural models. We study a system of two spikin
bursting neurons with unidirectional coupling. The intrins
dynamics and the entropy generation along a chain of s
neurons were reported in@16#. For this system, we will show
that any realistic measurement with finite time resolution c
lead to the striking result that information ‘‘lost’’ after th
first neuron responds to a spike train input can be recove
after the second neuron acts on the output of the first neu
The mechanism for this result has been indicated above.
consequence of this work is that familiar results of inform
tion theory for passive channels need careful examinatio
their application to neural information transport. We will e
plicitly indicate an example of this below.

We speculate that nature takes advantage of this abilit
recover hidden information in order to develop reliable ne
ral information transmission systems necessarily built w
unreliable synaptic connections among inaccurate com
nents.

This paper is organized as follows: In the next section,
review some results from information theory relevant for o
work. In Sec. III, we present our models for bursting neuro
and synaptic connections. Section IV is devoted to the res
of our simulations and the calculation of the informatio
measures. Our results and conclusions are discussed in
final Sec. V. An appendix contains some technical det
about evaluating information theoretic quantities in our s
tems.

II. MEASURES AND REPRESENTATIONS
OF NEURAL INFORMATION

A. Representing neural signals

In this paper, we are concerned with information trans
among neurons and the role of neurons as active dynam
elements of a network in achieving reliable communicat
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of information from sensory input to processing or decis
centers. It is assumed here that all relevant information
contained in the time course of the membrane potentialx(t)
of the neurons. This we take as the ‘‘neural signal’’ of t
component neurons in our networks. Chemical signal
among neurons may follow some of the patterns we disc
here, but we do not consider that here.

In principle, neural signals are continuous in time a
should be treated by continuous information theory@17#.
However, we employ a discrete treatment since~a! continu-
ous treatment of complex signals with unknown distributio
cannot be implemented in practice,~b! in a real environment
signals cannot be transmitted and decoded with infinite
curacy, and~c! there is much experimental evidence that
most neurons all the relevant information is carried by act
potentials. Statement~c! suggests we can use a discrete a
plitude coding that records the presence or absence of a
potentials and disregards details of the action potential wa
forms. For example, we might use a binary code indicat
whether there is an action potential~1! or not ~0!. A continu-
ous coding in time is still possible, but we adopt a furth
discretization in time based on~a! and ~b!.

We need to specify a particular rule to translate the me
brane potential as a function of timex(t) into a discrete
sequence of symbols (s1 ,s2 ,s3 , . . . ). The symbols ~or
words! occur at some definite timet i , but can typically con-
tain information about the past.

Concretely, we take windows of lengthT in the time se-
ries and divide them intoL bins of durationDt5T/L. We
assign the value 1 or 0 to each bin according to the oc
rence or nonoccurrence of someevent; for example, an ac-
tion potential in that bin. Thus, if we have a time series
lengthNDt, we can haveN2L11 words ofL bits, counting
overlapping intervals, in each window of lengthT. We use
the term ‘‘event’’ instead of action potential because
more complex signals we can choose different types
events as we will see in the next section. For a particu
time series, our rules comprised of the choice of an event
of the quantitiesT and Dt define a certaincoding spacein
which the usual information measures, such as entropy
mutual information, are computed. In this paper, we w
inquire how these information measures depend on
choice of such acoding space.

Our information source is taken to be a synaptic inp
spike train translated into the discrete space of stimulisi .
The information channel is composed of a neuron that
ceives the spike train, a synaptic connection, and a rece
that is another neuron. The receiver neuron membrane po
tial is translated to the space of responses (r j ) using our
encoding rules.

B. Ideas from information theory:
A summary of required results

We review now some ideas from information theory. T
entropy, in bits, associated with a given sequence of stim
is given by

H~S!52(
si

p~si !log2 p~si !, ~1!

wherep(si) is the probability of occurrence of the word o
is
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symbolsi . The symbol alphabet is all possible words, he
all binary numbers ofL bits, and we sum over that alphabe
An analogous expression withp(r j ), the probability of oc-
currence of a particular response sequence, is used to c
late the entropy of the receiver neuron

H~R!52(
r j

p~r j !log2 p~r j !. ~2!

The conditional entropy for the response sequenceR,
given a stimulus sequenceS is

H~RuS!52(
si

p~si !(
r j

p~r j usi !log2 p~r j usi !, ~3!

wherep(r j usi) is the conditional probability of occurrence o
the wordr j in the output system given that the wordsi oc-
curs in the input. This entropy is also called noise entropy@6#
because it quantifies the variability of the response fo
fixed stimulus.

In a symmetric manner, we define the conditional entro
of the stimulus when the response is known as

H~SuR!52(
r j

p~r j !(
si

p~si ur j !log2 p~si ur j !. ~4!

Here,p(si ur j ) is the conditional probability for the wordsi
in the stimulus, when the response is known to ber j .
H(SuR) is also called stimulus equivocation@18#, since it
quantifies the uncertainty about the stimulus sequence
remains having seen the response sequence. Both condit
entropies are positive semidefinite andH(SuR)<H(S) and
H(RuS)<H(R), because the observation of the respon
~stimulus! cannotincreasethe uncertainty about the stimulu
~response!.

The essential quantity in evaluating a communicatio
channel is the average mutual information between
stimulus sequence and the response sequenceI (S,R)
5I (R,S). It answers the question: On average how much
bits, do we know about the stimulus sequence, having
served the response sequence, orvice versa? It is the critical
measure of the ability to recover information encoded in
stimulus from observations of the response. It admits m
equivalent forms@18#. We use two that involve the condi
tional entropies

I ~S,R!5H~S!2H~SuR!, ~5!

I ~R,S!5H~R!2H~RuS!. ~6!

This quantity is also positive semidefinite, as follow
from the inequalities of the previous paragraph.

The expressions~5! and ~6! admit two slightly different
interpretations. In the first,H(S) represents the maximum
information that could be encoded andH(SuR) can be inter-
preted as the information lost in the communication proce
In the second,H(R) corresponds to the maximal informatio
that could be received andH(RuS) can be seen as the part o
this information that is independent of the stimulus.

We will also make use of the normalized average mut
information, which quantifies the efficiency of the inform
tion transmission:
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E~R,S!5I ~R,S!/H~S!. ~7!

This is dimensionless and, sinceH(S) is the maximum
amount of information that can be encoded, 0<E(R,S)
<1. E(R,S)50 means the stimulus and the response sys
are independent, and all incoming information is lost in t
channel.E(R,S)51 means there is perfect matching b
tween stimulus and response, so all information is preser
in transmission.

The last item from information theory that we will fin
useful for our work is the so-called ‘‘data processing
equality’’ theorem@6#. If we have a communication chain i
which the stimulusS is transmitted first to a receiver wit
response sequenceR1 and then this response sequence
transmitted in turn to a second receptor with response
quenceR2, the theorem states that

I ~S,R2!<I ~S,R1!. ~8!

This result has a clear intuitive meaning: Information n
present at the intermediate waystation along the commun
tions chain and not seen in the sequenceR1 cannot be re-
covered further along in the response sequenceR2. Informa-
tion lost cannot be recovered.

In our work this last result plays an important role. W
will study a model of a neural processing chain, as displa
in Fig. 1 where the neuron elements along the chain
active nonlinear systems able to create information w
running autonomously@1#. In our model, a synaptic inputS
is injected into the first neuronN1. This is connected
through an excitatory chemical synapseCH to a second neu
ron N2. The synaptic input is the stimulus sequenceS for our
system, and the membrane potentials of the neurons are
responsesR1 andR2. We calculate the conditional entropie
and average mutual informations among these three sta
I (S,R1), I (S,R2), andI (R1,R2).

Now we turn to some details of the models adopted
our bursting neurons, for the synaptic input sequence and
the chemical synapse.

FIG. 1. Schematic diagram of our model of a neural informat
transmission channel. The synaptic stimulus current sequenceS is
injected into the bursting neuronN1 that is unidirectionally coupled
to a second bursting neuronN2 through an excitatory chemica
synapseCH. Both neurons are modeled by the four-equation mo
~9!–~12!. The synaptic input and the chemical synapse are de
mined by Eqs.~13! and ~14!–~15!, respectively. We analyze th
average mutual information between the stimulus and the resp
neuronsI (S,R1) andI (S,R2) as well asI (R1,R2).
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III. NEURON MODEL, STIMULUS MODEL,
AND SYNAPSE MODELS

A. Neuron model

We work with a four-dimensional model of a spiking
bursting neuron. This is an extension of the Hindmarsh-R
model of thalamocortical neurons@19#, and it was developed
to reproduce the observed complex behavior of isolated n
rons from the stomatogastric ganglion of the California sp
lobster. The model contains the intracellular membrane v
age x(t) and several currents represented as polynom
among the dynamical variables in the vector field of the d
ferential equations. The polynomial form came from an
tempt @19# to simplify the complicated current-voltage rela
tionships of Hodgkin-Huxley conductance based models
providing accurate polynomial representations of the
current-voltage relations within the limited dynamical ran
of neural activity. The equations take the form@20#

dx~ t !

dt
5y~ t !13x~ t !22x~ t !32z1Jdc1J~ t !, ~9!

dy~ t !

dt
5125x~ t !22y~ t !2gw~ t !, ~10!

dz~ t !

dt
5m@2z~ t !14$x~ t !1h%#, ~11!

dw~ t !

dt
5n@2w~ t !13$y~ t !1l %#, ~12!

where g,h,l ,m, and n, are parameters chosen to beg
50.0278, h51.605, l 51.619, m50.002 15, and n
50.0009. We use these parameter values for our model
rons throughout this paper.Jdc will be varied as required.
The dynamical variablex(t) represents the membrane pote
tial, y(t) is a ‘‘fast’’ recovery current, andz(t) andw(t) are
two slow adaptation variables (n,m!1). w(t) represents
very slow exchange of intracellular calcium between the
toplasm to the endoplasmic reticulum.Jdc corresponds to an
injected dc current and will be our main control paramet
J(t) represents the synaptic input for the neuron. As in ot
models of bursting neural activity, this model requires t
combination of slow (z,w) and fast (x,y) subsystems. The
fast subsystem alternates between quiescent and periodi
havior as the variablesz and w change, giving rise to the
bursting behavior.

The isolated neuron, withJ(t)50, displays a wide vari-
ety of dynamical behaviors controlled by the parameterJdc .
For the model parameters given above we observe~a! quies-
cent membrane voltage forJdc,0.73 and bistability in state
space near a subcritical Hopf bifurcation atJdc50.82; ~b!
periodic bursting for 0.82,Jdc,3.0; ~c! chaotic bursting for
3.0,Jdc,3.25; and~d! continuous spiking forJdc.3.25.

This last regime is very interesting. It models an excita
cell near the boundary of chaotic bursting, since a small p
turbation can induce short bursting sequences@21#. This ex-
citable regime will be the main region that we will explore
the next section.
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B. Stimulus model

We represent a stimulus input as a train of spikes arriv
at N1:

J1~ t !5J0(
i

Q~ t2t i !S t2t i

t De2(t2t i )/t ~13!

with amplitudeJ0, firing timest i , and a characteristic deca
time t. Q(x) is the Heaviside function:Q(x)51, for x
.0, andQ(x)50 for x,0. We will use inhibitory input
(J0,0). The firing times are drawn from a constant dist
bution of interspike intervals with no dependence on the p
firing times. We will use some standard interspike inter
histograms~ISIH!, such as exponential decays, as distrib
tions from which to draw the interspike intervals, but we w
also discuss cases where we used an ISIH with a bim
distribution. The main question we ask of our model neu
communications channel is how the information content
the stimulus spike train is represented in the response
quenceR1 at N1 and in the response sequenceR2 at N2.

C. Synapse model

For the chemical synapse we adopt a simple model
rived from first-order kinetics@22#, but also incorporating
dynamics in the neurotransmitter concentrationn(t). An ac-
tion potential from N1 rising above thresholdx(t).xth
stimulates the release of neurotransmitters with concen
tion n(t) in the synaptic cleft. The neurotransmitters bind
ligand-gated cation channels increasing the conductanc
the postsynaptic membrane of the receiving neuronN2.
When all the channels are open, the conductance reach
maximum valueg0. The conductance is an increasing fun
tion of the neurotransmitter concentrationn(t) saturating
whenn(t)@n0.

We represent the simple kinetics of the neurotransmi
as

dn~ t !

dt
5Q„x1~ t !2xth…„x1~ t !2xth…2an~ t !, ~14!

wherea is a loss rate for the neurotransmitter andQ(x) is
the Heaviside function. In response to this release of ne
transmitter, we model the postsynaptic current going i
neuronN2 as

J2~ t !5
g0„xrev2x1~ t !…

11exp@2l„n~ t !2n0…#
. ~15!

The parametersxth andxrev are thresholds for the neuro
transmitter release and the reversal current, respectively.
use a sigmoidal function for the saturating conductance
N2. l and n0 determine the steepness and the midpoint
this saturation.

Our model neural information transmission system c
sists of nine dynamical variables„xk(t),yk(t),zk(t),wk(t)…,
k51,2 andn(t). One current, the stimulusJ1(t), is speci-
fied, and the other currentJ2(t) is determined byx1(t) and
n(t). The full system of equations readsfor N1,
g
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dx1~ t !

dt
5y1~ t !13x1~ t !22x1~ t !32z1~ t !1Jdc11J1~ t !,

dy1~ t !

dt
5125x1~ t !22y1~ t !2gw1~ t !,

dz1~ t !

dt
5m@2z1~ t !14$x1~ t !1h%#,

dw1~ t !

dt
5n@2w1~ t !13$y1~ t !1l %#;

for the chemical synapse,

dn~ t !

dt
5Q„x1~ t !2xth…„x1~ t !2xth…2an~ t !;

and for N2,

dx2~ t !

dt
5y2~ t !13x2~ t !22x2~ t !32z2~ t !1Jdc21J2~ t !,

dy2~ t !

dt
5125x2~ t !22y2~ t !2gw2~ t !,

dz2~ t !

dt
5m@2z2~ t !14$x2~ t !1h%#,

dw2~ t !

dt
5n@2w2~ t !13$y2~ t !1l %#,

with

J2~ t !5
g0~xrev2x1~ t !!

11exp@2l$n~ t !2n0%#
.

In Fig. 2 we display a short section of a time series sho
ing the stimulusJ1(t) and the membrane potentialsx1(t) and
x2(t). Both neurons, absent inputs, are placed in
continuous-spiking excitable regime. The inhibitory synap
spike input induceshyperpolarizations; it lowers the value of
x1(t). This stimulates hyperpolarizations inN2 through the
excitatory chemical synapse. The coincidence of spikes
the input with hyperpolarizations in theN1 depends onJ0 as
well as the past history.

After hyperpolarization by the stimulus, the spiking
very fast and theN1 is less able to hyperpolarize. This re
sults in a refractory period for the occurrence of anothe
hyperpolarization. This refractory period will set a limit t
the maximum information transfer in the bursting codi
space. As we will see in the next section, the match betw
spikes in the input and hyperpolarizations in the neurons
be closely related to the information transfer through o
model channel.

IV. NEURAL CODES
AND INFORMATION TRANSMISSION

Now we turn to the calculation of the various avera
mutual information values indicated in Fig. 1. We investiga
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the information connection between our spike train stimu
and each responseI (S,R1) and I (S,R2) as well as the in-
formation connection between the two response locati
I (R1,R2). Our interest lies in how these quantities depe
on the choice of the coding space, on the time resolutionDt,
on the word sizeL, on the stimulus ensemble, on the regi
in parameter space where we operate our response neu
and on the level of disturbance of the transmission by ad
tive noise inJ1(t) andJ2(t).

To evaluate the entropies and average mutual infor
tions for our communications system, we need to calcu
the probabilities of occurrencep(si), p(r j ), andp(si ,r j ) of
binary words for a particular choice ofcoding space. This
space is defined by our choice for anevent in the neural
signal; for example, one hyperpolarization or one spike
both, the time resolutionDt, and the word sizeL. From the
synaptic inputJ1(t) we can evaluatep(si). The frequencies
of occurrence of events in the response neurons comes
encodingx1(t) andx2(t). We evaluate these from integra
ing our nine degree of freedom dynamical system and t
counting the number of appearances of the possible co
words. In the limit of an infinite number of samplesp(r j )
5n(r j )/M , wherenj is the number of observations of th
word r j in the output andM is the total number of samples
For finite integration times we always underestimate the
value of the entropy, since we are neglecting most of
small terms in the sum of Eq.~1!. A correction term and an
estimation of the error were derived in@23,24#. The formulas
for these corrections are discussed in the Appendix. M
simulations were stopped when the estimated error was
than one percent of the observed entropy value.

As we explained in Sec. II, we construct our binary wor

FIG. 2. Time series of the synaptic inputJ1(t), the membrane
potential of the first neuronx1(t) and the membrane potential of th
second neuronx2(t), for the model system governed by Eqs.~9!–
~15!. Parameter values for each neuron, for the excitatory chem
synapse, and forJ1(t) are given in the text.
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looking at the neural signal through a window in time withL
bins of sizeDt and settingsi51 if there is an event in tha
bin andsi50 otherwise. We will callM the total number of
words used in the simulation. For computational reasons
are limited to windowsL<16. But even with this limitation
the number of all possible words in the product space~input-
output! where we compute the conditional entropies is b
enough (M.107) to require extensive calculation.

With our spike train synaptic inputJ1(t) an eventis al-
ways taken to be the occurrence of a peak or, forJ0,0, a
valley. We will work with two differentcoding spacesfor
the neural responsesx1(t) andx2(t): bursting coding space
~abbreviated BCS!, in which a hyperpolarization is theevent
in the time series, and spiking coding space~abbreviated
SCS!, in which theeventis the occurrence of a spike.

The main neuron operating region explored will be t
continuous spiking regime near the boundary of the cha
bursting region; this is the excitable region. In this regim
the spikes ofJ1(t) can induce hyperpolarizations in the ne
rons~see Fig. 2!. In this region, the BCS is more natural, an
we begin with that. Subsequently we investigate SCS w
the neurons in the same parameter region.

In the following subsections we will show how a straigh
forward calculation of the information measures for thes
two coding spacescan lead to some striking results.

A. Bursting coding space

If we place N1 in the continuous spiking regime, th
spikes of the synaptic input can induce some hyperpolar
tions, provided that the system is not too far from the bur
ing regime atJdc1'3.25. The continuous spiking of the firs
neuron stimulates an almost constant rate of neurotransm
releasen(t). This leads to continuous excitation of the se
ond neuron through the chemical synapse. We can choo
value ofJdc2 such that the second neuron is in the contin
ous spiking regime as long as it receives the excitation fr
the first neuron. WhenN1 undergoes a hyperpolarization
n(t) decreases and so does the synaptic excitation in
second neuron. This perturbation can induce, in turn, a
perpolarization in the second neuron. In this way, an even
J1(t) can induce an event~hyperpolarization! in N1 and fol-
lowing that induce an event inN2.

We have described, in a very simplified way, how info
mation can be transferred from the input sequenceS through
two consecutive sections of our channel: from the stimulus
the output sequenceR1 of N1, and from there to the outpu
sequence ofR2 of N2. From the description of the previou
paragraph it might appear that we can only observe an e
in N2 if there is an event inN1. From the conventional poin
of view of information theory, if the transmission from th
source of a pattern of spikes inS ‘‘failed’’ in the first part of
channel, this cannot be recovered in the second part of
channel and the data processing inequality@Eq. ~8!# holds for
our information transmission chain.

However, we are dealing with dynamical systems, and
no longer have a passive information channel. When
transmission of a spike from the input fails to be sensed
N1, the first neuron has no hyperpolarization or equivalen
no event in the BCS. However, the rate of spiking inN1 is
slightly modified as can be seen in Fig. 2. This information

al



m
er

t
ra

ou
-
-
m

e
se
;
nd

sin

an

-

th
t

nc
a

e-
ic

he

s
o

te
io
e

ion

io

-
on

n

ant

t

v-

All

e-

f-
tics

of
ob-
ed

ma-

in
n

PRE 62 7117INFORMATION TRANSMISSION AND RECOVERY IN . . .
lost for the BCS form of coding, but preserved in the dyna
ics of N1. It can be utilized downstream to induce an hyp
polarization inN2, leading to recovery of the ‘‘lost’’ infor-
mation.

Actually, the chemical synapses are highly sensitive
variations in the spiking rate since they are basically integ
tors with a nonlinear saturating function. We can place
synaptic thresholdn0 so thatN2 can detect these small varia
tions in the spiking rate ofN1, and undergo hyperpolariza
tion. In the series displayed in Fig. 2, we chose the para
eters in order to have a sensitive second neuron, abl
recover these ‘‘lost’’ events. The parameter values we u
areJ0520.05~inhibitory! andt510, for the sensory input
xth521, a50.05, for the neurotransmitter dynamics; a
g050.1, xrev53, l550, andn054 for the postsynaptic
current J2(t). The dc currents placingN1 and N2 in the
excitable region areJdc153.4 andJdc253.4. With these pa-
rameter values and no input signalJ1(t)50, both neurons
were spiking continuously.

As can be seen in Fig. 2, most of the input spikesJ1(t)
are lost in the BCS ofN1 x1(t), but almost all of them are
recovered in the BCS ofN2 x2(t). This will lead us to the
striking result that, for this coding space, the data proces
inequality~8! no longer holds. The information ‘‘lost’’ in the
first part of our channel is recovered in the second part,
hence the average mutual informationI (S,R1) between the
stimulus andN1 will be lessthan the average mutual infor
mation between the stimulus andN2, I (S,R2). So we find
that

I BCS~S,R2!.I BCS~S,R1!, ~16!

which contradicts the data processing inequality~8!. We call
this result theinformation recovery inequality.

By using the superscript BCS in Eq.~16! we stress that
this result holds in the bursting coding space and with
dynamical scenario described above. Below we analyze
robustness of the information recovery inequality as a fu
tion of the injected DC currents and show it holds over bro
operating regimes for the neurons.

From the point of view of the BCS there is somehidden
information in x1(t) related to the stimulus that can be r
vealed by means of the dynamical behavior of the chem
synapse andN2. As we pointed out, this ‘‘lost’’ information
is likely to be coded in the interspike intervals inside t
bursts. We will address this issue in Sec. IV B.

The information recovery inequality~16! is not a conse-
quence of finite time resolution, because the lost event
N1 cannot be recovered in the BCS for any window size
any time resolution. It was our selection of what constitu
an event in defining the BCS that is responsible for the v
lation of the data processing inequality. To verify this, w
have calculated the normalized average mutual informat
I (S,R1) and I (S,R2) for a wide range of values ofL and
Dt. These results are displayed in Fig. 3. The informat
recovery inequality~16! holds for all the values explored.

As one can see in Fig. 3~a!, the normalized average mu
tual informations between the signal and the two neur
E(S,R1) andE(S,R2) are only weakly dependent onDt.
There is a small maximum atDt'40, which corresponds to
the optimum resolution in time for the hyperpolarizatio
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events.E(R1,R2) is more sensitive at highDt where reso-
lution is degraded.

On the other handE(S,R1) andE(S,R2) monotonically
increase with the window size, approaching a const
asymptotic value. To study this dependence we fixedDt at
the optimal time resolutionDt540. Using a least-squares fi
to the form E`2E0e2L/L0, we found E`(S,R1)50.149
60.001 andE`(S,R2)50.52860.002.

In what follows, the calculated values of normalized a
erage mutual information are reported at fixedL andDt, and
they are unbiased, unless we explicitly state otherwise.
values will be taken atDt540, theoptimal value, and by
extrapolation atL→`. We also use the bias corrections d
rived in the appendix. TheL→` extrapolation cannot be
applied to the entropies as they grow withL.

It appears that the average mutual information@even the
normalized version~7!# is also stimulus-dependent. The e
ficiency of the information channel depends on the statis
of the input. Thus, we also need to specify the properties
the input we are using. The results derived above were
tained using a signal with maximal entropy for a specifi
average interspike interval. As shown in@2#, this corresponds

FIG. 3. Dependence of the normalized average mutual infor
tions in the burstingcoding space~a! as a function of the time
resolutionDt and~b! as a function of the size of the window size
bins L. In ~a! we plot the normalized average mutual informatio
between the stimulus and the first neuronE(S,R1) ~solid line!,
between the stimulus and the second neuronE(S,R2) ~dotted line!,
and between the two neuronsE(R1,R2) ~dashed line!. In ~b! we
plot only E(S,R1) ~diamonds! andE(S,R2) ~crosses! as a function
of L. The lines show the least-squares fit to the formE`

2E0e2L/L0 for each normalized average mutual information.
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to an exponential probability distribution in the number
spikes within a window. The mean interspike interval w
approximately equal to the mean bursting rate of the sys
near the chaotic region; here this is about 400 time units

Now we want to study a richer input. We assume that
incoming signal is originated by arenewal process, that is,
the stimulus is completely determined by its interspike ti
interval probability distribution or histogram, called an ISIH
There are many different characteristic ISIHs in real neuro
To illustrate how changing the ISIH affects the communic
tion process, we examined a bimodal distribution for sp
intervals in J1(t). In our simulations, the interspike time
t i2t i 21 were drawn from the distribution

W~ t !5W0H expF2S t2t1

t1
D 2G1c12 expF2S t2t2

t2
D 2G J ,

~17!

where t1 and t2 are characteristic times,t1 and t2 decay
times for the peaks,c12 is a parameter controlling the relativ
height of the peaks, andW0 is an overall normalization fac
tor. We usedt15200, t25600, t1570, t25200, andc12
50.76.

In Fig. 4, we display the ISIH of the synaptic input an
also the computed histograms of time intervals betw
eventsfor each neuron output. This figure illustrates in a ve
clear way the recovery of the ‘‘lost’’ information. The bimo
dal structure is completely lost in the interspike interval d
tribution atN1 ~dashed line! and recovered accurately in th
interspike interval distribution atN2 ~dotted line!. The left
peak atN2 is somewhat decreased from its value in t
stimulus because of the refractory effect that we mentio
earlier. Note that the histograms of the interevent times
the neurons display a multipeaked structure. The origin
this structure arises because the bursts always posse

FIG. 4. Transmission of a complex synaptic signal through
neural information chain. The original interspike interval histogra
~ISIH!, shown in the solid line, displays two characteristic time
For the neurons, we calculated the histogram of times betw
events, here hyperpolarizations, in the parameter region desc
in Sec. IV A. The bimodal structure is lost in the first neur
~dashed line!, but almost completely recovered in the second o
~dotted line!. Histograms were obtained from a simulation with
total integration time oft tot523109. There were over 53105

events in the stimulus, 105 events inR1, and about 53105 events
in R2.
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integer number of spikes. Even when the interspike interv
are variable, they follow a rigid sequence.

It is still possible that our information recovery inequali
result ~16! depends on the particular choice of stimulus e
semble, as this is true for most of information measures.
first used a maximum entropy stimulus that has maxim
potential information to transfer and a mean information r
that was ‘‘tuned’’ to give a maximum rate of informatio
transfer. This means that the average interspike interva
the stimulus is greater than the refractory period of the n
rons but not big enough to lower the rate of informati
transfer. It is unlikely that stimulus signals in nature all ha
maximum entropy, so we also investigated a richer in
signal with two characteristic times and verified that the
formation recovery inequality still holds.

B. Spiking coding space

We suggested in Sec. IV A that the ‘‘lost’’ information i
the BCS ofN1 could be stored in modulations of the spik
rate within a burst and then recovered atN2 through the
dynamical action of the nonlinear neurons. A careful insp
tion of the time series strongly supports this hypothesis. O
might expect then that studying the SCS where each e
corresponds to one action potential we would recover
data processing inequality~8!. In this subsection, we will
show that this is not the case. The information recovery
equality ~16! holds for large parameter regions even wh
we use SCS.

We keep the same parameter values noted in Sec. IV
Since now we are dealing with a significatively smaller typ
cal time interval between events, we need a high time re
lution. This requiresDt less than the minimum interspik
interval. We also need to increase the word size becaus
the input signal the events are still slow. In all calculations
the SCS we adopt a word size of 16 bits. This, in tu
increases the integration time, as explained in the appen

We first explore the dependence of the information m
sures onDt. In Fig. 5, we show the normalized averag
mutual information values ofE(S,R1) andE(S,R2) in the
SCS. For some intermediateDts we recover the data pro
cessing inequality~8!. However, for smallDt we have the
same result as in the BCS, recovery of ‘‘lost’’ informatio
expressed by the information recovery inequality~16!. The

e

.
n
ed

e

FIG. 5. Dependence onDt of the normalized average mutua
information valuesE(S,R1) ~solid! and E(S,R2) ~dashed! in the
spiking coding spacefor the same parameter region as Fig. 3.



r a

n
th

so

i

b

-
u

. I
u
pt
r-
e
c

e

e

ial
ery
s

ns.

In
age
ron

rpo-

ing.
nt
me
our

e.

;
e
r-
ong
at
in

ma-

nce
s-
ry

-
t-

e

PRE 62 7119INFORMATION TRANSMISSION AND RECOVERY IN . . .
crossing of theE(S,R) values results because spiking afte
hyperpolarization is faster inN2 than inN1. Since we cov-
ered a wide range ofDt there is some intermediate regio
where the time resolution is high enough to resolve all
spikes inN1 but less able to resolve the spikes inN2.

For Dt less than the minimum interspike interval ofN2,
namely,Dt53, we still find thatN2 can recover the infor-
mation ‘‘lost’’ by N1. This means that using SCS we al
have the information recovery inequality

I SCS~S,R2!.I SCS~S,R1!. ~18!

We will discuss a possible explanation of these results
Sec. V.

C. Robustness of the results in parameter space

So far, we explained how the chemical synapse can
tuned to convert small variations in the spiking rate ofN1 to
hyperpolarizations inN2. It may seem that this was a fortu
nate choice of parameter values, and that one might be
likely to observe this phenomenon in a real environment
this section, we want to explore the robustness of our res
in parameter space and with additive noise in the syna
currentsJi(t). We explore here only variations in the exte
nal dc currentsJdc1 andJdc2 as the mode of operation of th
individual autonomous neurons is so dependent on these
rents.

We first calculate the average mutual information valu
I (S,R1) and I (S,R2) using the BCS as a function ofJdc1
and Jdc2 for a fixed sensory inputJ1(t) with interspike in-
tervals drawn from a bimodal distribution,Dt540, andL
510. In order to clarify our results we define the ratio

E~Jdc1 ,Jdc2!5
E~S,R2!

E~S,R1!
, ~19!

which is the relative transmission efficiency as seen atR1
and atR2 for sensory sequencesS. WhenE.1 we satisfy
the information recovery inequality~16!, while the data pro-
cessing inequality~8! is associated withE,1.

We display a contour plot ofE(Jdc1 ,Jdc2) in Fig. 6. There
is a wide region whereE.1. Thus, the system satisfies th

FIG. 6. Contour plot of the relative efficiencyE defined by Eq.
~19! as a function of (Jdc1 ,Jdc2). The nonshadowed region corre
sponds to (E.1), where the information recovery inequality is sa
isfied. Of special interest are the regions labeled:~A! continuous
spiking, explored in Sec. IV A and IV B;~B! periodic bursting and
~C! periodic spiking~see text!.
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information recovery inequality generically, not as a spec
circumstance. It is remarkable that the information recov
inequality~16! holds for quite different dynamical behavior
of N1 andN2. The region labeledA in Fig. 6 corresponds to
the excitable regime studied in the previous two sectio
Here, E(S,R2) reaches its optimal value. The regionB is
associated with periodic bursting when there is no input.
regionC the relative efficiency diverges, because the aver
mutual information between the stimulus and the first neu
goes to zero. In this regime,N1 is spiking continuously with
no apparent hyperpolarizations, nevertheless some hype
larizations related to the stimulus are observed inN2. This is
an extreme case of the phenomenon that we are describ

As an example of the hidden information for a differe
region in parameter space, we display in Fig. 7 the ti
series of the stimulus and the two neuron signals for
system with parameter valuesJdc152.2 andJdc253.7. This
corresponds to regionB in Fig. 6. In the absence of input,N1
and N2 are synchronized in the periodic bursting regim
When a small inhibitory input sequence is added,J05
20.05, the periodic bursting inN1 is almost unchanged
only the spiking rate is slightly modified. By contrast, th
behavior ofN2 is dramatically altered. Some normal hype
polarizations are missing, and the spiking rate shows str
modulation. In this regime, the efficiency is lower than th
corresponding to the continuous spiking regime explored
the previous sections. However, the average mutual infor
tion in the BCS between the stimulus andN2 is E(S,R2)
50.018 but still greater than between the stimulus seque
andN1 E(S,R1)50.009. Even when the information tran
mission is not really very good, the information recove
inequality can hold.

FIG. 7. Time series of the synaptic inputJ1(t), the membrane
potential of the first neuronx1(t) and the membrane potential of th
second neuronx2(t), for the model system governed by Eqs.~9!–
~15! in the periodic bursting region described in Sec. IV C~region
B in Fig. 6!.
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D. Robustness in the presence of synaptic noise

Now we explore how the information measures change
we add some noise to the system. In standard informa
theory one normally expects that the average mutual in
mation will decreasewhen noise is added. We will show tha
this is not always the case for a dynamical information tra
mission channel.

We add Gaussian white noise with zero mean and v
anceD to the synaptic currentsJ1(t) and J2(t). We will
study both the continuous spiking and periodic bursting
gime fixing Dt540 andL510 in the BCS.

In the continuous spiking region we previously explore
Jdc153.4, Jdc253.4, the efficiency valuesE(S,R1) and
E(S,R2) are quite high. In particular,E(S,R2) is limited by
the refractory time only. Therefore, the addition of noise c
not further increase this efficiency. In Fig. 8~a! we show the
dependence of theE(S,R1) andE(S,R2) on the noise level.
Although in this case the noise inhibits the communicat
process, the inequality recovery inequality~16! still holds for
low and intermediate noise levels. Note that each curve h
resonant peak for a noise amplitude ofD'0.01.

Next we look at the periodic bursting region whereJdc1
52.2 andJdc253.7. The efficiency values are quite lo
here. In this case, the addition of noiseenhancesthe trans-
mission of information, as shown in Fig. 8~b!. We observe

FIG. 8. Normalized average mutual informationE(S,R1) ~con-
tinuous line! and E(S,R2) ~dotted line! as a function of the vari-
anceD of white noise added to the synaptic currentsJ1(t) and
J2(t). ~see Sec. IV C!. ~a! Noise-inhibited information transfer in
the continuous spiking regionJdc153.4 andJdc253.4. ~b! Noise-
enhanced information transfer in the periodic bursting regionJdc1

52.2 andJdc253.7.
s
n

r-

-

i-

-

,

-

n

a

the same resonant peaks as before, but now these peak
respond to an optimal noise level for the transmission of
signal.

Other nonlinear processes have shown enhanced info
tion transmission characteristics in the presence of noise
@25#, the authors observed this in the case of a nonperio
stochastic resonance. The resonant peaks in the mutual i
mation as a function of the noise level were studied
@26,27#.

Our situation is different. In the case of stochastic re
nance the effect occurs because of noise, while here n
may enhance an existing effect. The enhancement is as
ated with the stimulation of nonlinear instabilities inN1 and
in N2 beyond those acting when noise is absent in
Jdc1 ,Jdc2 regime where periodic spiking bursting is seen.
that regime limit cycle behavior is quite stable andN2 can-
not operate long enough to enhance information ‘‘hidden’’
N1. The Lyapunov exponents of the processes in t
Jdc1 ,Jdc2 regime are too small. Noise, however, may i
crease the effectiveness of the required instabilities, and
we see, it often does. We expect this stochastic enhance
of channel capacity by noise to hold only for an intermedi
range of noise levels. If the noise is too small, the induc
instability is not large enough. If the noise is too large, t
signal is swamped in the usual manner and channel capa
is lowered.

V. DISCUSSION

Information transmission in neural circuits involves acti
nonlinear elements. These can create information when
operate autonomously@1# and, as we have shown in thi
paper, recover it when they act as input/output elements
part of an information transmission system. In our mod
we have explicitly demonstrated that the average mutual
formation between an input sequence, calledS here, and a
response sequenceR2 at a neuronN2 downstream of an-
other response neuronN1 can be greater than the avera
mutual information between the stimulus sequence and
response sequenceR1 atN1. This is expressed in ourinfor-
mation recovery inequality

I ~S,R2!.I ~S,R1!, ~20!

which can only hold when the communications channel, h
the unidirectional sequence stimulus→N1→N2, contains
active elements. In any passive communications channel
corresponding inequality, called the data processing ineq
ity, is precisely the opposite.

This is not fundamentally a paper about informati
theory, and the model system in which we calculate aver
mutual information between stimulus and response uses
alistic, hopefully accurate despite being simplified, models
the neurons, the excitatory chemical synapse between
rons, and the input sensory sequence of spike trains.
have held to a connection with the underlying biologic
questions by assuming that only the arrival times of
spikes in the sensory signals are important and only
membrane voltage variations of the neural dynamics ma

Within this framework we have had to make a number
specific choices about how we represent or encode the st
lus and response sequences, and by no means have w
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hausted the possibilities. Our results demonstrate, howe
that with two quite realistic choices of finite coding spac
for representing the sequences there are regions of ne
and coding parameter space where the information reco
inequality holds: information apparently unavailable to
reader of the neural code at one location along the infor
tion transmission line is recovered further along the tra
mission line.

We argue that both the reduced representation of
stimulus in the finite coding space and the active proper
of neurons are responsible for the information recovery
equality. By selecting a particular feature of only one d
namical variable of the neuron and discretizing in time
are neglecting other degrees of freedom and allowing
information hiding in the first response neuron. On the ot
hand, the unstable trajectories of the second response ne
allow the further recovery of the hidden information b
means of the mechanism explained above.

The same mechanism has been shown to lead to the
sibility of enhanced performance in the presence of chan
noise completely different from passive channels we are
miliar with. We are not certain of the biological relevance
this feature of active transmission channels, but it may pr
of interest in the design of useful communications chann
in other contexts.

It is also apparent that in a wide region of parameter sp
~see Fig. 6! our chain of two dynamically active neurons is
better information transducer than the first neuron alone
the neural communications system we explored, the e
ciency can be very high even when one of the componen
a poor transducer. This observation is of crucial importa
because it is known that in real neural systems synapse
often unreliable. We hypothesize that nature may take adv
tage of the active properties of neurons as described he
develop reliable neural networks with unreliable synap
and inaccurate component neurons. Indeed, our model
gests a framework in which to understand why biologi
information systems do not consist of a single, reliable inf
mation transducing neuron that performs all required ta
well.

It is worth noting that even when we are working wi
nonlinear neural systems that can be chaotic, we are
studying the time asymptotic behavior on any attractor of
autonomous system because of the highly complex ti
dependent input which, mathematically, does not permit
tractors. Instead the nonlinear information transmission n
work is continuously exploring different transients. Th
amount of information that can be stored in these transie
is considerably greater than the information carried by
autonomous attractors alone given finite time and amplit
resolution. For a single model neuron of the type we ha
used in this paper, these transient trajectories live in a fo
dimensional state space. There is certainly enough ‘‘roo
in that space to store the ‘‘hidden’’ information that may
recovered by unstable actions of the nonlinear network
ments. It is also feasible that natural systems use these
sients to enrich their behavior@28#. Some experimenta
methods to calculate information transfer, such as the ‘‘dir
method’’ @15#, often neglect this, repeating the same stim
lus many times.
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Our results open the interesting question of whether c
sic average mutual information is an adequate measure o
interdependence of variables in active dynamical syste
While we do not have an answer to this matter, we recall t
average mutual information is not able to distinguish b
tween two signals that are directly connected and two sign
with a common input@29,30#. Average mutual information
contains neither dynamical nor directional information. W
are working with nonlinear oscillating systems with ma
degrees of freedom, and with the usual application of inf
mation theoretic ideas we are only observing some featu
of a single variable. In order to have a complete descript
of information processing in active networks, it may be th
a new approach that takes into account all the intrinsic
namics is needed.

Neurons acting as active dynamical systems are not
information transducers. They can enrich their input sign
and communicate on different time scales. Neural syste
are nonequilibrium systems; They can make use of their
stable trajectories to encode information throughout their
tire available state space. That they can show informa
creation and recovery, expressed quantitatively by our in
mation recovery inequality, in distinction to properties esta
lished for passive communications channels, should not
prise us @31#. Instead these aspects of nonlinear activ
should provide an interesting framework for understand
the rich properties of realistic neural networks.
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APPENDIX

The most straightforward way to estimate the informati
measures Eqs.~1!–~7! is to use empirical probabilities, suc
asq(r j )5n(r j )/M , wheren(r j ) is the number times that th
word r j was observed andM is the total number of samples
These estimates are affected by random error in numerics
also by a systematic error or bias. The bias can be estim
from a numerical experiment and written as a series exp
sion in inverse powers ofM @23#. Here we report just the
leading correction term for the entropy and average mu
information. Let us writeHM(R) and I M(R,S) as the biased
estimation usingM samples of the actual entropyH(R) or
average mutual informationI (R,S). Then, the lowest orde
corrections are given by

H~R!'HM~R!1
CR21

2M ln 2
, ~A1!
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I ~R,S!'I M~R,S!2
~CSR2CS2CR11!

2M ln 2
, ~A2!

where theC’s represent the number of relevant words w
finite probability in the various sampling spaces. Since
actual probabilities are unknown, we estimated the num
of relevant words by the number of different observed wor
We calculate these approximate bias terms as a functio
M. In most cases, the numerators of the bias terms rela
their M→` value very rapidly. Then we can estimate ho
a

W

gu

ht

W

l,

f

e
er
.
of
to

many samples are needed in order to reach any desired
curacy. For medium-sized wordsL,16 the simulations were
stopped when the bias was smaller than one percent of
estimated information measure. For words with 16 or m
bits the bias terms become more important but remain
than ten percent.

The random errors, or, at the lowest order, the variance
the observed information measures can also be estim
from numerical experiments. The formulas are derived
@24# and read
these
sH5A 1

M
(
i 51

C

†log2q~r j !1HM‡
2q~r j !†12q~r j !‡ ~A3!

s I5A 1

M
(
i 51

CS

(
j 51

CR S log2

q~si !q~r j !

q~si ,r j !
1I M D 2

q~si ,r j !†12q~si ,r j !‡, ~A4!

where theq’s are the estimated probabilities. For example,q(si ,r j ) is the number of times that the wordsi in the stimulus was
followed by the wordr j in the output, divided by the total number of samples. For the integration time used in our work
errors were even smaller than those associated with the bias.
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