
PHYSICAL REVIEW E 67, 016205 ~2003!
Short-time decay of the Loschmidt echo

Diego A. Wisniacki*
Departamento de Fı´sica, ‘‘J. J. Giambiagi,’’ FCEN, UBA, Pabello´n 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina

~Received 28 August 2002; published 10 January 2003!

The Loschmidt echo measures the sensitivity to perturbations of quantum evolutions. We study its short-time
decay in classically chaotic systems. Using perturbation theory and throwing out all correlation imposed by the
initial state and the perturbation, we show that the characteristic time of this regime is well described by the
inverse of the width of the local density of states. This result is illustrated and discussed in a numerical study
in a two-dimensional chaotic billiard system perturbed by various contour deformations and using different
types of initial conditions. Moreover, the influence to the short-time decay of sub-Planck structures developed
by time evolution is also investigated.
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I. INTRODUCTION

Quantum irreversibility studies have become a very ac
research topic due to a direct connection with quantum c
puters and mesoscopics physics@1,2#. The natural quantity
for these investigations has been introduced by Peres in
seminal paper of 1984@3#. Called later Loschmidt echo~LE!
or fidelity, it measures the ability of a system to return to
initial stateuf& after a forward evolution with a Hamiltonia
H0 followed by an imperfect reversal evolution with a pe
turbed HamiltonianH5H01dxH8 (dx parametrize the
strength of the perturbation!. Thus, it is given by

M ~ t !5u^fuexp@ iHt#exp@2 iH0t#uf&u2 ~1!

~throughout the paper\ is set equal to 1!. The LE compares
the evolution of an initial state with slightly different Hami
tonians and can distinguish regular and chaotic classical
namics@3–5#.

The LE was recently studied in various chaotic syste
using several approaches@4,6–12#. However, few types
of decay were discussed in the literature. For a very sh
time, it is straightforward to show that the LE has a p
abolic behavior M (t)512dx2(DH8)2t2, with (DH8)2

5@^fuH82uf&2^fuH8uf&2#. This decay is better resemble
by the Gaussian function exp@2(t/t)2#, with characteristic
time t51/(DH8dx). Though this regime has experiment
relevance@13#, it has not been extensively taken into a
count.

After this short-time decay, a crossover to a perturbat
dependent regime was predicted and numerically obse
@4,6–8,10#. For very smalldx, in which a typical matrix
elementU of the perturbation is smaller than the mean le
spacingD, the decay is always Gaussian untilM (t) reaches
its asymptotic valuesM (t→`)[M` . If U.D, this regime
has an exponential decay exp(2Gt), with G the width of the
local density of states~LDOS!. This is usually called Ferm
golden rule regime~FGR!. When G.l, with l the mean
Lyapunov exponent of the classical system, a perturba
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independent regime is observed. In this case, the decay
is given by l. Finally, if G exceeds the bandwidth of th
perturbation, the LE has a Gaussian decay.

The properties of the initial state play an important role
the behavior of the LE@6,12#. This point can be relevant to
observe the mentioned regimes. For example, the Lyapu
regime is not displayed if the initial state is an eigenfuncti
of the unperturbed/perturbed Hamiltonian@12#. Localized
wave packets are needed to observe this regime. On the o
hand, Zurek has recently stated that dynamical evolut
causes that these states develop a sub-Planck structur
phase space, and he predicts that these structures enh
their sensitivity to perturbations@14#.

In this paper, we are mainly interested in the short-tim
decay of the LE. Disregarding system specific features
the correlations imposed by the characteristics of initial sta
we show via perturbation theory thatt21 is given by the
width G of the LDOS. In order to see the validity of thi
result in a realistic model, we study the characteristic timt
in a paradigmatic model of quantum chaos, a 2D chao
billiard perturbed by a contour deformation. We regard t
influences of the characteristics of the perturbation and
initial condition to this important regime. Therefore, we co
sider different perturbations and various types of initial co
ditions in our numerical study. We find that some perturb
tions, which we callgeneric, destroy correlations imposed b
the initial condition giving thatt215G. Nevetheless, othe
perturbations do not act in that way and this fact produce
slower decay witht21,G. In this context, we discuss th
influence of an initial time evolution of the wave packet a
the corresponding developed structures in phase space i
short-time decay of the LE. In fact, it is shown that an init
dynamical evolution helps to erase the mentioned corr
tions, with the effect of increasingt21. If the initial evolved
time is smaller than the Ehrenfest time, the enhanced de
is described entirely by the classical streaching around
unstable manifold given by the Lyapunov exponent@15#. But
for greater evolved times, the quantum interference lea
developed sub-planck structure in phase space and this
that the decay continuous growing. That is, the sensitivity
perturbations is also enhanced in this case~as stated in Ref.
©2003 The American Physical Society05-1
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DIEGO A. WISNIACKI PHYSICAL REVIEW E 67, 016205 ~2003!
@14#!. However, if the perturbation produces a decay w
t215G the developed structures in phase space do no
fluence the short-time decay.

The paper has the following structure. Section II is d
voted to describe the model system and the various sh
deformations that we have considered. The paper is s
contained with the inclusion of the shape parameter Ham
tonian expansion for a 2D quantum billiards developed
Ref. @16#. In Sec. III, the characteristic timet is related to
the width of the LDOS using perturbation theory. Then,
Sec. IV, we present the numerical results. We study the
for several types of initial condition. Starting with the sim
plest case when the initial state is an eigenfunction ofH0, we
follow with Gaussian wave packets. Finally, the initial co
ditions are the evolved Gaussian wave packets in orde
study the prediction of Ref.@14#. In Sec. V, we make some
final remarks.

II. MODEL SYSTEM: DEFORMED STADIUM BILLIARDS

We use the desymmetrized Bunimovich stadium billia
as a model system to explore the behavior of the LE@10#.
This paradigmatic system is fully chaotic and has great t
oretical and experimental relevance@17–19#. It consists of a
free particle inside a two-dimensional planar region who
boundaryC is shown in Fig. 1 with dashed lines. The radi
r is taken equal to unity and the enclosed area is 11p/4.

The system is perturbed by boundary deformations wh
preserves the area of the billiard. Deformations with differ
characteristics are chosen in order to understand their in
ences in the short-time decay of the LE. Figure 1 shows
shape deformations that have been considered. The cha
of the boundary are parametrized by

r ~s,dx!5r0~s!1z~s,dx!n, ~2!

with s alongC, r0(s) the parametric equation forC, andn the
outward normal unit vector toC at r0(s) @see Fig. 1~a!#. Case
~a!, shown in Fig. 1, is well described in Ref.@16#. For de-
formation ~b!–~d!, z(s,dx)5adx cos(pNs/P) with a
50.42, P511p/2, andN53, 5, and 10.a is chosen in
order that the width of the LDOS of all deformations a

FIG. 1. Schematic figure of the system and the various sh
deformations. Desymmetrized stadium billiard is plotted w
dashed lines. On continuous lines, deformations of the billiard
shown. The curvilinear coordinates used to describe the defor
tions @Eq. ~2!# is also included.
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approximately equal in the studied range ofdx . As we shall
see in the following section, the width of the LDOS is
measure of the magnitude of a perturbation.

To solve Eq.~1!, eigenvalues and eigenfunctions of pe
turbed and unperturbed system are needed. They are
tained using a Hamiltonian expansion of deformed billiar
which has been recently developed@16#. For dx<1/k0 (k0
the mean wave number of the region under study!, the
eigenenergies and eigenfunctions of the deformed billia
are connected to the ones of the stadium by the linear
Hamiltonian expressed in the basis of eigenstates atdx50
~from now on, we will callfm to these eigenstates andEm
the respective eigenenergies!,

Hmn~dx!.Hmn~0!1dxHmn8 , ~3!

with Hmn(0)5Emdmn and

Hmn8 52Cfmn Amn R
z
z8~s!

]fm

]n

]fn

]n
ds.

The eigenfunctions and eigenenergies atdx50 are obtained
using the scaling method@20#. The integral above could be
viewed as an inner product among the wave functio
]fm /]n defined overC. This relation defines an effectiv
Hilbert space in a windowDk' perimeter/area@16#. The
cutoff function Cfmn5exp@22(km

22kn
2)2/(k0Dk)2# restricts the

effect of the perturbation to states in this energy shell
width k0Dk. It allows to deal with a basis of finite dimensio
with wave numbers around the mean valuek0, restricting to
a particular regionDk of interest. We are consideringk0
5100 and 2m51 (m the mass of the particle! in all the
numerical calculations presented above.

III. SHORT-TIME DECAY AND THE LOCAL DENSITY
OF STATES

Our aim is to characterize the short-time decay of the L
As mentioned in the introduction, a simple calculation l
the short-time decay to depend on the initial state and on
perturbation@3#. We want to relate the characteristic timet
of the short-time decay with some general properties of
perturbation.

The influence of a perturbation over a quantum syst
could be described by the LDOS. The LDOS of an unp
turbed eigenstatefm is defined as

rm~E,dx!5(
n

u^fn~dx!ufm&u2d@E2$En~dx!2Em%#, ~4!

with En(dx) andfn(dx) the energy and eigenfunction of th
perturbed Hamiltonian@Eq. ~3!#. This function shows how
the unperturbed states are coupled to the perturbed ones
cause we are not interested in a particular state, an imp
average over the unperturbed statem is considered from now
on. We have chosen the width~dispersion!

G~dx!5A(
n

rm@En~dx!2Em ,dx#@En~dx!2Em#2 ~5!
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SHORT TIME DECAY OF THE LOSCHMIDT ECHO PHYSICAL REVIEW E67, 016205 ~2003!
as a practical measure of this distribution .
The LDOS exhibits various regimes as a function of t

strengthdx @21,24#. As we shall see, the perturbative regim
is relevant for our study. Perturbation theory~PT! gives the
following first-order expression for the LDOS:

rPT~E,dx!5d~E!1
uHmn8 u2dx2

@En~dx!2Em#2
d@E2$En~dx!2Em%#.

~6!

Using the definition of the width@Eq. ~5!# and Eq.~6! it is
straightforward to show

GPT~dx!5dxA(
n

uHmn8 u2.

This expression works very well for all the perturbations
Fig. 1 with strengthdx<1/k0.

With these ingredients in mind, let us consider t
short-time decay of the LE. As pointed out previously,
is given by M (t)5exp@2(t/t)2# with t225(^fuH82uf&
2^fuH8uf&2)dx2. Let beuf&5(amfm the initial state, so

t225F( amHm i8 Hin8 an2S ( amHmn8 an D 2Gdx2. ~7!

The perturbation matrixHnm8 is a banded matrix due to th
cutoff function Cfmn ~see the insets of Fig. 2!. This band
structure is quite generic in realistic systems due to the fi
range interaction of unperturbed states@22,23#. Inside the
band, the matrix elementsHmn8 are highly fluctuating num-
bers. At first sight, if we ignore the system specific featur
we can do the diagonal approximation of Eq.~7!, resulting

t225F( uamu2Hmn82 Gdx2. ~8!

FIG. 2. Mean value of the matrix elementsHmn82 as a function of
r 5m2n for the deformations~a! ~dotted line! and ~d! ~full line!.
The peak for the deformation~a! is due to the bouncing ball orbits
Insets: Image of a piece of the perturbation matrixuHmn8 u shown as
a density plot. The left plot corresponds to the perturbation labe
~a! and the right plot corresponds to perturbation label as~d!.
Clearly, there is a structure in the perturbation matrix for pertu
tion ~a! when compared to perturbation~d!.
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This approximation is also valid for the case in which t
complex numbersam behave randomly. Finally, if we con
sider that theuamu2 are nearly constant inside the band,

t22'F( Hmn82 Gdx25GPT
2 ~dx!. ~9!

This result is also valid ifam5dmn , assuming that we are
averaging over several initial conditions. Note that we ha
obtained Eq.~9! throwing out all the correlations imposed b
the perturbation and the wave amplitudes. In the next s
tion, we will see in what manner these correlations influen
the decay.

Each perturbation is characterized by the structure
correlations of the matrix elementsHmn8 . As an example,
Fig. 2 shows the behavior of the mean value ofHmn82 as a
function of the distancer 5n2m for perturbations~a! and
~d!. This function is usually called band profile. The cases~b!
and ~c! are not plotted because their band profile are qu
tative equal to case~d!. Note that perturbation~a! is clearly
nongenericdue to the two important peaks atur u;25. This
nonuniversality is introduced by the fact that perturbation~a!
does not connect the bouncing ball states with generic sta
In the insets of Fig. 2~a! density plot of these matrix are
shown for deformations~a! and ~d!. We will see in the fol-
lowing section that there are correlations between the ma
elements of the perturbation which are not exposed in
band profile but have an important influence to the short-ti
decay.

IV. NUMERICAL RESULTS

In this section, we study numerically the behavior of t
short-time decay of the LE in the Bunimovich stadium b
liard perturbed by the contour deformation presented in S
II. We consider different types of initial conditions: Eigen
fuction of H0, Gaussian wave packets, and evolved Gauss
wave packets. We would like to see the range of validity
Eq. ~9! for our particular system.

A. Eigenfuctions of H 0

The simplest case of the LE is when the initial state of E
~1! is an eigenstate ofH0. In this case, the LE is directly
related with the Fourier transform~FT! of the LDOS. Then,
M (t) is the so called survival probability@12,25#, defined as

P~ t !5u^fmuexp@ iHt#ufm&u25uFT@rm~E,dx!#u2 . ~10!

As we saw in the preceding section, we expect thatt for
P̄(t) is well described by Eq.~9!. P̄(t) is the mean value of
the survival probability over several initial states. We ha
numerically observed that this is the case for the pertur
tions ~b!–~d!. These results are shown in Fig. 3. Note th
t21 for perturbations~c! and~d! are not plotted because th
results are the same as~b!. The widthsG(dx) andGPT(dx)
are equal for all the perturbations. For perturbation~a!, t21

'0.85G(dx) which is directly related to the structure of th
perturbation matrix~see Fig. 2! imposed by the bouncing
ball states@10#. Similar attenuation was observed in Ref.@10#
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DIEGO A. WISNIACKI PHYSICAL REVIEW E 67, 016205 ~2003!
for perturbation~a! in the FGR regime. In this case, the d
cay rate is given by 0.5G(dx) instead of the expected valu
G(dx).

Figure 4 summarizes the behavior ofP̄(t) in the desym-
metrized stadium billiard. We have taken an average o
100 initial states. In this figure, the results for perturbat
~d! of Fig. 1 are shown. Other perturbations led to the sa
qualitative results. For a small perturbation strength~top
curve of Fig. 4!, we observe the Gaussian short time dec
and after that an exponential decay with a decay rate g
by the width of the LDOS@5,10#. For large perturbation
strength~bottom curve of Fig. 4! the exponential decay with
decay rate given byG(dx) is not observed. This is due to th
constraint imposed by the asymptotic valueM` . In this case,
the decay is completely Gaussian. An important point is t
the asymtoticM`'D/G(dx).

B. Localized Gaussian wave packets

The decay of the LE for localized Gaussian wave pack
has been widely studied in the literature. Most of the pre
ous works consider this case@4,6,8,10,11#. The predicted
crossover from a perturbation dependent regime to
Lyapunov regime has been shown for these classic
adapted initial conditions.

FIG. 3. t21 of the survival probability as a function ofdx when
the system is perturbed by deformations~a! and ~b!. The width of
the LDOSG(dx) and its perturbative evaluationGPT(dx) calculated
using Eq.~6! are also plotted.

FIG. 4. P̄(t) for the desymmetrized stadium billiard perturbe
by deformation~d! of Fig. 1. The values of the strength of th
perturbation isdx50.015 for the top curve and 0.05 for the botto
curve. The dashed lines correspond to the Gaussian de
exp„2@G(dx)t#2

…, and the exponential decay, exp„2@G(dx)t#…, is
plotted with a dotted line.
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We discuss here the short time decay of the LE for t
particular type initial conditions in the stadium billiard pe
turbed by deformations presented in Fig. 1. We comp
M (t) for initial Gaussian wave packets,

f~rW !5~ps2!1/2exp@ ipW 0 .~rW2rW0!2 i urW2rW0u2/s2#, ~11!

with up0u5k05100 ands50.16. An average over 50 initia

states was taken. The direction of the momentumpW 0 /upW 0u
and the center of the wave packetrW0 are chosen randomly. As
expected, the short-time decay is well described by a Ga
ian function exp@2(t/t)2#. Figure 5 shows the behavior o
t21 as a function of the strengthdx for all the perturbations
under study. This type of initial conditions imposes corre
tions so that the second sum of right hand side of Eq.~7!
does not vanish. The nonuniversalities of each perturba
are clearly exposed int. Note that these differences are n
seen in the width of the LDOS nor in band profile of th
matrix Hmn8 . We have considered perturbations with grea
number of oscillations of the boundary (N.10) and we find
t51/G(dx) for all of them @26#.

C. Evolved Gaussian wave packets

In a recent paper@14#, Zurek showed that dynamical evo
lution of initial Gaussian wave packets in classically chao
systems, produces finer and finer phase space struc
which saturates after the Ehrenfest time with a sub-Pla
scale. More important, he predict that this sub-Planck str
tures enhances the sensitivity of a quantum state to an e
nal perturbation. A numerical study in a time dependent o
dimensional model agreed with this assertion@27#, but other
studies reached opposite conclusions@15,28#. In Ref. @15# it
is showed an enhanced decay of the LE of evolved w
packets but this acceleration is fully described by the cla
cal Lyapunov exponent and it is not due to the sub-Pla
structures. More specifically, it is pointed out that the ch
acteristic timet(T0) of the short-time decay for a wav
packet that has been evolved a timeT0 is given by

ay,

FIG. 5. t21 of M̄ (t) as a function ofdx when the system is
perturbed by deformations~a!, ~b!, ~c!, and~d!. The initial states are
the Gaussian wave packets of Eq.~11!. G(dx) is also plotted in
solid line.
5-4
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SHORT TIME DECAY OF THE LOSCHMIDT ECHO PHYSICAL REVIEW E67, 016205 ~2003!
t21~T0!5t21~0!expS l~T02Tc!

2 D , ~12!

with t(0) the characteristic time of the short-time decay
initial states that have not been evolved,l the Lyapunov
exponent andTc the mean time for the first collision with th
boundary.

We consider the influence of the developed structure
phase space in the short-time decay of the LE. So,M (t) is
computed for the same initial conditions@Eq. ~11!# of the
preceding section but an unperturbed initial evolution dur
a timeT0 is applied. Figure 6 showst21(T0) as a function
of the strength dx for perturbation ~a! and with T0
50,0.025,0.05, and 1. Note thatt21(T0) increases with
larger T0, for all perturbation strengths. This fact clear
points out that an initial evolution enhances the sensitivity
this particular perturbation. We have observed that forT0
.0.4, t21 converges to the width of the LDOS. Same b
havior is shown when the system is perturbed by deform
tions ~b! and ~c!. However, when the perturbation destro
the correlations imposed by the initial wave packet wh
implies thatt51/G, the short-time decay is not affected b
an initial evolution.

In order to see if these increments are fully described
Eq. ~12! and due to this it has classical nature, in Fig. 7 it
showed the behavior oft21(T0)/t21(0) for several prepa-
ration timeT0 for perturbation~a! with strenghtdx50.04. It
is clearly observed that Eq.~12! works well for T0,0.025.

FIG. 6. t21 of M̄ (t) as a function ofdx for perturbations~a!.
The initial states are Gaussian wave packets that have been ev
a timeT0 . G(dx) is also plotted.

FIG. 7. t21(T0)/t21(0) as a function of the preparation timeT0

for strenghtdx50.04. The stadium is perturbed by deformation~a!.
The prediction of Ref.@15# @Eq. ~12!# is plotted in solid line.
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Note that the Ehrenfest timeTE50.025. So, the enhacemen
of the short-time decay is fully explained with the classic
instability given by the Lyapunov exponent for evolve
timesT0 smaller than the Ehrenfest time. However, for larg
timest21(T0) is also growing.

A qualitative picture of acceleration of the short-time d
cay for evolved states is the following. Before the Ehrenf
time the wave packet is streaching around an unstable m
fold and just after that times starts the quantum interfere
which lead a sub-Planck structures. At that times a small p
of the Wigner function presents a sub-Planck structure. T
region grows with time and it seems to be the reason of
accelerating decay. Note that for the saturation times the s
Planck structure is all around the available phase space.

V. FINAL REMARKS

We have studied the short-time decay of the LE in a
chaotic billiard. The system was perturbed by a contour
formation. Different perturbations were considered in ord
to develop the influences of their characteristics in the
havior of the LE. Moreover, several types of initial cond
tions have been used and how they affect the LE have b
examined.

Our findings are the following. For nonlocalized initia
states and if the system is perturbed by agenericdeforma-
tion, the characteristic timet of the short-time Gaussian de
cay is given by the inverse of the widthG of the LDOS. If
semiclassical features are exposed in the matrix elemen
the perturbation, we have obtained thatt21,G. For highly
localized initial states, cross correlation between wave a
plitudes are important and this is exposed with the fact t
t21,G. When the perturbation destroys such correlatio
the characteristic timet21 exhibits its maximum valueG.

We have discussed the prediction of Zurek@14#, which
stated that an initial dynamical evolution of semiclassi
wave packets lead a sub-Planck structures in phase spac
this enhances its sensitivity to perturbation. We found tha
the cases, in which the perturbation does not destroy
correlation mentioned before an accelerated decay is
served. As a function of the preparation timeT0, we have
observed two regimes. ForT0 smaller than the Ehrenfes
time, the enhanced decay is described entirely by the cla
cal Lyapunov exponent as pointed out in Ref.@15#. However,
for larger T0 in which the quantum interference lead th
sub-Planck structures the enhancement of decay is also
served.

A final point is worth commenting. We have shown th
the short-time decay of the LE has a Gaussian behavior
for certain perturbations the characteristic time is given
the width of the LDOS. The LDOS of some system
@12,24,25,29# presents a region in which its width is indepe
dent of the perturbation. We note that these results could
of importance for the understanding of the measure of the
in recent nuclear magnetic resonance experiments@13#. Al-
though that system consists ofmany interacting nuclear

ved
5-5
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spins, the results are in accordance with the former. Tha
due to imperfections in the reversed evolution the LE in
MNR experiment shown a Gaussian attenuation,M (t)
5exp@(t/t)2#, with t depending on the small noninverted i
teraction@which corresponds to the perturbationdxH8 of Eq.
~1!#, and in a range of small perturbation, the characteri
time t do not depend on it.
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