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The nonlinear conditions for the development of helical vortex filaments in a circular tube are
considered. The helical flow is assumed to be irrotational, except in a vortex filament of infinitesimal
core area. By introducing an appropriate image for this helical vortex filament, the boundary
condition on the material frontier is satisfied. By assuming an axisymmetric flow upstream and
imposing the conservation laws, a dependence between the helix pitch and the nonlinear amplitude
of the helical vortex developed downstream is obtained. Our results show that only helical flows
with the pitch in a certain range of values are allowed. The dependence of this range on the swirl
ratio and on the tube cross section is considered. We discuss the usefulness of the nonlinear analysis
of the allowed flows to explain experimental results and to complement the usual linear study of
stability. © 1999 American Institute of Physics.@S1070-6631~99!01904-2#

I. INTRODUCTION

In recent years, there has been an important number of
theoretical and experimental results on the development of
structural changes in vortex flows. These phenomena, which
produce abrupt unsteady changes in the pressure of the fluid,
are usually associated with a loss of axial symmetry. They
are of interest in several technical applications~for example,
in aerodynamics and in the design of hydraulic machineries,
as hydroelectric turbines!. Laboratory experiments in tubes,
described in Refs. 1–3, show that the flow is essentially ir-
rotational, with constant circulation, except in a helical rota-
tional core.~When the phenomenon just appears, the rota-
tional core is close to the tube axis.!

In this work, we study the possible steady, helical vortex
filaments with finite helix radius~i.e., with arbitrary depar-
ture from an axially symmetric flow!. To investigate the
mechanisms that govern the structural changes in the flow,
we consider the initial~inflow! field as axially symmetric and
confined to a tube. We assume that~everywhere along the
tube! the flow is irrotational except in a rotational core fila-
ment, with infinitesimal area and constant circulation around
it. In Sec. II, the basic equations are derived. In Sec. III, an
expression for the velocity field of the helical vortex filament
is obtained, taking into account the material boundary con-
ditions. In Sec. IV, a given upstream flow is considered and,
by imposing conservations laws, a rule is obtained for the
possible helical vortex filaments which can develop down-
stream departing from the axially symmetric flow. In Sec. V,
criteria for the vortex stability are considered. In Sec. VI, the
results of our analysis are applied to concrete examples.

II. BASIC EQUATIONS

We assume that the flow is incompressible and irrota-
tional everywhere except in a vortex filament, i.e., in an in-
finite concentrated rotational core.

In the case of an incompressible inviscid fluid, the gov-
erning equations are“.v50 and the Euler equation. In terms
of the vorticity w5“3v, the Euler equation takes the form
of an evolution equation

]w

]t
1v–“w5w–“v. ~1!

Therefore, the circulation

G5 R
C
v•dl ~2!

is governed by the Kelvin theorem ((]/]t)1v–“)G50.
That is to say, the vortex filament moves with constant cir-
culation around it.

When the vorticity is concentrated, in the unbounded
flow case, the velocity is determined by the Biot–Savart law;

vu~r !5
G

4p E
l

~r2r 8!3dl8
ur2r 8u3

. ~3!

However, if boundary walls are present, this expression is
not valid, because~in general! it does not satisfy the bound-
ary conditions. We can construct an adequate solution for the
flow around the vortex filament, adding to Eq.~3! a field
vb(r ), with “3vb50 and“–vb50, provided that the sum

v~r !5
G

4p E
l

~r2r 8!3dl8
ur2r 8u3 1vb~r ! ~4!

satisfies the condition
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n–vus5n–~vu1vb!us50 ~5!

on the limiting surface, wheren is the unit vector in the
normal direction to the surface. We note thatvb depends on
vu in a nonlinear form.

Using Eq.~1! it is possible to prove~see Batchelor4! that
the vortex filament core moves with the particles without
changes in the core strength~vorticity-transport theorem!.
That is to say, the vortex line displacementdl is

d l5vur 5r c
dt, ~6!

wherer c is the position of the vortex line.
In principle, by using the previous equations, we could

determine the vortex motion. However, this presents a seri-
ous difficulty in practice, because the first term of Eq.~4! is
divergent when it is calculated on the filament itself
~Batchelor4!. Obviously this singularity is unphysical be-
cause the real vortex has a finite core where Eq.~4! is not
valid. Thus to determine the vortex velocity at the core, the
real finite vortex core properties5–8 must be considered. As a
consequence, the resulting vortex motion depends critically
on the core characteristics, and so the method is not very
useful when the core size is not precisely known. In our
work, we use only globally conserved magnitudes~as the
mass rate, the circulation, and the total angular momentum!,
which do not depend on the vortex core characteristics. As
we show in Sec. IV, significant results can be obtained which
are independent of the concrete value of the core size, pro-
vided it is small in relation with the tube radius.

III. HELICAL VORTEX FILAMENTS IN A TUBE

In this work, we restrict our attention to the steady heli-
cal flows allowed inside a tube of radiusb which can be
modeled as vortex filaments. We assume that the helical vor-
tex line has constant circulation along its extension and is
situated on a cylinder of radiusR,b, with pitch l ~see Fig.
1!. As there are two possible geometrical senses for the helix,
we consider thatl can be positive or negative so that the
sign ofl determines the sense of the helix. The filament can
be parameterized as a line with an angular parametera,

x5R sina, y5R cosa, z5la/2p, ~7!

wherea varies between2` and1`.
The helical flow depends only on the helical coordinates

(r ,f), wheref5u2(2p/l)z and (r ,u,z) are the usual cy-
lindrical coordinates. From Eqs.~3! and ~7!, we obtain the
following expression forvu :

vux5Fx~r ,f,R,l,G!5
G

4p E
2`

` S 2R sinaS z2
l

2p D2
l

2p
~r sinf2R cosa! Dda

A~~r cosf2R sina!21~r sinf2R cosa!21~z2la/2p!2!3
,

vuy5Fy~r ,f,R,l,G!5
G

4p E
2`

` S l

2p
~r cosf2R sina!2R cosaS z2

l

2p D Dda

A~~r cosf2R sina!21~r sinf2R cosa!21~z2la/2p!2!3
,

vuz5Fz~r ,f,R,l,G!5
G

4p E
2`

` ~Rr sinf cosa1Rr cosf sina2R2!da

A~~r cosf2R sina!21~r sinf2R cosa!21~z2la/2p!2!3
. ~8!

We construct the functionvb , considering it as the ve-
locity field of an induced image vortex, characterized by a
radiusR* .b, a circulationG* , and the same pitchl. In this
case, the total velocity field is

v5F~r ,f,R,l,G!1F~r ,f,R* ,l,G* !1U0ez ,

[vh~r ,f,R,l,G!1U0ez , ~9!

whereU0ez is an arbitrary constant term.
In the case of straight vortices (l→`), the values ofR*

and G* can be computed using the well known Milne–
Thompson theorem.9 This theorem states thatG* 52G and

R* 5b2/R. Unfortunately, there does not exist a general re-
sult for the case with finitel. In this work, numerical values
of R* and G* ~for given G, R, and l! are determined by
imposing condition~5! on some selected points on the sur-
face, as shown in Fig. 2. In points 1 and 4 this condition
holds automatically. We determineR* andG* by imposing
condition~5! in points 2 and 3~and solving the system of the
two resulting equations!. Then, because of the symmetry, it
is also satisfied in the points 5 and 6. Therefore, condition~5!
holds exactly in the points (Pi , i 51,6) on the surface~see
Fig. 2!. It also holds approximately in other points around

FIG. 1. The coordinate system and the helical vortex filament.
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the surface~we verified this numerically!. It is important to
note that we need to evaluate the velocity field only on some
points at the wall. Then, the divergence at the core does not
affect our calculation. Thus we do not require to use special
techniques of desingularization to solve the system.~In doing
so, we eliminateG* and then use a numerical bisection
method to solve the resulting equation forR* , evaluating the
integrals for each value ofR* .)

In Fig. 3, the curves denote the values ofG* andR* in
the function ofR andl, takingb51 andG51. In this figure,

it can be seen that asl→`, the numerical values forR* and
G* approach those obtained from the Milne–Thompson
theorem, as expected. As mentioned before, these values are
calculated considering only a finite number of points on the
limiting surface. However, on the material frontier surface,
the normal component of the velocity,n–vus , is always less
than 0.5% of the parallel velocity component. Then, Eq.~9!
represents a good approximation to the flow, for our purpose
~see Fig. 4!. So, using Eqs.~9!, ~8!, and the results shown in
Fig. 3, we can determine the helical vortex filament for ar-
bitrary values ofR andl.

IV. ADMISSIBLE FLOWS

In this section, we particularize the previous analysis
~valid for arbitrary values ofR, l, andG! to the special case
in which the flow comes from an upstream cylindrical region
with radiusb1 , where the velocity field is

vu15
G0

2pr
, vz15U1 , v r150. ~10!

FIG. 2. Sketch of the helical vortex filament and the image vortex showing the points on the surface where is imposed the tangency boundary condition~5!.

FIG. 3. ~a! Distance from the axis to the helical image vortexR* in function
of R and the pitchl of the helical vortex filament.~b! Absolute value of the
ratio of the image vortex circulationG* and the helical vortex circulationG,
in function of R andl.

FIG. 4. Velocity field of the helical vortex filament forR50.4, l52, and
b51.
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The downstream region is also considered to be cylindrical,
but with radiusb2 . We suppose that the transition between
the tubes is smooth enough to neglect transient effects. We
are interested in determining the possible values ofR andl
for the helical vortex filament developed in the downstream
region. In order to determine these parameters, we impose
the conservation of global magnitudes.

First, we note that the Kelvin theorem implies that the
circulation must be the same in both the upstream and down-
stream regions, that is to say,G5G0 . On the other hand, if
an helical flow is present, it must satisfy the mass and angu-
lar momentum conservation.

A. Mass flux of the helical vortex

If we assume that the cross section area of the core is
very small, in relation to the tube cross section area, the flow

rate at the core can be neglected. In order to calculate the
mass flow rate of the helical vortex filament, it is useful to
introduce the vector potential of the velocity field. The sur-
face integral of the velocity along the cross surface can be
computed using Stokes theorem, integrating the potential
vector round a closed curveC situated on the tube surface.
This procedure avoids the singularities at the core, as we
have mentioned in Sec. II. The potential vectorH~r ! of the
partial field ~3! is easily obtained from the expression

H~r !5
G

4p E
l

dl8
ur2r 8u

. ~11!

So, if we call

Hx~r ,f,R,l,G!5
G

4p E
2`

` R cosa da

A~~r cosf2R sina!21~r sinf2R cosa!21~z2la/2p!2!
,

~12!

Hy~r ,f,R,l,G!5
G

4p E
2`

` 2R sina da

A~~r cosf2R sina!21~r sinf2R cosa!21~z2la/2p!2!
,

the potential vectorA of the total velocity field is

A~r ,f!5H~r ,f,R,l,G!1H~r ,f,R* ,l,G* !1 1
2U0re0 ,

[Ah~r ,f!1 1
2U0reu , ~13!

Then the mass conservation leads to the constraint

pb1
2U15pb2

2U01E
G

Ah~r ,f!•dl. ~14!

Helical stream function

When an incompressible flow depends only on the heli-
cal coordinates (r ,f), it is possible to define a stream func-
tion C(r ,f) such that

v r5
1

r

]C

]f
, vf52

]C

]r
~15!

where vf5vu2(2p/l)vz . Taking derivatives, it can be
seen thatC5Az1(2p/l)Au , whereAz , Au are the compo-
nents of the velocity vector potential. From this last equality
and Eq.~13!, we can also find immediately the expression
for the helical flow stream functionC(r ,f).

B. Flux of angular momentum

Let us consider that the streamlines which form the sur-
facesS1 ,S2 in the upstream region, form corresponding sur-
facesS18 ,S28 in the downstream region. If there is a helical
flow, the section of surfacesS18 ,S28 looks as it is shown in
Fig. 5 ~we takeS2 andS28 on the material frontier!. The mass
conservation and the fluid incompressibility imply that the
volume rate between surfacesS18 ,S28 is the same that be-
tween S1 ,S2 . Furthermore, as a consequence of the axial

symmetry of the duct, the flow does not experiment a net
torque and it conserves its angular momentum in relation to
the tube axis. These two conditions lead to the equalities

2pb1h1vz15E
0

2p

h2~f!vz2~f!b2 df,

~16!

2pb1
2h1vz1vu15E

0

2p

h2~f!vz2~f!vu2~f!b2
2 df,

whereh2(f) is the radial separation betweenS18 andS28 . By
combining these equations, we obtain the condition

b1vu15b2

*0
2ph2~f!vz2~f!vu2~f!df

*0
2ph2~f!vz2~f!df

. ~17!

Now, we assume that the stream function valueC is
constant on surfacesS18 ,S28 with corresponding values
C1 ,C2 . When h is small, we can write thatC22C1

.h(]C/]r )ur 5b . Using Eq. ~15!, we obtainh2(f).(C1

FIG. 5. Cross-section of the streamlines surfaces, upstream and down-
stream, when it is present downstream a helical flow.
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2C2)/vf , whereC12C2 is independent off. Substituting
in Eq. ~17! and making simplifications, we finally obtain the
following constraint equation

b1vu15b2

*0
2pg~f!vu2~f!df

*0
2pg~f!df

[b2^vu2&.

In order to calculate the average^vu2&, the function

g~f!5
vz~b2 ,f!

vu~b2 ,f!2kb2vz~b2 ,f!
,

5
vz,h~b2 ,f!1U0

vu,h~b2 ,f!2kb2~vz,h~b2 ,f!1U0!
~18!

is considered a ‘‘distribution function’’ andvu,h ,vz,h are the
components of the vectorvh defined in Eq.~9!.

C. Summarized constraint equations

The equations

G5G0 ,

pb2
2U05pb1

2U12 R
C
Ah~r ,f,R,l,G!.dl,

b1vu15b2

*0
2pg~f!vu2~f!df

*0
2pg~f!df

~19!

are a set of conditions which must be satisfied by the helical
vortex flow in the downstream region. They constitute a non-
linear algebraic equations system for the variable parameters
G, U0 , l andR. The first and second conditions~19! imme-
diately give theG value and the functionU0(R,l), which in
turn gives the value ofU0 as a function ofR andl. More-
over, the last condition~19! is an undetermined nonlinear
equation for the other two variable parameters,l and R, of
the helical flow. For a given value ofl, the equation be-
comes determined. In this way, solving numerically this
equation for each value ofl ~by bisection, evaluating the
integrals for each value of the parameters!, we obtain the
possible values forR. ~For a givenl, we can obtain two, one
or none values ofR, as we see in Fig. 6.!

The curves in Fig. 6 show the values ofR as a function
of l obtained by solving the last equation~19! for different
values of the swirl ratioV5G0b2/2pQ, whereQ5pb1

2U1

is the flow rate. In the following, we do not consider the
trivial caseR50. @Notice that in this case the flow is axially
symmetric ~these conditions are always satisfied for the
trivial solution, corresponding to an axisymmetric flow,R
50, vu5G/2pr , vz5(b1

2/b2
2)U1 . However, this solution is

not interesting here, because it is not a helical flow.#
It is remarkable that the solutions~in l! of Eq. ~19!

always have the opposite sign thanV. This means that the
geometrical sense of the helical filament is the opposite of
the rotation sense of the upstream vortex. This result agrees
with the experimental observations reported by Sarpkaya10

and cited by Leibovich.11

Moreover, the curves of Fig. 6 show that the solutions
~in l! of Eq. ~19!, have a moduleulu confined to a range
between (0,ulumax). The upper boundulumax depends strongly

on V. Figure 7 shows the contour plot ofulumax as function
of V andb2 /b1 . Furthermore, from the curve of Fig. 6 for
V50.16, the solutions of the lower branch withulu,6 have
a very smallR. If we are interested in considering only he-
lical flows of significant amplitude, then the range of permis-
sible ulu can be reduced. For example, in the caseV50.16,
the ulu values are actually in the range~1, 4.4!. In the next
section, we consider some consequences and applications of
these results.

FIG. 6. Solutions curves of Eqs.~18!. The points on the curves represent the
admissible values of the parameters pair (R,l) of a helical vortex flow
developed downstream, for the values of the swirl ratioV showed on the
curves.

FIG. 7. Maximum allowed value of the pitchlmax in function of the ratio
b2 /b1 and the swirl parameterV.
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V. VORTEX STABILITY

A review of vortex stability is given by Leibovich.11 At
the present moment, a general criterion for the stability, to
helical perturbations, of vortex flows in an inviscid incom-
pressible fluid, is unknown. However, particular criteria are
obtained for several simple cases. Thus Howard and Gupta12

found a sufficient condition for the stability of an axial sym-
metric flow between concentric cylinders with axial velocity
componentvz(r ) and swirl componentvu(r ), to axisymmet-
ric disturbances. This condition is

F2
1

4 S dvz

dr D 2

>0, ~20!

whereF5r 23(d/dr)(r 2vu
2). These authors also showed, for

helical perturbations of the form

$dv r ,dvu ,dvz%5$ f ~r !,g~r !,h~r !%exp@ inu1 ik~z2ct!#,
~21!

that the flow is stable when the condition

k2F2~2kn/r 2!vu

dvz

dr
2

1

4 F S k
dvz

dr
1n

d

dr
~vu /r !G2

>0

~22!

is satisfied everywhere inside the fluid. This condition is al-
ways violated for sufficiently small values ofuku, so no gen-
eral stability criterion is obtained in this way. However, this
condition permits us to determine a range of values ofk
corresponding to stable waves. We note that the perturbation
~21! corresponds to a helix with pitchl52p/k.

On the other hand, in some cases it is possible, making a
normal mode analysis, to obtain the dispersion relation, and
then to determine the flow stability. For example, Lessen
et al.13 have studied in this way the linear stability of the
unbounded rotating top-hat jet. In this paper we are con-
cerned with bounded flows, thus we now briefly study the
linear stability of this flow bounded by a cylindrical surface
r 5b, with velocity components

vz5U1 , vu5Vr , v r50, 0<r<a,

vz50, vu5a2V/r , v r50, a<r<b. ~23!

If we assume that the disturbances are of the form

$dv r ,dvu ,dvz ,dp%

5$ f ~r !,g~r !,h~r !,p~r !%exp@ inu1 ik~z2ct!#, ~24!

the linearized disturbance equations for an inviscid fluid with
velocity profile ~23! are

1

r

d

dr
~r f !1 in

g

r
1 ikh50,

i f S vu

r
n1~vz2c!kD22g

vu

r
52

d

dr
p,

~25!

igS vu

r
n1~vz2c!kD1 f S dvu

dr
1

vu

r D52 in
p

r
,

ihS vu

r
n1~vz2c!kD52 ikp.

After eliminating the other variables, we get, in each region,
a Bessel equation for thez-component of the disturbance,h.
Solving this equation, we obtain an expression forh ~in both
regions!,

h5C1I n~mr !1D1Kn~mr !, 0<r<a,

h5C2I n~kr !1D2Kn~kr !, a<r<b,

wherem25k2$124V2/(Vn1(U12c)k)%. By requiring the
solution to be bounded atr 50, we obtain thatD150. More-
over, from Eq.~25! we also obtained expressions for the
other components of the disturbances,

0<r<a

f 52
ikC1

m2 F 2nV

r ~nV1~U12c!k!
I n~mr !1mI n8~mr !G ,

p52a21@nV1~U12c!k#C1I n~mr !; ~26!

a<r<b

f 52 iC2I n8~kr !2 iD 2Kn8~kr !,

p52k21@na2V/r 22ck#~C2I n~mr !1D2Kn~mr !!.
~27!

Boundary condition~5! implies thatf (b)50, and then

D252@ I n8~kb!/Kn8~kb!#C2 . ~28!

Now, we suppose that the radial displacement of the vortex
sheet due to the disturbance isD5A exp(inu1ik(z2ct)). The
fact that the surfacer 5a1D moves with the fluid gives the
kinematical condition

DD

Dt
[

]D

]t
1~U–“ !D5dv r , ~29!

which must be satisfied in both sides of the surface, being
U5(v r ,vu ,vz) the unperturbed velocity.

The dynamical condition on the pressure states that it
must be continuous across the surfacer 5a1D and gives,
after linearizing,

dP0,1

dr U
r 5a

D1p1~a!5
dP0,2

dr U
r 5a

D1p2~a!, ~30!

where the suffixes 1, 2 denote the inner and outer regions,
respectively, andP0 is the pressure of the unperturbed state.
Equations~28!, ~30!, ~29!, together with~26!, ~27!, deter-
mine the dispersion relation
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k

m2 F 2nV

~nV1~U12c!k!
1m

I 8~ma!

I ~ma! GF ~nV2kc!2
Hn~ka!

Hn8~ka! G
2k21@nV1~U12c!k#250 ~31!

where, by definition, Hn(kr)[I n(kr)2@ I n8(kb)/
Kn8(kb)#Kn(kr).

As b/a tends to infinity, this equation approaches the
one obtained by Lessenet al.13 Solving Eq. ~31! we can
obtain the value of the complex phase velocityc5cr1 ic i ,
and so determine the stability of the basic flow Eq.~23!.
When the imaginary part of the phase velocityci is positive,
the flow is unstable. We have solved the dispersion relation
~31! numerically. The values ofci /U1 as a function ofka are
shown in Fig. 8 for the quotient valueb/a510. It is remark-
able that the values ofci are very close to those obtained by
Lessenet al., in the limit of infinite b. This result means that
the boundary has small influence on the linear stability of the
vortex, when the core size is small in relation with the ma-
terial frontier radius. Only for values ofa of the same order
of b, do we obtain a significant difference between the values
of the phase velocity for the bounded and the unbounded
vortex.

VI. APPLICATIONS OF NONLINEAR ANALYSIS OF
ALLOWED FLOWS

Of course, the linear analysis is not valid when the heli-
cal flow has a large~finite! departure from an axially sym-
metric flow. In this case, the nonlinear analysis of allowed
flows can be useful as a complement to the linear stability
analysis. Knowledge of the range of allowed values ofl, for
the full developed helical flow, can be used to check if a
linear unstable mode can actually grow and develop into a
helical flow. In order to clarify this point, let us study two
concrete examples.

A. Example 1

First, we consider again, as in the previous section, the
development of helical flows departing from the columnar
vortex Eq. ~23!. The results of the linear analysis, forU1

Þ0, are showed in Fig. 8. We see that, for helical perturba-
tions ~21! with wave number modulusuku52p/ulu suffi-
ciently large, the flow is linearly unstable. In particular,
whenG* 5G/aU150.6, the flow is unstable for all positive
values ofk, i.e., of the pitchl. However, nonlinear analysis
shows that thel of waves with finite amplitude are contained
in a range (2ulumax,0), and then the unstable modes with
l.0 or with l,2ulumax are not able to grow and develop
helical flows. Of course, in these cases the instabilities can
lead to another type of change in the flow, but not to helical
flows. In particular, the inexistence of helical waves withl
.0 is in agreement with the experiments.10,11 It is not pos-
sible to obtain this result from the linear analysis.14,15

B. Example 2

Now we consider the basic flow~in appropriate units!

uz5V01gAJ0~gr !, vu5
g

2
r 1gAJ1~gr !,

v r50 for 0<r<a;

vz51, vu5G/r , v r50 for a<r<b, ~32!

inside a tube of radiusb, with continuity in the velocity
@J0(x),J1(x) are the Bessel functions#. For the valuesA
520.04,a50.2, b51, g56 the linear criterion~22! guar-
antees stability under perturbations~21! with l in the range
~254, 1.04!. The system can be unstable under perturbations
with l out of this interval, which violate the criterion. For
these values of the parameters, the swirl ratioV50.038.
Nonlinear analysis of Sec. IV implies~for b51, V50.038)
that all possible helical flows havel included in the interval
~20.62, 0!. We note that the pitch of the waves which vio-
lates the stability criterion is out of this last range. Then, no
helical flow will develop departing from the basic flow Eq.
~32! for the given values of the parameters. On the other
hand, wheng520, with the same values ofa and b, the
range of l which satisfies the stability condition~22! is
~21.35, 0.026!, which does not contain the allowed interval
~22.54, 0! obtained from our nonlinear analysis. Therefore,
in this case, there are unstable modes which can develop
helical flows.

VII. CONCLUSIONS

In this paper a study of the allowed helical flows inside a
circular tube is presented. The flow is supposed irrotational
except in a core of infinitesimal section. An expression for
the flow around this helical filament is obtained. The bound-
ary conditions are satisfied, calculating numerically the im-
age for the helical vortex. Conservation laws are imposed to
the helical flow, supposing a given upstream flow. Using this
procedure, a dependence between pitchl and amplitudeR of

FIG. 8. Imaginary part of the velocityci for the disturbance to a rotating and
confined top-hat jet, forn51, a/b510, and different values ofG/aU1

shown on the curves.
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the helix is obtained. A range for admissiblel, for helical
vortex flows with finite amplitude developed from an axially
symmetric basic flow, is also found. The results are indepen-
dent of the cutoff distanced, which is a fortunate fact, be-
cause the determination ofd constitutes a serious problem.4,8

Experimental observations~sense of the helix! are explained
by this theory. The present analysis, which considers the
effects of nonlinear terms in the balancing of conserved
quantities, may be used to complement linear studies of sta-
bility, as it was shown before in two simple examples.
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