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The stability of steady, helical vortex filaments in a tube
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The nonlinear conditions for the development of helical vortex filaments in a circular tube are
considered. The helical flow is assumed to be irrotational, except in a vortex filament of infinitesimal
core area. By introducing an appropriate image for this helical vortex filament, the boundary
condition on the material frontier is satisfied. By assuming an axisymmetric flow upstream and
imposing the conservation laws, a dependence between the helix pitch and the nonlinear amplitude
of the helical vortex developed downstream is obtained. Our results show that only helical flows
with the pitch in a certain range of values are allowed. The dependence of this range on the swirl
ratio and on the tube cross section is considered. We discuss the usefulness of the nonlinear analysis
of the allowed flows to explain experimental results and to complement the usual linear study of
stability. © 1999 American Institute of Physids$51070-663(99)01904-2

I. INTRODUCTION Il. BASIC EQUATIONS

_ We assume that the flow is incompressible and irrota-
In recent years, there has been an important number gfonal everywhere except in a vortex filament, i.e., in an in-
theoretical and experimental results on the development dfnite concentrated rotational core.

structural changes in vortex flows. These phenomena, which In the case of an incompressible inviscid fluid, the gov-
produce abrupt unsteady changes in the pressure of the fluidfning equations ar€.v=0 and the Euler equation. In terms
are usually associated with a loss of axial symmetry. Theyf the vorticity w=V xv, the Euler equation takes the form
are of interest in several technical applicati¢fts example, ~©f an evolution equation

in aerodynamics and in the design of hydraulic machineries, gy

as hydroelectric turbingsLaboratory experiments in tubes, H‘FV'VWZW-VV. (h)
described in Refs. 1-3, show that the flow is essentially ir- ) )
rotational, with constant circulation, except in a helical rota- 1 "erefore, the circulation
tional core.(When the phenomenon just appears, the rota-

tional core is close to the tube ayis. = ﬁ:v-dl

In this work, we study the possible steady, helical vortex d bv the Kelvin th " VIC=0
filaments with finite helix radiugi.e., with arbitrary depar- s governed by the Kelvin theorem 4ft) +v-V)I'=0.

. . . . That is to say, the vortex filament moves with constant cir-
ture from an axially symmetric flolv To investigate the culation around it
mechanisms that govern the structural changes in the flow, When the vorticity is concentrated, in the unbounded

we consider the initialinflow) field as axially symmetric and flow case, the velocity is determined by the Biot—Savart law:
confined to a tube. We assume tliaverywhere along the

tubg the flow is irrotational except in a rotational core fila-
ment, with infinitesimal area and constant circulation around

it. In Sec. Il, the basic equations are derived. In Sec. lll, aryopever, if boundary walls are present, this expression is
expression for the velocity field of the helical vortex filament not valid, becausén general it does not satisfy the bound-

is obtained, taking into account the material boundary congry conditions. We can construct an adequate solution for the
ditions. In Sec. 1V, a given upstream flow is considered andflow around the vortex filament, adding to E@) a field

by imposing conservations laws, a rule is obtained for they,(r), with V xv,=0 andV -v,=0, provided that the sum
possible helical vortex filaments which can develop down- T (r—r)xdl’

stream departing from the axially symmetric flow. In Sec. V,  v(r)=— Jﬁ +vp(r) 4
criteria for the vortex stability are considered. In Sec. VI, the am )y [r=r’|

results of our analysis are applied to concrete examples. satisfies the condition

2

_F (r—=r")yxdl’
Vu(r)_ﬂ ENTETIEE (3
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n-v|g=n-(v,+V,)|s=0 ) ¢

l
normal direction to the surface. We note thigtdepends on R
v, in a nonlinear form. J .
Using Eq.(1) it is possible to provésee Batcheldy that
the vortex filament core moves with the particles without /
changes in the core strengthorticity-transport theorein U Y,
i

on the limiting surface, whera is the unit vector in the ﬁ

That is to say, the vortex line displacemehtis

Sl=vl ot (6)

FIG. 1. The coordinate system and the helical vortex filament.

wherer . is the position of the vortex line.
In principle, by using the previous equations, we could!!l. HELICAL VORTEX FILAMENTS IN A TUBE

determine the vortex motion. However, this presents a seri- In this work, we restrict our attention to the steady heli-
ous difficulty in practice, because the first term of E4).is  cal flows allowed inside a tube of radilswhich can be
divergent when it is calculated on the filament itself modeled as vortex filaments. We assume that the helical vor-
(Batchelof). Obviously this singularity is unphysical be- tex line has constant circulation along its extension and is
cause the real vortex has a finite core where @§jis not  sjtuated on a cylinder of raditR<b, with pitch \ (see Fig.
valid. Thus to determine the vortex velocity at the core, thel). As there are two possible geometrical senses for the helix,
real finite vortex core propertie€ must be considered. As a we consider thah can be positive or negative so that the
consequence, the resulting vortex motion depends criticallgign of A determines the sense of the helix. The filament can
on the core characteristics, and so the method is not verye parameterized as a line with an angular parameter
useful when the core size is not precisely known. In our
work, we use only globally conserved magnitudes the
mass rate, the circulation, and the total angular momentumwhere a varies between-«~ and +oo,
which do not depend on the vortex core characteristics. As  The helical flow depends only on the helical coordinates
we show in Sec. IV, significant results can be obtained whiclr,¢), where¢= 60— (27/\)z and (, 6,z) are the usual cy-
are independent of the concrete value of the core size, prdindrical coordinates. From Eq$3) and (7), we obtain the
vided it is small in relation with the tube radius. following expression fow,, :

x=Rsina, y=Rcosa, z=\al2mw, (7)

. A A .
( —Rsma(z— —| = ﬂ(r sing—Rcosa) |da

—F(r R)\F)—LJ o
R ™ —=+\/((r cos¢p—Rsina)2+(r sing— Rcosa)2+ (z— \al2m)?)3’

[

N A
—(r cos¢—Rsina)—Rc05a( zZ— —))da
2T

I (-~ 2
—F,(r,¢,RA,T)=— ,
vuy=Fy(1, ¢:RAT) 47Tf—oo\/((rCOSd)—RSina)Z-i-(rSind)—RCOSa)2+(Z—)\a/27T)2)3

r Jw (Rrsing cosa+ Rrcos¢ sina—R?)da

= N=— . 8
vur= PN $.RAT) —»\J((r cos¢p—Rsina)Z+(r sing— Rcosa)+(z—\al2m)?)3 ®

A

We construct the function,, considering it as the ve- R*=Db?/R. Unfortunately, there does not exist a general re-
locity field of an induced image vortex, characterized by asult for the case with finita. In this work, numerical values
radiusR* > b, a circulation'*, and the same pitck. Inthis  of R* and T'* (for givenT', R, and\) are determined by

case, the total velocity field is imposing condition(5) on some selected points on the sur-
v=F(r,¢, RN, T)+E(r,é,R* \,T*)+Uge,, face, as shown in Fig. 2. In points 1 and 4 this condition
holds automatically. We determi®* andI'* by imposing
=Vh(r, ¢, R\, ')+ Uge;, (9 condition(5) in points 2 and 3and solving the system of the
whereU g, is an arbitrary constant term. two resulting equations Then, because of the symmetry, it
In the case of straight vorticea (), the values oR* is also satisfied in the points 5 and 6. Therefore, condifton
and I'* can be computed using the well known Milne— holds exactly in the pointsR;, i=1,6) on the surfac¢see

Thompson theorem This theorem states th&it* = —T and  Fig. 2). It also holds approximately in other points around
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V

FIG. 2. Sketch of the helical vortex filament and the image vortex showing the points on the surface where is imposed the tangency boundaf)condition

P4

the surfacgwe verified this numerically It is important to it can be seen that as— 0, the numerical values fd&®* and
note that we need to evaluate the velocity field only on somé™* approach those obtained from the Milne—Thompson
points at the wall. Then, the divergence at the core does naheorem, as expected. As mentioned before, these values are
affect our calculation. Thus we do not require to use speciatalculated considering only a finite number of points on the
techniques of desingularization to solve the systgmdoing  limiting surface. However, on the material frontier surface,
so, we eliminatel'* and then use a numerical bisection the normal component of the velocity;v|s, is always less
method to solve the resulting equation Rf, evaluating the than 0.5% of the parallel velocity component. Then, &.
integrals for each value d®*.) represents a good approximation to the flow, for our purpose
In Fig. 3, the curves denote the valuesltf andR* in (see Fig. 4. So, using Eqgs(9), (8), and the results shown in
the function ofR and\, takingb=1 andI'=1. In this figure, Fig. 3, we can determine the helical vortex filament for ar-
bitrary values ofR and\.

Rsb ° IV. ADMISSIBLE FLOWS
! ] In this section, we particularize the previous analysis
. (valid for arbitrary values oR, \, andI') to the special case

in which the flow comes from an upstream cylindrical region
with radiusb,, where the velocity field is

. \16 ] r,
8 va=Ug, ©v,1=0. (10

3 \4 UHl:m’

(a)

I /1T

1.5 2 3 5 7 0.

(b) A

FIG. 3. (a) Distance from the axis to the helical image vori in function
of Rand the pitch\ of the helical vortex filamenib) Absolute value of the
ratio of the image vortex circulatioi* and the helical vortex circulatioh, FIG. 4. Velocity field of the helical vortex filament f&=0.4,A=2, and
in function of R and\. b=1.
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The downstream region is also considered to be cylindricaltate at the core can be neglected. In order to calculate the
but with radiusb,. We suppose that the transition betweenmass flow rate of the helical vortex filament, it is useful to
the tubes is smooth enough to neglect transient effects. Wiatroduce the vector potential of the velocity field. The sur-
are interested in determining the possible valueRaihnd\  face integral of the velocity along the cross surface can be
for the helical vortex filament developed in the downstreamcomputed using Stokes theorem, integrating the potential
region. In order to determine these parameters, we imposeector round a closed curve situated on the tube surface.
the conservation of global magnitudes. This procedure avoids the singularities at the core, as we
First, we note that the Kelvin theorem implies that thehave mentioned in Sec. Il. The potential vecktir) of the
circulation must be the same in both the upstream and dowrpartial field (3) is easily obtained from the expression
stream regions, that is to say=1",. On the other hand, if
an helical flow is present, it must satisfy the mass and angu-

lar momentum conservation. H(r)= Lj dr’ (11)
A. Mass flux of the helical vortex Am Jijr=r’]
If we assume that the cross section area of the core is
very small, in relation to the tube cross section area, the flovso, if we call
|
H.(r RN r fw Rcosa da
r! 1 L L = 1
X 4 ) —\/((r cos¢p—Rsina)?+(r sing— Rcosa)?+(z— \al2m)?)
. (12)
Ho(r 6. RAT) FJ“ —Rsinada
rl 1 1 1 = L
Y 4 J = \((r cos¢p—Rsina)?+(r singg— Rcosa)?+ (z— N al2m)?)
|
the potential vectoA of the total velocity field is symmetry of the duct, the flow does not experiment a net

torque and it conserves its angular momentum in relation to

— * * 1
A(r @)=H(r,¢,RAT)+H(r, ¢,R%NTF) + 2Uore, the tube axis. These two conditions lead to the equalities

EAh(r!¢)+ %Uoreea (13) 2
Then the mass conservation leads to the constraint 2mbihwa = fo ha($)vz($)bo dé,
2 2 27 (16)
b3l =mbzUo+ fGAh(r,qﬁ)-dl. (14 27bThyv v 1= Jo ha($)v2(B)v g2 P)b3 d b,

Helical stream function whereh,(¢) is the radial separation betwe8h andS, . By

When an incompressible flow depends only on the helicombining these equations, we obtain the condition
cal coordinatesr(, ¢), it is possible to define a stream func- o
tion W(r,¢) such that by y—b, Jo h22( D) 22( D)V g2(P)d e
19V P 0 ha(P)vo(d)ded

VT e YT T Tar (15) Now, we assume that the stream function vailleis
) o ) constant on surfacesS;,S, with corresponding values
where v ,=v,—(27/\)v,. Taking derivatives, it can be ¥, ¥,. When h is small, we can write thatV,—V,
seen thaW =A,+ (27/\)A,, whereA,, A, are the compo- ~h(aW/dr)|,—,. Using Eq.(15), we obtainh,(¢)=(¥,
nents of the velocity vector potential. From this last equality
and Eq.(13), we can also find immediately the expression
for the helical flow stream functio® (r,¢). S 52

(17

B. Flux of angular momentum

Let us consider that the streamlines which form the sur-
facesS;,S, in the upstream region, form corresponding sur-
facesS;,S; in the downstream region. If there is a helical
flow, the section of surfaceS; ,S; looks as it is shown in
Fig. 5(we takeS, andS; on the material frontier The mass
conservation and the fluid incompressibility imply that the

..
volume rate between surfac%,sz is the same that be'_ FIG. 5. Cross-section of the streamlines surfaces, upstream and down-
tween S,,S,. Furthermore, as a consequence of the axiaktream, when it is present downstream a helical flow.
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—W¥ylv,, whereW,—W, is independent ot. Substituting L
in Eqg. (17) and making simplifications, we finally obtain the g/,
following constraint equation
f%”g(qs)vezw)dqs_b oo
= v .

J5"9(4)dé 2ne

In order to calculate the average,,), the function
vo(by, )
9(¢)= — ,
vo(ba, ¢) —kbov,(by, $)
_ Uzn(b2,¢)+Ug 18 ' Q=016
vg,h(b2, ) —Kby(vzh(b2,¢)+Ug)

is considered a “distribution function” and, v, are the 0.2 Q=008
components of the vecta, defined in Eq(9). J

bv g =b;

0.6 Q=032

C. Summarized constraint equations ' 2

4 3 8

The equations

[/ b,

I'= FO ! FIG. 6. Solutions curves of Eg&L8). The points on the curves represent the
admissible values of the parameters pd#,X) of a helical vortex flow

nguoz Wbiul_ % An(r,¢,R\,T).dl, developed downstream, for the values of the swirl r&ichowed on the

c curves.
2
b b J579(d)vga(p)ded (19
1 g1~ 2 2
J5"9(#)d¢

on Q. Figure 7 shows the contour plot p|,,.« as function
are a set of conditions which must be satisfied by the helicaht () andb,/b,. Furthermore, from the curve of Fig. 6 for

vortex flow in the downstream region. They constitute a non-() = 0.16, the solutions of the lower branch W'ﬂh| <6 have
linear algebraic equations system for the variable parametegs very smallR. If we are interested in considering only he-
I', Up, A andR. The first and second conditioit9) imme- |ical flows of significant amplitude, then the range of permis-
diately give thel’ value and the functio/o(R,)), whichin  gjple |\| can be reduced. For example, in the c&se0.16,
turn gives the value obl, as a function oR and\. More-  the |\| values are actually in the rang#, 4.4. In the next

over, the last conditiori19) is an undetermined nonlinear section, we consider some consequences and applications of
equation for the other two variable parametersandR, of  these results.

the helical flow. For a given value of, the equation be-
comes determined. In this way, solving numerically this
equation for each value of (by bisection, evaluating the
integrals for each value of the paramejemse obtain the 1.8 |
possible values foR. (For a given\, we can obtain two, one 5./ & @
or none values oR, as we see in Fig. b. \ u
The curves in Fig. 6 show the valuesRfas a function ‘\ I \\
of \ obtained by solving the last equatioh9) for different . |
values of the swirl ratid) =T"gb,/27Q, WhereQ=7Tb§U1 oo
is the flow rate. In the following, we do not consider the o \
trivial caseR=0. [Notice that in this case the flow is axially \ \
symmetric (these conditions are always satisfied for the \ \ 8
trivial solution, corresponding to an axisymmetric floR, | \ \ \
=0, v,=T/27r, v,=(b?/b3)U,. However, this solution is | \ a AN
not interesting here, because it is not a helical flow. \ \ \
It is remarkable that the solutiongn \) of Eq. (19 1) \
always have the opposite sign thé@n This means that the Voo \
geometrical sense of the helical filament is the opposite of | \ \\ ~
the rotation sense of the upstream vortex. This result agrees 1 \ -
with the experimental observations reported by SarpKaya 0 0.4
and cited by LeibovicH! 0
Moreover, the curves of Fig. 6 show that the solutions
(in \) of Eq. (19), have a modulg\| confined to a range FiG. 7. Maximum allowed value of the pitckyg, in function of the ratio
between (Q\ | ma- The upper bounfh | . depends strongly b, /b; and the swirl paramete.
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V. VORTEX STABILITY 1d g
——(rf )+in=+4+ikh=0,

A review of vortex stability is given by Leibovicht At rdr r
the present moment, a general criterion for the stability, to v v
helical perturbations, of vortex flows in an inviscid incom- if(THnJr(vz— c)k) —297=— -,

pressible fluid, is unknown. However, particular criteria are

obtained for several simple cases. Thus Howard and Gupta vy dv, v, - (25
found a sufficient condition for the stability of an axial sym- ig(T n+(v,—c)k|+f ar + T) =—in ’
metric flow between concentric cylinders with axial velocity
componenb,(r) and swirl component 4(r), to axisymmet- vy
ric disturbances. This condition is ih(TnJr(vz—C)k) =—ikm.
1/ dv.\2 After eliminating the other variables, we get, in each region,
— _(_Z) =0, (20 a Bessel equation for thecomponent of the disturbance,
4\ dr Solving this equation, we obtain an expressiontf@¢in both
regions,

whered =r ~3(d/dr)(r?v?). These authors also showed, for

helical perturbations of the form h=Caln(ur) +DiKn(ur), 0<r=<a,

h=C,l (kr)+D,K,(kr), asr<b,

{6vr, v, 00,4 ={f(r),g(r),h(r)}exdin o +ik(z—ct)], whereu?=k2{1-402/(Qn+ (U, —c)k)}. By requiring the
(2 solution to be bounded at=0, we obtain thab,=0. More-
over, from Eq.(25) we also obtained expressions for the
that the flow is stable when the condition other components of the disturbances,
O=r=a
) , du, 1 dv, d 2
k=® — (2kn/r )UHW—Z kW-‘rna(Ug/r) =0 f:_ikcl 2nQ ()l ar)
(22) w2 [ r(nQ+(U,—c)k) M HIntAT
m=—a " '[nQ+(Uy—c)K]Cyln(pr); (26)

is satisfied everywhere inside the fluid. This condition is al-
ways violated for sufficiently small values (4, so no gen- asrs<b
eral stability criterion is obtained in this way. However, this . , . ,
condition permits us to determine a range of valueskof f=—iCal (k) =iD oKy (kr),
corresponding to stable waves. W_e note that the perturbation __ _ k™ na2Q/r2—cK](Cyl o( r )+ DK wr)).
(21) corresponds to a helix with pitck=27/k. (27)

On the other hand, in some cases it is possible, making a . L _
normal mode analysis, to obtain the dispersion relation, and Boundary condition(s) implies thatf(b) =0, and then
thenltgo determing th_e floyv stability. For exampl_e, Lessen D,=—[1/(kb)/K'(kb)]Cs. (29)
et al.”® have studied in this way the linear stability of the o
unbounded rotating top-hat jet. In this paper we are conNow, we suppose that the radial displacement of the vortex
cerned with bounded flows, thus we now briefly study thesheet due to the disturbancedis=A exp(n6-+ik(z—ct). The
linear stability of this flow bounded by a cylindrical surface fact that the surface=a+ A moves with the fluid gives the

r=>b, with velocity components kinematical condition
DA
v,=Uy, v,=Qr, v,=0, 0<r=<a, bt gt T(UV)A=dvr, (29
5 which must be satisfied in both sides of the surface, being
v,=0, v,=aQ/r, v, =0, asr=b. (23 U=(v,,vy,v,) the unperturbed velocity.
The dynamical condition on the pressure states that it
If we assume that the disturbances are of the form must be continuous across the surfacea+A and gives,
after linearizing,
Ov,,0V4,0V0,,0 dP dP
{60r,804,002,5p} df'l A+w1(a)=T0’2 A+ my(a), (30)
r=a r=a

={f(r),9(r),h(r), m(r)texdino+ik(z—ct)], (24 here the suffixes 1, 2 denote the inner and outer regions,

respectively, andP, is the pressure of the unperturbed state.
the linearized disturbance equations for an inviscid fluid withEquations(28), (30), (29), together with(26), (27), deter-
velocity profile (23) are mine the dispersion relation
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Hn(ka) 0v80' T T T T

K 2nQ) 1" (pa)
2 H/(ka)

2| 0T U oR T T || (M2 kO?

—k 1 nQ+(U,—c)k]2=0 (31)

where, by definition, H,(kr)=1,(kr)—[I(kb)/ 04

K, (kb) K, (kr). I 06
As b/a tends to infinity, this equation approaches the 020 - ]

one obtained by Lesseet al'® Solving Eg.(31) we can i

obtain the value of the complex phase velodatyc, +ic;, [ L 04

and so determine the stability of the basic flow EZ3). 0.00 — \ —

When the imaginary part of the phase velogityis positive, 300 200 100 000 1.00 200 30

the flow is unstable. We have solved the dispersion relation ak

(31) numerically. The values af; /U, as a function oka are

shown in Fig. 8 for the quotient valuga=10. It is remark- FIG..8. Imaginary.part of the velocity, for the digturbance to a rotating and

able that the_values_ (nf, are very close _to those obtained by gﬁgcvr;egnt?ﬁéhcasr\‘g_fom:1’ /b=10, and different values of/aU,

Lesseret al, in the limit of infinite b. This result means that

the boundary has small influence on the linear stability of the

vortex, when the core size is small in relation with the ma-B. Example 2

terial frontier radius. Only for values & of the same order

of b, do we obtain a significant difference between the values

of the phase velocity for the bounded and the unbounded v

vortex. U =Vo+ yAdo(¥r), vp=5T+yAd (1),

Now we consider the basic flogin appropriate unifs

v,=0 for Osr=<a;

v,=1, vy=TIr, v,=0 for asr=<b, (32
VI. APPLICATIONS OF NONLINEAR ANALYSIS OF inside a tube of radiud, with continuity in the velocity
ALLOWED FLOWS [Jo(x),J1(x) are the Bessel functiohsFor the valuesA

=-0.04,a=0.2,b=1, y=6 the linear criterion22) guar-

Of course, the linear analysis is not valid when the heli-antees stability under perturbatio(&l) with X\ in the range
cal flow has a largéfinite) departure from an axially sym- (—54, 1.04. The system can be unstable under perturbations
metric flow. In this case, the nonlinear analysis of allowedwith \ out of this interval, which violate the criterion. For
flows can be useful as a complement to the linear stabilitghese values of the parameters, the swirl radie-0.038.
analysis. Knowledge of the range of allowed valuea oior ~ Nonlinear analysis of Sec. IV impliggor b=1, () =0.038)
the full developed helical flow, can be used to check if athat all possible helical flows haveincluded in the interval
linear unstable mode can actually grow and develop into &—0.62, Q. We note that the pitch of the waves which vio-
helical flow. In order to clarify this point, let us study two lates the stability criterion is out of this last range. Then, no
concrete examples. helical flow will develop departing from the basic flow Eq.
(32 for the given values of the parameters. On the other
hand, wheny=20, with the same values & and b, the

First, we consider again, as in the previous section, thgange of A which satisfies the stability conditiof22) is
development of helical flows departing from the columnar(—1.35, 0.026, which does not contain the allowed interval
vortex Eq.(23). The results of the linear analysis, foly  (—2.54, Q obtained from our nonlinear analysis. Therefore,

#0, are showed in Fig. 8. We see that, for helical perturbain this case, there are unstable modes which can develop
tions (21) with wave number modulugk|=2#/|\| suffi-  helical flows.

ciently large, the flow is linearly unstable. In particular,
whenI'* =T"/aU;=0.6, the flow is unstable for all positive
values ofk, i.e., of the pitchn. However, nonlinear analysis
shows that tha. of waves with finite amplitude are contained In this paper a study of the allowed helical flows inside a
in a range |\|mae0), and then the unstable modes with circular tube is presented. The flow is supposed irrotational
A>0 or with A< —|\|nax @are not able to grow and develop except in a core of infinitesimal section. An expression for
helical flows. Of course, in these cases the instabilities cathe flow around this helical filament is obtained. The bound-
lead to another type of change in the flow, but not to helicalary conditions are satisfied, calculating numerically the im-
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