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Spatial stability of similarity solutions for viscous flows in channels
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The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with
porous walls and driven by constant uniform suction along the walls is analyzed. This work extends
the results of Durlofsky and BradyPhys. Fluids27, 1068 (1984] to a wider class of similarity
solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape,
generated at the entrance of the channel. It is found that antisymmetric perturbations are the best
candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal
presented by Zaturska, Drazin, and Bafkklid Dyn. Res4, 151(1988] are found to be spatially
unstable. The perturbed similarity solutions are also compared with fully bidimensional ones
obtained with a finite difference code. The results confirm the importance of similarity solutions and
the validity of the stability analysis in a region whose distance to the center of the channel is more
than three times the channel half-width. ZD0O0 American Institute of Physics.
[S1070-663(00)02003-1

I. INTRODUCTION Il. BASIC EQUATIONS

The Navier—Stokes equation for an incompressible vis- 1 he coordinate system of Fig. 1 is considered, with the

cous flow along a channel with porous walls, driven by con-2rigin in the center of the channel and thaxis parallel to

. . . L . . the walls. The parameters of the problem are the suction
stant uniform suction, admits a similarity solution. This so- P P

. N velocity V, the channel width B, p and u the (constank
lution was studied in 1953 by Bermangho reduced the density and viscosity of the fluid, respectively. Steady state

bidimensional Navier—Stokes equation to a fourth order nong,ytions for the nondimensional velocity and pressure fields
linear ordinary differential equation with two boundary con- y(x,y), p(x,y) satisfy the continuity and Navier—Stokes
ditions at each wall. This equation depends on a sole nondequations. Thus,

mensional parameter, the transversal Reynolds nunier, div(u)=0
defined in terms of the channel width and the suction veloc- =
ity. Similarity solutions were tested in early experiments on  u—gradu)=—grad p)+div(gradu))/R,
laminar flows in ducts with wall injection, where evidence of with u==+§ on the walls. The unit vectors in theandy

good agreement between measurements and theoretical Pirections are denoted by andy, respectively. The trans-

dictions was reported. . versal Reynolds number iB=Vhp/u. The variables are
Many authors have studied Berman's equatisee, for  expressed in units of the length the velocityV and the
example, Refs. 3—12and found a very rich structure of so- pressurev?p.

lutions. Zaturskeet al,® however, proved that most of these A similarity solution of the form,
solutions are temporally unstable to linear perturbations. On A (y)
the other hand, the spatial stability of the solutions has not  u(x,y)=x x—f(y)y,
been completely analyzed. In 1984 Durlofsky and Bfddy %
studied the spatial stability cfymmetricsolutions under lin- p(X,y)=m(y) +Ax?/2,
earsymmetricperturbations.

This work presents the spatial stability analysis for both '
symmetric and asymmetric solutions under arbitrary small ~ f'"+R(ff”—f'f")=0, ()]
amplitude perturbations. The basic equations of the problenynare’ denotes differentiation along the transversal coordi-
are shown in the next section and the stability analysis iate. The boundary conditions féy) are
developed in Sec. lll. A comparison between the spatially
perturbed similarity solutions and fully bidimensional ones is f(1)=-1, f(-1)=1, f'(1)=0, f'(-1)=0.
presented in Sec. IV. Section V is devoted to the concluOnce Eq.(3) is solved, the pressure field corresponding to
sions. Eq. (2) can be obtained from the following expressions:

@

@)

leads to the following equation fdi(y):

1070-6631/2000/12(4)/797/6/$17.00 797 © 2000 American Institute of Physics



798 Phys. Fluids, Vol. 12, No. 4, April 2000 S. Ferro and G. Gnavi

STt

pole

v
e e

y=h

i

X

T T T T T T T T 3T 3 &3 v

FIG. 1. Channel diagram and coordinate system. The plotted stream lines
represent the flow pattern of an asymmetric similarity solution of the
Navier—Stokes equation.

m(y)=m(1)+(1-f2)2=f'IR, O
0 5 10 15 20
A=(ff"—12)+ /R, )

A spectral* code was developed to obtain numerical so-fiG. 3. Eigenvalues of symmetrigype ) solutions of Eq.(3). Full lines
lutions for the flow equatio(;?,)_ The results obtained were in correspond to antisymmetric eigenfunctions and dotted lines to symmetric
good agreement with those presented by Zaturska, Drazif!"¢s:
and Banks in Ref. 8. In Fig. 2, a bifurcation diagram is
presented showing the different steady state solutions of Eq.

(3). In this diagram each solution is represented by the valud!- SPATIAL STABILITY ANALYSIS

f”(1), which is proportional to th_e viscous stress at thewall  Tne spatial stability analysis of E¢3) was performed
y=1. Several branches of solutions and bifurcations appe%king solutions of the fomg(x’y)zxf(y)JrXAHx(y) for

in the djagram. Thg asymmetric squtiqns are plotted Withthe stream function. The termiH, (y) is regarded as a per-
dotted lines. There is a stable symmetric solutidenoted turbation to the similarity solution. The linearized approxi-

solution of type ] which Iqses |ts-stabll|ty aR|=E?.001, mation forH, (y), valid in the region not close to the center
where two stable asymmetric solutioftgpes | and L) are ¢ tha channel. leads to the following characteristic value
generated in a pitchfork bifurcation. These solutions remain o piem:

stable belowR,;,;=12.963, where a Hopf bifurcation takes _
place. A saddle-node bifurcation BY=12.165 gives birth HY +R(fHY —f"H)=AR(f'H} —f""H,), 4
to two temporally unstable symmetric solutiotgpes Il and
[II) one of which undergoes a pitchfork bifurcation Ry,
=15.415, generating two new asymmetric brancttgpes H\(—1)=H;(—1)=H,(1)=H,(1)=0. (5)
I, and I1l}). As R—, solutions of type | and Il differ by
exponentially small terms oniyand they coalesce in a cusp
type bifurcation.

Solutions of type Il withR<R;,=13.119 and those of
type llI, I, and IIl; have regions of flow reversal in the
center of the channel. Solutions of typg and [ have a
region of flow reversal near one wall R>R/,=6.557.

with homogeneous boundary conditions,

For a given Reynolds number, the existence of charac-
teristic values\ with Re\)<1, implies the instability of the
similarity solution. Under these conditions certain perturba-
tions at the mouth of the channel can grow downstream,
destroying the similarity solution in the interior.

This kind of analysigfor symmetric solutionshas been
performed by Durlofsky and Brady. These authors, how-
ever, considered boundary conditions of the form,

. H\(0)=H{(0)=H,(1)=H}(1)=0, (6)

2963 m\,’ and thus restricted the analysis to symmetric perturbations.

6557

12165
13119
15415

A. Symmetric solutions
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For symmetric solutions of type | with boundary condi-
tions given by Eq(6), Durlofsky and Brady found that>1
for all eigenvalues andQ@R< . Consequently, these solu-
tions are stable under symmetric perturbations. However,
this stability is marginal wheR— « since the lowest eigen-
value tends to one. When general conditiéBsare chosen,
antisymmetric perturbations are included in the analysis. In
Fig. 3, eigenvalues corresponding to symmeiatted line$
0 5 10 15 20 and antisymmetrigfull lines) eigenfunctions of Eq(4) are

R plotted vs the Reynolds number. These results were obtained

FIG. 2. Bifurcation diagram showing symmettfull lines) and asymmetric ~ With @ code based on spectral methods following the proce-
(dotted lines solutions of Eq.(3). dure used by Orszayto analyze the temporal stability of

fy=1)
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FIG. 5. Real part of the eigenvalues of symmettige |, dotted linesand
asymmetric(type |, and [, full lines) solutions of Eq(3).

25 -

Re()

Figs. 4a) and 4b). Figure 4a) shows the eigenvalues with
minimum magnitude of R@a) corresponding to symmetric
and antisymmetric eigenfunctions of solutions of types Il and
Il. For type Il solutions there is a branch of real eigenvalues
R with 0<A=1, so that these solutions are unstable. Neverthe-
FIG. 4. (a) and (b) Real part of the eigenvalues of symmettigpe Il and Iess, for IargeR, the instability of solutions of type Il with
ll) solutions of Eq.(3) corresponding to antisymmetrigull lines) and  respect to symmetric perturbations becomes marginal. In
symmet_ric(dotted lineg eigenfunctions_. Note the dif_ference in the scale of fact, all branches of type Il eigenvalues coalesce with the
the vertical axes. Irib), the branches in the upper right-hand corner are of . . . .
type Ill. They merge with type Il branches with flow reversal at the mini- correspondlng ones of type | &5— . This behavior, which
mum value ofR=R,=12.165. is linked to the presence of the cusp bifurcationRat «
mentioned in Sec. Il, can be observed comparing eigenvalues
o ) ~atR=20 in Figs. 3 and &).
Poiseuille flow. Half of the branches are those described in aq in the case of type | solutions, the antisymmetric
Ref. 13. The others are due to the antisymmetric perturbgsertrhations prove to be more dangerous for stability since
tlon_s. The_ .Iowest branch, and thus the one that d.etermme[ﬁe minimum magnitude eigenvalues are negative in this
the instability of the solution, corresponds to an antisymmety,qe |t s interesting to note in this figure that the structure of
ric_eigenfunction. This branch crosses the liwel atR e gpectrum is somewhat different from the one shown in

=Ry, which means that these solutions lose their ttmporaket 13 since complex eigenvalues, not considered in that

and spatial stability at the same value of the Reynolds numﬁaper, are included in Fig. 4 by plotting their real parts. This

ber. This fact becomes apparent when the eigenvalue equg- o\ hibited in Fig. 48) as the merging of two real branches

tion arising from the temporal stability analysis is considere t the lower right hand corneR~19.5, and aR~ 12.2

(see Ref. & If temporal perturpatlons of the_ form Figure 4b) presents branches with negative eigenvalues

G(y)exp@y are prgposed, t_he following chgractenstlc yalueof larger magnitude. Note that the scale of the vertical axis is

prob]em for the eigenfunction& and the eigenvalues is different from that of Fig. 48). The branches in the upper

obtained, right hand corner of the figure correspond to type Ill solu-
GV+R(fG"+f"G—f"G'—f'G")=sRG. (7)  tions. They merge with type Il branches with flow reversal at

For this kind of perturbations, there is an exchange of stapilt"® Minimum value oR=R,=12.165. These branches of

ity if s=0. A comparison between Eqé) and (7) shows type Il solutions tend to—« as the Reynolds number ap-

that, at a giverR, a temporal mode wits=0 is also a spatial proaches the valuR) = 13.119, which is the largest value of
mar’ginal mode(’)\=1) R for solutions of type Il with flow reversal. The uppermost

Consequently, the spatial stability of the symmetric SO_branch in this figure was already calculated in Ref. 13. The

lutions of type | is determined by the antisymmetric eigen-IO\ffra" _struc_ttur%_gcf th's't ]E)art c?;]trt]e fsp;c_act(ral;m for type I so-
values, and the range of Reynolds numbers for which thesa'ONS 1S quite ditterent from that of Fig.(&).
solutions are spatially stable coincides with the range of tem- . .
o B. Asymmetric solutions

poral stability.

The real part of the eigenvalues for symmetfiotted When the symmetric solution of type | loses its temporal
lines) and antisymmetridfull lines) eigenfunctions of the stability, two asymmetric solutions which are mirror images
other two symmetric solutiongypes Il and Il) are plotted in  of each other in the center line of the chanftgpes |, and

-50 o
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FIG. 6. Eigenvalues with large negative real part of asymmetric solutions of O ettt
Eq. (3) with flow reversal. The eigenvalues diverge when the Reynolds |77
number approaches the critical vaIRg: 6.557.
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< 1
3
&

1) are generated in a pitchfork bifurcation. The temporal
stability analysis for these solutions shows that they are ) PSR
stable forR<R,,=12.963° ol

The asymmetric solutions are characterized by a dis- . (b)
placement of the stagnation point towards one of the walls. i »
The axial velocity increases near this wall and decreases near R
the other one. This asymmetry effect increases with the Rey-
nolds number. WhelR>R/,=6.557 there is a region close FIG.8. (&) and(b) Real part of the eigenvalues of asymmetric solutions of
to one of the channel walls where the flow reverses. Eq. (3) of types I, and 111} (full lines) and of symmetri‘c one c_)f types Il and

Figure 5 shows the spectrum for both symmettype I, :jlilﬁ(edr-otted lineg. The scales and ranges of the vertical axiganand (b)
dotted line$ and asymmetrictype I, and L, full lines) so-
lutions. The real part of the eigenvalues for the asymmetric
solutions (solutions of type J and [, have the same spec-
trum) remains above unity iR<R!,=7.872. However, the Fig. 5 that are not present wheR<Rj,. These branches,
stability criteria for these flows become ambiguous when théhown in Fig. 6, are characterized by eigenvalues with a
flow reversegi.e., whenR>R/,), as perturbations may be large negative real part. Consequently, we may say that
carried by the flow in both directions. In the presence of flow@symmetric solutions of typeg land [ are stable if and only
reversal there are new branches of eigenvalnesplotted in ~ if :_{h,ere is no flow reversal in the channel, that is, Rf
<R,-

It is interesting to note that eigenvalues with a very large
negative real part as those presented in Fig. 6 are found not
only in solutions of typeJ, but also in symmetric solutions
of type Il near the point where the flow reversé&s<{R,), as
was shown in Fig. ). These eigenvalues and their corre-
sponding eigenfunctions were investigated analyticAlly.
The analysis showed that the structure of the characteristic
value problem depends strongly on the signf'efy) at the
points wheref’(y) vanishes. In Fig. 7 an eigenfunction of
the solution of type ] for R=6.6 is plotted. This value of the
Reynolds number is close to the critical valRg,=6.557,
where flow reversal takes place. The modulus of the associ-
ated eigenvalue is as large a$1The inset shows in more
detail the structure of the boundary layer in the region of
. | . flow reversal close to the wall. Inside the channel the eigen-

y ' ' function is proportional td’(y), with boundary layers at the

walls, a property that can be derived from analytical
FIG. 7. Eigenfunction corresponding to an eigenvalue with large negativeC ; ions®
: _ o onsiderations:
real part(full line). The Reynolds numbeR=6.6 is close to the critical h E uti N d Il (th .
value R,’az 6.557 where solutions with flow reversal first appear. The inset _T € asymmetric so Utlo_ns 0 fcypesallehn 11l (the mir-
shows a detail in the region of flow reversal. Away from the boundary layer’OF image of IIL) were also 'nveS“_gated- Th_ey were ff)und to
the solution is proportional té’(y) (dotted ling. be unstable under both symmetric and antisymmetric pertur-
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FIG. 9. Perturbation®(x,y) =s(x,y) —xf(y) of similarity solutions defined by Eq3), for L=20; (a) R=3; (b) R=5; (c) R=7; (d) R=9. The stream
function s(x,y) was calculated using a bidimensional code. The conditions imposed at the mouth of the channel correspond to solutions of type | perturbed
with their first eigenfunction. The two curves plotted on gvel plane are a straight line and the amplitude functidx) = max,&(x.y).

bations. The results are shown in Figéa)8&nd 8b), where  ences over a uniform grid with 513 nodes in thdirection
the real part of eigenvalues of type Il and Ill solutided-  and 65 nodes in thg direction.
ready described in Figs(& and 4b)] are plotted in dotted Boundary conditions of the form f (y)="f(y)
lines, and those of type Yland 11} in full lines. The mini- 4+ aH,(y), with a<1, were selected at the entrance of the
mum magnitude eigenvalues are presented in K&. 8sin  channel. The functionf(y) andH,(y) are solutions of Egs.
Fig. 4, a different scale for the vertical axis is used in Fig.(3) and(4), respectively.
8(b) to plot the eigenvalues with larger negative real part. In order to analyze the difference between a bidimen-
sional solution and the similarity solution, the function
o(x,y)=s(x,y) —xf(y) is introduced, wheres(x,y) is the
stream function as calculated by the bidimensional code. For
In order to compare the spatially perturbed similaritythe proposed boundary conditions, if the solution derived
solutions with fully bidimensional steady state ones, Efjs. with the code resembles the similarity solution a behavior
with no similarity assumptions were integrated numerically.5(x,y) ~ ax*H, (y) is expected, except in the vicinity of the
A code in finite differences which solves the equations itera-origin where Eq.(4) no longer holds.
tively was developed. Multigrid and local relaxation tech- Normalized functions5(x,y) are presented together with
niques were employed to improve convergence. The problertheir amplitudesi (x) = max, a(x,y), for L=20 andR=3, 5,
has a new nondimensional parameterthe channel length 7, and 9 in Fig. 9. The conditions imposed at the mouth of
given in terms of its half-width. the channel correspond to solutions of type | perturbed with
To complete the characterization of the problem, boundtheir first eigenfunction. The two curves plotted on the
ary conditions at both edges of the channel should be im=1 plane areA(x) and a straight line that represents the
posed. By assuming symmetry with respect toxked axis, linear behavior inx of the similarity solution. The surface
the domain is reduced to the>0 half of the channel. The plots show that for every value of the perturbation con-
stream function and the vorticity are equal to zerxat0.  serves its profile. The amplitudéqx) decay faster than the
The conditions at the entrance=L, depend on the flow solution in the first two cases. This agrees with the fact that
conditions outside the channel. those cases correspond to stable solutibnsl). On the
The vorticity-stream function representation was usedther hand, the last two graphs show a spatial attenuation
and the system was discretized using centered finite differthat is smaller than the linear one of the similarity solution.

V. FULLY BIDIMENSIONAL SOLUTIONS
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5 function formulation of the problem. The results given by
-------- ~ this code support the validity of the linear stability analysis

R=S in the region not close to the center of the channel.

In conclusion, we have shown that the potential presence

-------- A of antisymmetric perturbations considerably restricts the

range of Reynolds numbers where similarity solutions are

stable. There are stable similarity solutions & 6.557

R=7 only. These solutions are symmetricR 6.001 and asym-

N metric if R>6.001. However, it is important to keep in mind
that in practical cases some unstable modes may not develop
R=0 due to the finite length of the channel.
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