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The spatial stability of similarity solutions for an incompressible fluid flowing along a channel with
porous walls and driven by constant uniform suction along the walls is analyzed. This work extends
the results of Durlofsky and Brady@Phys. Fluids27, 1068 ~1984!# to a wider class of similarity
solutions, and examines the spatial stability of small amplitude perturbations of arbitrary shape,
generated at the entrance of the channel. It is found that antisymmetric perturbations are the best
candidates to destabilize the solutions. Temporally stable asymmetric solutions with flow reversal
presented by Zaturska, Drazin, and Banks@Fluid Dyn. Res.4, 151~1988!# are found to be spatially
unstable. The perturbed similarity solutions are also compared with fully bidimensional ones
obtained with a finite difference code. The results confirm the importance of similarity solutions and
the validity of the stability analysis in a region whose distance to the center of the channel is more
than three times the channel half-width. ©2000 American Institute of Physics.
@S1070-6631~00!02003-1#

I. INTRODUCTION

The Navier–Stokes equation for an incompressible vis-
cous flow along a channel with porous walls, driven by con-
stant uniform suction, admits a similarity solution. This so-
lution was studied in 1953 by Berman,1 who reduced the
bidimensional Navier–Stokes equation to a fourth order non-
linear ordinary differential equation with two boundary con-
ditions at each wall. This equation depends on a sole nondi-
mensional parameter, the transversal Reynolds number,R,
defined in terms of the channel width and the suction veloc-
ity. Similarity solutions were tested in early experiments on
laminar flows in ducts with wall injection, where evidence of
good agreement between measurements and theoretical pre-
dictions was reported.2

Many authors have studied Berman’s equation~see, for
example, Refs. 3–12! and found a very rich structure of so-
lutions. Zaturskaet al.,8 however, proved that most of these
solutions are temporally unstable to linear perturbations. On
the other hand, the spatial stability of the solutions has not
been completely analyzed. In 1984 Durlofsky and Brady13

studied the spatial stability ofsymmetricsolutions under lin-
earsymmetricperturbations.

This work presents the spatial stability analysis for both
symmetric and asymmetric solutions under arbitrary small
amplitude perturbations. The basic equations of the problem
are shown in the next section and the stability analysis is
developed in Sec. III. A comparison between the spatially
perturbed similarity solutions and fully bidimensional ones is
presented in Sec. IV. Section V is devoted to the conclu-
sions.

II. BASIC EQUATIONS

The coordinate system of Fig. 1 is considered, with the
origin in the center of the channel and thex-axis parallel to
the walls. The parameters of the problem are the suction
velocity V, the channel width 2h, r and m the ~constant!
density and viscosity of the fluid, respectively. Steady state
solutions for the nondimensional velocity and pressure fields
uI (x,y), p(x,y) satisfy the continuity and Navier–Stokes
equations. Thus,

div~uI !50,
~1!

uI 2grad~uI !52grad~p!1div~grad~uI !!/R,

with uI 56 ŷ on the walls. The unit vectors in thex and y
directions are denoted byx̂ and ŷ, respectively. The trans-
versal Reynolds number isR5Vhr/m. The variables are
expressed in units of the lengthh, the velocityV and the
pressureV2r.

A similarity solution of the form,

uI ~x,y!5x
] f ~y!

]y
x̂2 f ~y!ŷ,

~2!
p~x,y!5p~y!1Ax2/2,

leads to the following equation forf (y):

f iv1R~ f f-2 f 8 f 9!50, ~3!

where8 denotes differentiation along the transversal coordi-
nate. The boundary conditions forf (y) are

f ~1!521, f ~21!51, f 8~1!50, f 8~21!50.

Once Eq.~3! is solved, the pressure field corresponding to
Eq. ~2! can be obtained from the following expressions:
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p~y!5p~1!1~12 f 2!/22 f 8/R,

A5~ f f 92 f 82!1 f-/R.

A spectral14 code was developed to obtain numerical so-
lutions for the flow equation~3!. The results obtained were in
good agreement with those presented by Zaturska, Drazin,
and Banks in Ref. 8. In Fig. 2, a bifurcation diagram is
presented showing the different steady state solutions of Eq.
~3!. In this diagram each solution is represented by the value
f 9(1), which is proportional to the viscous stress at the wall
y51. Several branches of solutions and bifurcations appear
in the diagram. The asymmetric solutions are plotted with
dotted lines. There is a stable symmetric solution~denoted
solution of type I! which loses its stability atRI56.001,
where two stable asymmetric solutions~types Ia and Ia8) are
generated in a pitchfork bifurcation. These solutions remain
stable belowRIa512.963, where a Hopf bifurcation takes
place. A saddle-node bifurcation atRII512.165 gives birth
to two temporally unstable symmetric solutions~types II and
III ! one of which undergoes a pitchfork bifurcation atRIII

515.415, generating two new asymmetric branches~types
III a and IIIa8). As R→`, solutions of type I and II differ by
exponentially small terms only,7 and they coalesce in a cusp
type bifurcation.

Solutions of type II withR,RII8513.119 and those of
type III, III a , and IIIa8 have regions of flow reversal in the
center of the channel. Solutions of type Ia and Ia8 have a
region of flow reversal near one wall ifR.RIa8 56.557.

III. SPATIAL STABILITY ANALYSIS

The spatial stability analysis of Eq.~3! was performed
taking solutions of the formf̃ (x,y)5x f(y)1xlHl(y) for
the stream function. The termxlHl(y) is regarded as a per-
turbation to the similarity solution. The linearized approxi-
mation forHl(y), valid in the region not close to the center
of the channel, leads to the following characteristic value
problem:

Hl
iv1R~ f Hl-2 f 9Hl8 !5lR~ f 8Hl92 f-Hl!, ~4!

with homogeneous boundary conditions,

Hl~21!5Hl8~21!5Hl~1!5Hl8~1!50. ~5!

For a given Reynolds number, the existence of charac-
teristic valuesl with Re~l!,1, implies the instability of the
similarity solution. Under these conditions certain perturba-
tions at the mouth of the channel can grow downstream,
destroying the similarity solution in the interior.

This kind of analysis~for symmetric solutions! has been
performed by Durlofsky and Brady.13 These authors, how-
ever, considered boundary conditions of the form,

Hl~0!5Hl9~0!5Hl~1!5Hl8~1!50, ~6!

and thus restricted the analysis to symmetric perturbations.

A. Symmetric solutions

For symmetric solutions of type I with boundary condi-
tions given by Eq.~6!, Durlofsky and Brady found thatl.1
for all eigenvalues and 0,R,`. Consequently, these solu-
tions are stable under symmetric perturbations. However,
this stability is marginal whenR→` since the lowest eigen-
value tends to one. When general conditions~5! are chosen,
antisymmetric perturbations are included in the analysis. In
Fig. 3, eigenvalues corresponding to symmetric~dotted lines!
and antisymmetric~full lines! eigenfunctions of Eq.~4! are
plotted vs the Reynolds number. These results were obtained
with a code based on spectral methods following the proce-
dure used by Orszag15 to analyze the temporal stability of

FIG. 1. Channel diagram and coordinate system. The plotted stream lines
represent the flow pattern of an asymmetric similarity solution of the
Navier–Stokes equation.

FIG. 2. Bifurcation diagram showing symmetric~full lines! and asymmetric
~dotted lines! solutions of Eq.~3!.

FIG. 3. Eigenvalues of symmetric~type I! solutions of Eq.~3!. Full lines
correspond to antisymmetric eigenfunctions and dotted lines to symmetric
ones.
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Poiseuille flow. Half of the branches are those described in
Ref. 13. The others are due to the antisymmetric perturba-
tions. The lowest branch, and thus the one that determines
the instability of the solution, corresponds to an antisymmet-
ric eigenfunction. This branch crosses the linel51 at R
5RI , which means that these solutions lose their temporal
and spatial stability at the same value of the Reynolds num-
ber. This fact becomes apparent when the eigenvalue equa-
tion arising from the temporal stability analysis is considered
~see Ref. 8!. If temporal perturbations of the form
G(y)exp(st) are proposed, the following characteristic value
problem for the eigenfunctionsG and the eigenvaluess is
obtained,

Giv1R~ f G-1 f-G2 f 9G82 f 8G9!5sRG9. ~7!

For this kind of perturbations, there is an exchange of stabil-
ity if s50. A comparison between Eqs.~4! and ~7! shows
that, at a givenR, a temporal mode withs50 is also a spatial
marginal mode~l51!.

Consequently, the spatial stability of the symmetric so-
lutions of type I is determined by the antisymmetric eigen-
values, and the range of Reynolds numbers for which these
solutions are spatially stable coincides with the range of tem-
poral stability.

The real part of the eigenvalues for symmetric~dotted
lines! and antisymmetric~full lines! eigenfunctions of the
other two symmetric solutions~types II and III! are plotted in

Figs. 4~a! and 4~b!. Figure 4~a! shows the eigenvalues with
minimum magnitude of Re~l! corresponding to symmetric
and antisymmetric eigenfunctions of solutions of types II and
III. For type II solutions there is a branch of real eigenvalues
with 0,l<1, so that these solutions are unstable. Neverthe-
less, for largeR, the instability of solutions of type II with
respect to symmetric perturbations becomes marginal. In
fact, all branches of type II eigenvalues coalesce with the
corresponding ones of type I asR→`. This behavior, which
is linked to the presence of the cusp bifurcation atR5`
mentioned in Sec. II, can be observed comparing eigenvalues
at R520 in Figs. 3 and 4~a!.

As in the case of type I solutions, the antisymmetric
perturbations prove to be more dangerous for stability since
the minimum magnitude eigenvalues are negative in this
case. It is interesting to note in this figure that the structure of
the spectrum is somewhat different from the one shown in
Ref. 13 since complex eigenvalues, not considered in that
paper, are included in Fig. 4 by plotting their real parts. This
is exhibited in Fig. 4~a! as the merging of two real branches
at the lower right hand corner,R;19.5, and atR;12.2.

Figure 4~b! presents branches with negative eigenvalues
of larger magnitude. Note that the scale of the vertical axis is
different from that of Fig. 4~a!. The branches in the upper
right hand corner of the figure correspond to type III solu-
tions. They merge with type II branches with flow reversal at
the minimum value ofR5RII512.165. These branches of
type II solutions tend to2` as the Reynolds number ap-
proaches the valueRII8513.119, which is the largest value of
R for solutions of type II with flow reversal. The uppermost
branch in this figure was already calculated in Ref. 13. The
overall structure of this part of the spectrum for type II so-
lutions is quite different from that of Fig. 4~a!.

B. Asymmetric solutions

When the symmetric solution of type I loses its temporal
stability, two asymmetric solutions which are mirror images
of each other in the center line of the channel~types Ia and

FIG. 4. ~a! and ~b! Real part of the eigenvalues of symmetric~type II and
III ! solutions of Eq.~3! corresponding to antisymmetric~full lines! and
symmetric~dotted lines! eigenfunctions. Note the difference in the scale of
the vertical axes. In~b!, the branches in the upper right-hand corner are of
type III. They merge with type II branches with flow reversal at the mini-
mum value ofR5RII512.165.

FIG. 5. Real part of the eigenvalues of symmetric~type I, dotted lines! and
asymmetric~type Ia and Ia8 , full lines! solutions of Eq.~3!.
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Ia8) are generated in a pitchfork bifurcation. The temporal
stability analysis for these solutions shows that they are
stable forR,RIa512.963.8

The asymmetric solutions are characterized by a dis-
placement of the stagnation point towards one of the walls.
The axial velocity increases near this wall and decreases near
the other one. This asymmetry effect increases with the Rey-
nolds number. WhenR.RIa8 56.557 there is a region close
to one of the channel walls where the flow reverses.

Figure 5 shows the spectrum for both symmetric~type I,
dotted lines! and asymmetric~type Ia and Ia8 , full lines! so-
lutions. The real part of the eigenvalues for the asymmetric
solutions~solutions of type Ia and Ia8 have the same spec-
trum! remains above unity ifR,RIa9 57.872. However, the
stability criteria for these flows become ambiguous when the
flow reverses~i.e., whenR.RIa8 ), as perturbations may be
carried by the flow in both directions. In the presence of flow
reversal there are new branches of eigenvalues~not plotted in

Fig. 5! that are not present whenR,RIa8 . These branches,
shown in Fig. 6, are characterized by eigenvalues with a
large negative real part. Consequently, we may say that
asymmetric solutions of type Ia and Ia8 are stable if and only
if there is no flow reversal in the channel, that is, ifR
,RIa8 .

It is interesting to note that eigenvalues with a very large
negative real part as those presented in Fig. 6 are found not
only in solutions of type Ia , but also in symmetric solutions
of type II near the point where the flow reverses (R,RII8 ), as
was shown in Fig. 4~b!. These eigenvalues and their corre-
sponding eigenfunctions were investigated analytically.16

The analysis showed that the structure of the characteristic
value problem depends strongly on the sign off 9(y) at the
points wheref 8(y) vanishes. In Fig. 7 an eigenfunction of
the solution of type Ia for R56.6 is plotted. This value of the
Reynolds number is close to the critical valueRIa8 56.557,
where flow reversal takes place. The modulus of the associ-
ated eigenvalue is as large as 106. The inset shows in more
detail the structure of the boundary layer in the region of
flow reversal close to the wall. Inside the channel the eigen-
function is proportional tof 8(y), with boundary layers at the
walls, a property that can be derived from analytical
considerations.16

The asymmetric solutions of types IIIa and IIIa8 ~the mir-
ror image of IIIa) were also investigated. They were found to
be unstable under both symmetric and antisymmetric pertur-

FIG. 6. Eigenvalues with large negative real part of asymmetric solutions of
Eq. ~3! with flow reversal. The eigenvalues diverge when the Reynolds
number approaches the critical valueRIa

8 56.557.

FIG. 7. Eigenfunction corresponding to an eigenvalue with large negative
real part~full line!. The Reynolds numberR56.6 is close to the critical
valueRIa

8 56.557 where solutions with flow reversal first appear. The inset
shows a detail in the region of flow reversal. Away from the boundary layer
the solution is proportional tof 8(y) ~dotted line!.

FIG. 8. ~a! and~b! Real part of the eigenvalues of asymmetric solutions of
Eq. ~3! of types IIIa and IIIa8 ~full lines! and of symmetric one of types II and
III ~dotted lines!. The scales and ranges of the vertical axis in~a! and ~b!
differ.
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bations. The results are shown in Figs. 8~a! and 8~b!, where
the real part of eigenvalues of type II and III solutions@al-
ready described in Figs. 4~a! and 4~b!# are plotted in dotted
lines, and those of type IIIa and IIIa8 in full lines. The mini-
mum magnitude eigenvalues are presented in Fig. 8~a!. As in
Fig. 4, a different scale for the vertical axis is used in Fig.
8~b! to plot the eigenvalues with larger negative real part.

IV. FULLY BIDIMENSIONAL SOLUTIONS

In order to compare the spatially perturbed similarity
solutions with fully bidimensional steady state ones, Eqs.~1!
with no similarity assumptions were integrated numerically.
A code in finite differences which solves the equations itera-
tively was developed. Multigrid and local relaxation tech-
niques were employed to improve convergence. The problem
has a new nondimensional parameter,L, the channel length
given in terms of its half-width.

To complete the characterization of the problem, bound-
ary conditions at both edges of the channel should be im-
posed. By assuming symmetry with respect to thex50 axis,
the domain is reduced to thex.0 half of the channel. The
stream function and the vorticity are equal to zero atx50.
The conditions at the entrance,x5L, depend on the flow
conditions outside the channel.

The vorticity-stream function representation was used
and the system was discretized using centered finite differ-

ences over a uniform grid with 513 nodes in thex direction
and 65 nodes in they direction.

Boundary conditions of the form f c(y)5 f (y)
1aHl(y), with a!1, were selected at the entrance of the
channel. The functionsf (y) andHl(y) are solutions of Eqs.
~3! and ~4!, respectively.

In order to analyze the difference between a bidimen-
sional solution and the similarity solution, the function
d(x,y)5s(x,y)2x f(y) is introduced, wheres(x,y) is the
stream function as calculated by the bidimensional code. For
the proposed boundary conditions, if the solution derived
with the code resembles the similarity solution a behavior
d(x,y);axlHl(y) is expected, except in the vicinity of the
origin where Eq.~4! no longer holds.

Normalized functionsd(x,y) are presented together with
their amplitudesD(x)5maxy d(x,y), for L520 andR53, 5,
7, and 9 in Fig. 9. The conditions imposed at the mouth of
the channel correspond to solutions of type I perturbed with
their first eigenfunction. The two curves plotted on they
51 plane areD(x) and a straight line that represents the
linear behavior inx of the similarity solution. The surface
plots show that for every value ofx the perturbation con-
serves its profile. The amplitudesD(x) decay faster than the
solution in the first two cases. This agrees with the fact that
those cases correspond to stable solutions~l.1!. On the
other hand, the last two graphs show a spatial attenuation
that is smaller than the linear one of the similarity solution.

FIG. 9. Perturbationsd(x,y)5s(x,y)2x f(y) of similarity solutions defined by Eq.~3!, for L520; ~a! R53; ~b! R55; ~c! R57; ~d! R59. The stream
function s(x,y) was calculated using a bidimensional code. The conditions imposed at the mouth of the channel correspond to solutions of type I perturbed
with their first eigenfunction. The two curves plotted on they51 plane are a straight line and the amplitude functionD(x)5maxyd(x,y).
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This is to be expected since forR57 and 9 the similarity
solutions are unstable.

In Fig. 10 the local attenuation rate of the solution, de-
fined asG(x)5d(ln(D)/d(ln(x)) ~full lines!, and the charac-
teristic valuesl ~dotted lines! provided by the linear analysis
are plotted. An excellent agreement is observed when the
distance to the origin is more than three times the half-width
of the channel. These results, commented in detail in Ref. 16,
confirm the validity of the stability analysis.

V. CONCLUSIONS

Solutions of type I and Ia are the only branches of solu-
tions of Berman’s equation which are spatially stable for a
certain range of Reynolds numbers. For solutions of type I
the range of spatial stability is the same as the range of
temporal stability. The instability threshold is determined by
an antisymmetric perturbation. On the other hand, the range
of spatial stability of the type Ia solutions is considerably
shorter than the range of temporal stability. For this type of
solutions the spatial stability is restricted to those solutions
which have no flow reversal.

A singularity in the spectrum of solutions with flow re-
versal is present. Branches of eigenvalues with negative real
part diverge as the Reynolds number approaches the critical
value where solutions with flow reversal first appear.

Two-dimensional simulations of the flow in the channel
were developed. These simulations were carried out with the
aid of a finite difference code written in a vorticity-stream

function formulation of the problem. The results given by
this code support the validity of the linear stability analysis
in the region not close to the center of the channel.

In conclusion, we have shown that the potential presence
of antisymmetric perturbations considerably restricts the
range of Reynolds numbers where similarity solutions are
stable. There are stable similarity solutions forR,6.557
only. These solutions are symmetric ifR,6.001 and asym-
metric if R.6.001. However, it is important to keep in mind
that in practical cases some unstable modes may not develop
due to the finite length of the channel.
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