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We present a parametric space study of the decay of turbulence in rotating flows combining direct

numerical simulations, large eddy simulations, and phenomenological theory. Several cases are

considered: (1) the effect of varying the characteristic scale of the initial conditions when compared

with the size of the box, to mimic “bounded” and “unbounded” flows; (2) the effect of helicity

(correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers;

and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green

vortex, the Arn’old-Beltrami-Childress flow, and random flows with large-scale energy spectrum

proportional to k4. The decay laws obtained in the simulations for the energy, helicity, and

enstrophy in each case can be explained with phenomenological arguments that consider separate

decays for two-dimensional and three-dimensional modes and that take into account the role of

helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum

and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation

and helicity in the skewness and kurtosis of the flow is considered. VC 2011 American Institute of
Physics. [doi:10.1063/1.3592325]

I. INTRODUCTION

Nature presents several examples of rotating flows. Rota-

tion influences large-scale motions in the Earth’s atmosphere

and oceans, as well as convective regions of the Sun and

stars. Rotation is also important in many industrial flows,

such as turbo machinery, rotor-craft, and rotating channels. In

a rotating system, the Coriolis force, linear in the velocity,

modifies the flow nonlinear dynamics when strong enough. In

its presence, the Navier-Stokes equation becomes a multi-

scale problem with a “slow” time scale sL � L=U associated

with the eddies at a characteristic scale L (U is a characteristic

velocity) and a “fast” time scale sX � 1=X � sLRo associ-

ated with inertial waves. The dimensionless Rossby number

Ro is the ratio of advection to Coriolis forces and measures

the influence of rotation upon the nonlinear dynamics of the

system (decreasing as rotation becomes dominant).

Resonant wave theory provides a framework to study

the effect of rapid rotation in turbulence.1–5 The separation

between the fast and slow time scales results in a selection of

the resonant triadic interactions as the ones responsible for

the energy transfer among scales. As a result, energy transfer

and dissipation are substantially decreased in the presence of

strong rotation.3 The resonant condition is also responsible

for the transfer of energy towards two-dimensional (2D)

slow modes, driving the flow to a quasi-2D state3,4 (this

result is often referred to in the literature as the “dynamic

Taylor-Proudman theorem,” see, e.g., Ref. 6). The develop-

ment of anisotropy and reduction of the energy transfer

and dissipation rates has been verified in numerical simula-

tions7–11 and experiments.12,13

Similar arguments (see, e.g., Ref. 14) indicate that in

the limit of fast rotation (small Rossby number), the slow

2D modes decouple from the remaining fast three-dimen-

sional (3D) modes and evolve under their own autonomous

dynamics. Moreover, in that limit, the averaged equation

for the slow modes splits into a 2D Navier-Stokes equation

for the vertically averaged horizontal velocity and a passive

scalar equation for the vertically averaged vertical velocity.

Although simulations of forced rotating flows6 and of ideal

truncated rotating flows15,16 using periodic boundary condi-

tions show good agreement with these predictions for small

enough Rossby numbers, for long times the decoupling of

slow and fast modes seems to break down. Also, some

authors17 argue that in unbounded domains no decoupling

is achievable even for Ro¼ 0.

Of particular importance for many geophysical and astro-

physical problems is how turbulence decays in time. The

problem is also important for laboratory experiments, as it

provides, e.g., one way to measure changes in the energy

dissipation rate associated with the presence of rotation. Even

in the absence of rotation, the decay of isotropic turbulence

proves difficult to tackle because of the different decay laws

obtained depending on boundary and initial conditions. As an

example, for bounded flows (i.e., flows for which the initial

characteristic length is close to the size of the vessel) the

energy decays as � t�2 (see, e.g., Refs. 13, 18, and 19). For

unbounded flows (i.e., flows in an infinite domain, or in prac-

tice, flows for which the initial characteristic length is much

smaller than the size of the vessel), a � t�10=7 (Refs. 20 and

21) or � t�6=5 (Refs. 13, 22, and 23) decay law is observed

depending on whether the initial energy spectrum at large

scales behaves as � k4 or � k2, respectively.

In the presence of rotation, the decay of turbulence

becomes substantially richer, with decay rates depending not

only on whether turbulence is bounded or unbounded and on

the initial spectrum at large scales but also, e.g., on the

strength of background rotation (see Ref. 24). A detailed
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experimental study of this dependence can be found in Refs.

12 and 13, where the authors studied the energy decay of

grid-generated turbulence in a rotating tank using particle

image velocimetry and found different decay laws depending

upon the rate of rotation and the saturation (or not) of the

characteristic size of the largest eddies. For large Rossby

number, they reported a decay � ta with exponent a � �1:1
for non-rotating turbulence (consistent with the value of –6=5

predicted in Refs. 22 and 23 for � k2 unbounded turbulence),

which later turned to a � �2 after the largest eddies grew to

the experiment size. For small Rossby number, this energy

decay rate became smaller saturating at � �1. Similar results

were reported in simulations in Ref. 10, where a decrease

from � �10=7 to –5=7 was observed as rotation was

increased. These results are consistent with the reduction of

the energy transfer discussed above. They also reported a

steeper energy spectrum together with positive vorticity

skewness for the rotating flows and anisotropic growth of in-

tegral scales (see also Refs. 7 and 25).

The decay rate of rotating turbulence also seems to

depend on the helicity content of the flow. Helicity (the align-

ment between velocity and vorticity) is an ideal invariant of

the equations of motion (a quantity conserved in the inviscid

limit) with intriguing properties. In the absence of rotation,

the presence of helicity does not modify the energy decay

rate19,26,27 nor the dissipation rate.28 However, in the pres-

ence of rotation Ref. 27 reported a further decrease of the

energy transfer when both rotation and helicity were present

and Ref. 19 showed that the decay rate of bounded rotating

flows changes drastically depending on whether helicity is

present or not.

In this paper, we conduct a detailed study of parameter

space of rotating helical flows, taking into account (1) the

effect of varying the characteristic scale of the initial condi-

tions when compared with the size of the box, (2) the effect

of helicity, (3) the effect of Rossby and Reynolds numbers,

and (4) the effect of anisotropy in the initial conditions. The

numerical study uses a two pronged approach combining

direct numerical simulations (DNS) and large eddy simula-

tions (LES). Several initial conditions are considered,

although when the characteristic initial scale of the flow is

smaller than the size of the domain, we focus only on the

case with large scale initial energy spectrum � k4. The dif-

ferent decay laws obtained (which in some cases coincide

with previous experimental or numerical observations, while

in others are new) are explained using phenomenological

arguments, and we classify the results depending on the rele-

vant effects on each case.

After studying the decay laws, we study the evolution of

anisotropy, skewness, and kurtosis, and the formation of co-

lumnar structures in the flow. We consider how helicity

affects the evolution of skewness and kurtosis and associate

peaks observed in the time evolution of these quantities with

the dynamics of the columnar structures.

The structure of the paper is as follows. In Sec. II, we

introduce the equations, describe DNS and LES, and give

details of the initial conditions and different parameters

used. Section III presents phenomenological arguments to

obtain decay laws in turbulent flows with and without rota-

tion. The phenomenological predictions are then compared

with the numerical results in Sec. IV, which presents the

energy, helicity, and enstrophy decay in all runs. The spec-

tral evolution and development of anisotropy in the flows is

discussed at the end of that section. The effect of initial ani-

sotropy in the decay is considered in Sec. V. A statistical

analysis including evolution of skewness and kurtosis is pre-

sented in Sec. VI. Finally, Sec. VII gives our conclusions.

II. EQUATIONS AND MODELS

A. Equations

The evolution of an incompressible fluid in a rotating

frame is described by the Navier-Stokes equation with the

Coriolis force

@tuþ x� uþ 2X� u ¼ �rP þ �r2u; (1)

and the incompressibility condition

r � u ¼ 0; (2)

where u is the velocity field, x ¼ r� u is the vorticity, the

centrifugal term is included in the total pressure per unit of

mass P, and � is the kinematic viscosity (uniform density is

assumed). The rotation axis is in the z direction, so X ¼ Xẑ,

where X is the rotation frequency.

As mentioned in the Introduction, these equations are

solved numerically using two different methods: DNS and

LES using a dynamical subgrid-scale spectral model of rotat-

ing turbulence that also takes into account the helicity cas-

cade. All simulations were performed in a three dimensional

periodic box of length 2p, using different spatial resolutions

ranging from 963 grid points for the lowest resolution LES

runs up to 5123 for the highest resolution DNS.

B. Models

In a DNS, all spatial and time scales (up to the dissipa-

tion scale) are explicitly resolved. The simulations were per-

formed using a parallelized pseudo-spectral code29,30 with the

two-third rule for dealiasing. As a result, the maximum wave

number resolved in the DNS is kmax¼N=3, where N is the

linear resolution; to properly resolve the dissipative scales,

the condition kg=kmax < 1 must be satisfied during all simula-

tions, where kg is the dissipation wave number. In practice,

this condition is more stringent if reliable data about velocity

gradients and high-order statistics of the flow are needed (see,

e.g., Ref. 31, where they indicate kg=kmax < 0:5 for such

studies).

The dissipation wave number as a function of time was

computed for all simulations in two different ways: as the

Kolmogorov dissipation wave number for isotropic and ho-

mogeneous turbulence kg ¼ ð�=�3Þ1=4 ¼ ðhx2i=�2Þ1=4
(where

� is the energy dissipation rate and hx2i is the mean square

vorticity) and as the wave number where the enstrophy spec-

trum peaks. The Kolmogorov dissipation wave number was

found to be always larger than the wave number where dissi-

pation peaks, and in the following, we therefore only consider
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the Kolmogorov scale as it gives a more stringent condition

on the resolution.

In all DNS discussed below, the ratio kg=kmax was � 0:7
at the time of maximum dissipation (t � 1 to t � 3 depending

on the simulation), 0.2 to 0.5 at t � 10 (when the self-similar

decay starts in most runs), and monotonously decreases to

values between 0.05 and 0.2 at t � 100. The spatial resolu-

tions used were 2563 and 5123 grid points, and an explicit

second-order Runge-Kutta method was used to evolve in

time, with a Courant-Friedrichs-Levy (CFL) number smaller

than one.

In the LES approach, only the large scales are explicitly

resolved, while the statistical impact on the resolved scales of

scales smaller than a cut-off scale is modeled with simplified

equations. To this end, we use the spectral model derived in

Ref. 32 for isotropic helical and non-helical turbulence and

its extension to the rotating case.33 The model is based on the

eddy damped quasi-normal Markovian (EDQNM) closure to

compute eddy viscosity and eddy noise and assumes unre-

solved scales (scales smaller than the cut-off) are isotropic.

Both eddy viscosity and noise are computed considering the

contribution from the energy and the helicity spectra (see,

e.g., Ref. 34 for another subgrid model that takes into account

the effect of helicity). The model adapts dynamically to the

inertial indices of the resolved energy and helicity spectra,

and as a result, it is well suited to study rotating turbulence

for which the scaling laws are not well known and may

depend on the Rossby number. For a validation of the LES

against DNS results, the reader is referred to Refs. 32 and 33.

The subgrid model starts by applying a spectral filter to

the equations; this operation consists in truncating all veloc-

ity components at wave vectors k such that jkj ¼ k > kc,

where kc is the cut-off wave number. One then models the

transfer between the large (resolved) scales and the small

(subgrid unresolved) scales of the flow by adding eddy vis-

cosity and eddy noise to the equations for the resolved

scales. These are obtained solving the EDQNM equations for

estimated energy and helicity spectra in the subgrid range.

To this end, an intermediate range is defined, lying between

kc0 and kc (in most cases kc0 ¼ kc=3), where the energy spec-

trum is assumed to present a power-law behavior possibly

followed by an exponential decrease. As an example, for the

energy the following expression is used:

Eðk; tÞ ¼ E0k�aE e�dEk; k0c � k < kc : (3)

The coefficients aE, dE, and E0 are computed at each time

step doing a mean square fit of the resolved energy spectrum.

The spectrum is extrapolated to the unresolved scales using

these coefficients, and the EDQNM equations are solved.

Then one solves the Navier-Stokes equation (1) with an extra

term on the r.h.s. which in spectral space takes the form

� � kjkc; tð Þk2uðk; tÞ; (4)

where u(k, t) is the Fourier transform of the velocity field

u(x, t), –k2 is the Laplacian in Fourier space, and � kjkc; tð Þ is

an eddy viscosity proportional to the ratio of the so-called

absorption terms in EDQNM to the energy (and helicity)

spectrum. Eddy noise is added in a similar manner (for more

details, see Refs. 32 and 33).

LES runs using this model have a resolution of either

963 or 1923 grid points. A pseudo-spectral method is also

used, but without dealiasing, resulting in the maximum wave

number kmax¼N=2. As in the DNS, an explicit second-order

Runge-Kutta method is used to evolve in time.

Parameters for all sets of runs are listed in Table I. DNS

runs are labeled with a D, followed by the linear resolution,

a letter “H” if the run has helicity, a letter “A” if the initial

energy spectrum is anisotropic, and the run number. LES

runs start with an L, followed by numbers and letters using

the same convention as in the DNS.

C. Initial conditions and definitions

As mentioned in the Introduction, we are interested in

the decay laws obtained in the system depending on proper-

ties of the initial conditions and the amount of rotation. In

particular, we will vary the initial amount of helicity, the ini-

tial energy containing scale (with respect to the largest avail-

able scale in the box), the shape of the energy spectrum, and

the strength of turbulence and of rotation as controlled by the

Reynolds and Rossby numbers, respectively.

Helicity is an ideal invariant of the Navier-Stokes equa-

tion which measures the alignment between velocity and

vorticity. If zero, the initial conditions are mirror-symmetric,

so it also measures the departure from a mirror-symmetric

state. We define the net helicity as

H ¼ hu � xi; (5)

where the brackets denote spatial average. We also define

the relative helicity as

h ¼ H

hjujjxji ; (6)

which is bounded between –1 and 1 and can be interpreted

as the mean cosine of the angle between the velocity and the

vorticity.

To control the net amount of relative helicity in the ini-

tial conditions, we consider three different flows: a superpo-

sition of Taylor-Green (TG) vortices,35

uTG ¼U sinðk0xÞ cosðk0yÞ cosðk0zÞx̂
� U cosðk0xÞ sinðk0yÞ cosðk0zÞŷ; (7)

a superposition of Arn’old-Beltrami-Childress (ABC) flows,36

uABC ¼ B cosðk0yÞ þ A sinðk0zÞ½ �x̂
þ C cosðk0zÞ þ A sinðk0xÞ½ �ŷ
þ A cosðk0xÞ þ B sinðk0yÞ½ �ẑ (8)

(with A¼ 0.9, B¼ 1.1, and C¼ 1), and a superposition of

Fourier modes with random phases (RND) in which we use

the algorithm described in Ref. 37 to control the relative hel-

icity. In each case, the flows are superposed in a range of

wave numbers as described in Table I and with global ampli-

tudes for each wave number to give the desired slope in the

initial energy spectrum.
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The TG vortex is non-helical (h¼ 0) and has no energy

in the kz¼ 0 modes, whose amplification in the rotating cases

(see below) can thus be attributed only to a bidimensionali-

zation process. The TG vortex was originally motivated as

an initial condition which leads to rapid development of

small spatial scales and also mimics the von Kármán flow

between two counter-rotating disks used in several experi-

ments.38 The ABC flow is an eigenfunction of the curl opera-

tor and as a result has maximum helicity (h ¼ 61 depending

on the sign of k0, when only one value of k0 is excited),

whereas the RND flow allows us to tune the amount of initial

relative helicity between –1 and 1 as well as the initial

anisotropy.

When generating the flows, two different initial energy

spectra were considered. To study initial conditions with

characteristic length close to the size of the computational

domain, a spectrum EðkÞ � k�4 for k 2 ½4; 14� (followed by

exponential decay) was imposed. To study initial conditions

with length smaller than the domain size, we imposed a spec-

trum EðkÞ � k4 for k 2 ½1; 14�, [1, 25], or [1, 30] (also fol-

lowed by exponential decay). In the latter case, the

characteristic length can grow in time as the spectrum peaks

around k¼ 14, 25, or 30. This allows us to mimic (at least

for a finite time before the characteristic length reaches the

domain size) the decay of unbounded flows. The characteris-

tic length will be associated in the following with the flow

integral scale, which is defined as

L ¼ 2p

P
k k�1EðkÞP

k EðkÞ ; (9)

where E(k) is the isotropic energy spectrum.

Simulations in Table I are also characterized by differ-

ent Reynolds and Rossby numbers. The Reynolds and

Rossby numbers in the table are defined as

Re ¼ UL

�
; (10)

and

Ro ¼ U

2XL
; (11)

respectively. Of importance is also the micro-scale Rossby

number (see e.g., Ref. 7)

Rox ¼ x
2X

; (12)

which can be interpreted as the ratio of the convective to the

Coriolis acceleration at the Taylor scale. The Rossby number

Ro must be small enough for rotation to affect the turbu-

lence, while the micro-Rossby number Rox must be larger

than one for scrambling effects of inertial waves not to com-

pletely damp the nonlinear term, which would lead to pure

TABLE I. Parameters used in the simulations: kinematic viscosity �, rotation rate X, Reynolds number Re, Rossby number Ro, micro-Rossby number Rox,

initial relative helicity h, relative helicity at the time of maximum dissipation h*, and time of maximum dissipation t*. The values of Re, Ro, and Rox are

always given at t*. The last column succinctly describes the initial energy spectrum E(k): the power law followed by the spectrum, the range of scales where

this power law is satisfied, and the flow (TG for Taylor-Green, ABC for Arn’old-Beltrami-Childress, and RND for random).

Run � X Re Ro Rox h h* t* Initial E(k)

D256-1 1:5� 10�3 0 450 1 1 0 9� 10�10 1.26 k�4 (4-14) TG

D256-2 1:5� 10�3 4 550 0.12 1.28 0 �1� 10�8 1.06 k�4 (4-14) TG

D256H-1 1:5� 10�3 0 600 1 1 0.95 0.34 2.28 k�4 (4-14) ABC

D256H-2 1:5� 10�3 4 830 0.08 0.80 0.95 0.65 2.25 k�4 (4-14) ABC

D512-1 7� 10�4 4 1100 0.12 1.82 0 7� 10�9 0.88 k�4 (4-14) TG

D512-2 8:5� 10�4 0 420 1 1 8� 10�5 8� 10�4 0.60 k4 (1-14) RND

D512-3 8:5� 10�4 10 450 0.10 0.95 4� 10�3 4� 10�3 0.70 k4 (1-14) RND

D512H-1 7� 10�4 4 1750 0.08 1.15 0.95 0.44 1.70 k�4 (4-14) ABC

D512H-2 8� 10�4 0 440 1 1 0.90 0.38 0.94 k4 (1-14) RND

D512H-3 8� 10�4 10 530 0.07 0.70 0.99 0.5 1.50 k4 (1-14) ABC

L96-1 8:5� 10�4 0 550 1 1 0.03 0.02 0.30 k4 (1-14) RND

L96-2 8:5� 10�4 2 540 0.42 2.90 –0.03 –0.02 0.30 k4 (1-14) RND

L96-3 8:5� 10�4 4 540 0.21 1.45 –0.03 –0.02 0.30 k4 (1-14) RND

L96-4 8:5� 10�4 6 550 0.14 0.95 –0.03 –0.02 0.30 k4 (1-14) RND

L96-5 8:5� 10�4 8 550 0.11 0.73 –0.03 –0.02 0.30 k4 (1-14) RND

L96-6 8:5� 10�4 10 530 0.08 0.65 0.03 0.02 0.30 k4 (1-14) RND

L96H-1 8� 10�4 0 500 1 1 0.90 0.51 0.70 k4 (1-14) RND

L96H-2 8:5� 10�4 10 540 0.08 0.63 0.90 0.70 0.70 k4 (1-14) RND

L96H-3 8:5� 10�4 10 490 0.08 0.60 0.99 0.80 1.15 k4 (1-14) ABC

L192-1 2� 10�4 0 1200 1 1 �7� 10�3 �6� 10�3 0.10 k4 (1-30) RND

L192-2 2� 10�4 10 1100 0.22 1.65 �7� 10�3 �6� 10�3 0.13 k4 (1-30) RND

L192H-1 2� 10�4 0 950 1 1 0.90 0.60 0.30 k4 (1-30) RND

L192H-2 2� 10�4 10 1000 0.20 1.60 0.94 0.71 0.38 k4 (1-30) ABC

L192HA-1 2� 10�4 10 1200 0.16 1.40 0.90 0.56 0.50 k4 (1-25) RND

L192HA-2 2� 10�4 10 1300 0.14 1.35 0.90 0.59 0.46 k4 (1-25) RND

L192HA-3 2� 10�4 10 1300 0.15 1.35 0.90 0.58 0.45 k4 (1-25) RND
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exponential viscous energy decay.5 In all runs in Table I, Ro
and Rox are one order of magnitude apart at the time of max-

imum enstrophy t*, and this interval is roughly preserved

throughout the simulations.

Here and in the following, the isotropic energy spec-

trum is defined by averaging in Fourier space over spherical

shells

Eðk; tÞ ¼ 1

2

X
k�jkj<kþ1

u	ðk; tÞ � uðk; tÞ; (13)

where u(k, t) is the Fourier transform of the velocity field,

and the asterisk denotes complex conjugate. Other two spec-

tra can also be used to characterize anisotropy.

On the one hand, the so-called “reduced” energy spectra

Eðk?Þ and EðkkÞ are defined averaging in Fourier space over

cylinders and planes, respectively. More specifically, the

reduced energy spectra as a function of wave numbers k?
with k? ¼ ðkx; ky; 0Þ and kk with kk ¼ ð0; 0; kzÞ are defined

by computing the sum above over all modes in the cylindrical

shells k? � jk?j < k? þ 1 and over planes kk � jkkj < kk
þ1, respectively (isotropic and reduced spectra for the helicity

are defined in the same way). From the reduced spectra, per-

pendicular and parallel integral scales can be defined; e.g., for

the perpendicular direction,

L? ¼ 2p

P
k?

k�1
? Eðk?ÞP

k?
Eðk?Þ

: (14)

On the other hand, more information of the spectral anisot-

ropy can be obtained studying the axisymmetric energy spec-

trum eðkk; k?Þ (see, e.g., Refs. 3 and 5). Assuming the flow

is axisymmetric, the three-dimensional spectrum can be inte-

grated around the axis of rotation to obtain a spectrum that

depends only on kk and k?, which relates to the reduced

energy spectra as follows:

EðkkÞ ¼
X
k?

eðkk; k?Þ; (15)

and

Eðk?Þ ¼
X

kk

eðkk; k?Þ: (16)

III. TIME EVOLUTION: PHENOMENOLOGY

We present now phenomenological arguments that will

become handy to understand the different decay rates that

are observed in our simulations as well as in previous stud-

ies. Some of the arguments are well known, while others are

new, and we quote previous derivations when needed.

A. Non-rotating flows

1. Bounded

From the energy balance equation

dE

dt
� �; (17)

where � is the energy dissipation rate, Kolmogorov phenom-

enology leads to

dE

dt
� E3=2

L
; (18)

where E ¼ EðtÞ � kEðkÞ and L is an energy containing

length scale. For bounded flows where L � L0 (L0 is the size

of the box), Eq. (18) becomes dE=dt � E3=2=L0, resulting in

the self-similar decay18,39,40

EðtÞ � t�2: (19)

2. Unbounded

In unbounded flows, a similarity solution of Eq. (18)

requires some knowledge of the behavior of the energy con-

taining scale L, which is in turn related to the evolution of

E(k) for low wave numbers. In the case of an initial large scale

spectrum � k4, the quasi-invariance of Loitsyanski’s integral

I (see Refs. 21 and 41) leads, on dimensional grounds, to

I � L5E, and replacing in Eq. (18), we get Kolmogorov’s

result20

EðtÞ � t�10=7: (20)

A different decay law is obtained if an initial � k2 spectrum

is assumed for low wave numbers.22,23 In the following, we

will consider only the bounded or the � k4 unbounded cases.

B. Rotating flows: Isotropic arguments

1. Bounded

In the case of solid-body rotation without net helicity, a

spectra EðkÞ � �1=2X1=2k�2 is often assumed at small scales

(i.e., wave numbers larger than the integral wave num-

ber).9,42–45 Replacing in the balance equation, this spectrum

leads to

dE

dt
� E2

L2X
: (21)

For bounded flows, L � Lo and we get13,44,46

EðtÞ � t�1: (22)

In helical rotating flows, the small-scale energy spectrum

takes a different form. The direct transfer is dominated by

the helicity cascade. In this case, we can write the helicity

flux as d � hl=ðXs2
l Þ, where hl is the helicity at the scale l,

and sl the eddy turnover time.11 Constancy of d leads to

small scale spectra EðkÞ � k�n and HðkÞ � kn�4, where the

case of maximum helicity is obtained for n¼ 5=2.11 Further

use of dimensional analysis leads to EðkÞ � �1=4X5=4k�5=2

for the energy spectrum in terms of the energy dissipation

rate, and replacing in the balance equation, we get

dE

dt
� E4

L6X5
: (23)
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For L � Lo, then19

EðtÞ � t�1=3: (24)

2. Unbounded

For non-helical unbounded flows with EðkÞ � k4 at

small wave numbers, we can again make use of the con-

stancy of I in Eq. (21), leading to25

EðtÞ � t�5=7: (25)

For helical flows, assuming that I remains constant in Eq.

(23), we obtain47

EðtÞ � t�5=21: (26)

C. Rotating flows: Anisotropic arguments

The decay laws obtained for rotating flows in Eqs. (22), (24),

and (25) have been reported in experiments or in simula-

tions.12,13,19,24 However, the analysis above is based on the

isotropic energy spectrum and on the quasi-invariance of the

isotropic Loitsyanski integral. For an anisotropic flow, other

quantities are expected to be quasi-invariants during the

decay instead.41,48,49

Rotating flows tend to become quasi-2D, and the

assumption of an axisymmetric energy spectrum seems natu-

ral considering the symmetries of the problem. If there is no

dependence on wave numbers on the parallel direction, the

energy spectrum for small values of k? can be expanded as

(see, e.g., Ref. 50)

Eðk?Þ � Lk�1
? þ Kk? þ I2Dk3

? þ � � � : (27)

We will be interested in the following coefficients:

K ¼
ð
hu � u0ir dr (28)

and

I2D ¼
ð
hu � u0i r3dr; (29)

where hu � u0i is the two-point correlation function for the

spatial increments r perpendicular to the rotation axis. If the

correlation function decays fast enough for large values of

r,48 these quantities can be expected to be quasi-invariants

during the decay, respectively, for initial large-scale energy

spectra � k? and � k3
?, and in the same way I is quasi-con-

served during the decay of isotropic flows with an initial

large-scale � k4 energy spectrum. A detailed proof of the

conservation of K for rotating flows can be found in Ref. 49;

it is a direct consequence of the conservation of linear mo-

mentum in the direction parallel to the rotation axis. It is

worth pointing out that these quantities were also shown to

be conserved in other systems: proofs of the conservation of

K and I2D for quasigeostrophic flows can be found in Ref.

50. In practice, these quantities are only approximately con-

served in numerical simulations, see e.g., the approximate

constancy of I2D and K reported for rotating flows in Ref. 47.

As per virtue of the decay the Rossby number decreases

with time, we will further assume for our phenomenological

analysis that 2D and 3D modes are only weakly coupled and

write equations for the energy in the 2D modes, E2D. In the

non-helical case, if K remains approximately constant with

K � E2DL2
?L0k (where L0k is the size of the box in the direc-

tion parallel to X), then Eq. (21) for the 2D modes becomes

dE2D

dt
�

E3
2DL0k
KX

; (30)

which leads to a decay

E2DðtÞ � t�1=2: (31)

Alternatively, constancy of I2D � E2DL4
?L0k in Eq. (21) for

the 2D modes leads to

dE2D

dt
�

E
5=2
2D L

1=2

0k

I
1=2
2D X

(32)

and

E2DðtÞ � t�2=3: (33)

The same arguments can be extended to the helical rotating

case using Eq. (23). If constancy of K is assumed, we get

dE2D

dt
�

E7
2DL3

0k

X5K3
(34)

and

EðtÞ � t�1=6: (35)

Finally, constancy of I2D leads to

dE2D

dt
�

E
11=2
2D L

3=2

0k

I
3=2
2D X5

(36)

and

EðtÞ � t�2=9: (37)

These decay laws will be important to analyze the evolution

of the energy in the simulations discussed in the next section.

D. Enstrophy decay

From any of the previous energy decay laws, one can

also compute laws for the enstrophy decay XðtÞ ¼ hx2i=2

using the isotropic energy balance equation and replacing

� ¼ �XðtÞ, which results in XðtÞ ¼ ��1dE=dt. From this equa-

tion, for every solution for which the energy decays as

EðtÞ � ta, the enstrophy decay results

XðtÞ � ta�1: (38)

Although rotating flows are anisotropic, the enstrophy is pre-

dominantly a small-scale magnitude and we will see that this

isotropic argument gives good agreement with the numerical

results for rotating and non-rotating flows. Since helicity is
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related with the energy and the enstrophy only through a

Schwartz inequality, no simple decay laws can be derived in

its case using these phenomenological arguments.

IV. TIME EVOLUTION: NUMERICAL RESULTS

We present here the results for the energy, enstrophy, and

helicity decay obtained in the numerical simulations listed in

Table I, classifying them as rotating or non-rotating, bounded

or unbounded (in the sense that the initial integral scale is

smaller than the size of the box), and helical or non-helical.

Concerning the terminology of “bounded” and

“unbounded” used to describe the numerical simulations, it is

important to note that confinement effects in a rotating flow

go beyond a saturation of the integral scale when it grows to

the box size. Confinement also selects a discrete set of inertial

waves which are normal modes of the domain, and bounda-

ries can introduce dissipation through Ekman layers. The lat-

ter effect is not present in our numerical simulations with

periodic boundary conditions. Finally, it was shown in Ref.

51 (see also Ref. 52) that the small number of Fourier modes

available in the shells with wave number k � 1 gives rise to

poor representation of isotropy and of the integral scale in

runs for which the integral scale approaches 1=5 of the box

size. As a result, the “bounded” runs are here only briefly

considered to study the time evolution of global quantities

(energy, enstrophy, and helicity) and to compare with the pre-

diction obtained in the corresponding cases in the phenome-

nological analysis.

A. Non-rotating flows

Numerical results for non-rotating, bounded, and

unbounded flows are shown in Fig. 1. In the unbounded case

(runs with an initial energy spectrum � k4 peaking at k¼ 14

in the DNS and 963 LES, and peaking at k¼ 30 in the 1923

LES), the runs show a decay for the energy close to � t�10=7,

independently of the presence of helicity or not (note the

runs also span a range of Reynolds numbers from Re � 420

to 1200). The decay is consistent with the prediction given

by Eq. (20) for an initial � k4 energy spectrum.

The enstrophy decay is also consistent with this law, as

expressed by Eq. (38), decaying close to � t�17=7 in all cases.

In the absence of rotation, helicity only delays the onset of

the self-similar decay by retarding the time when the maxi-

mum of enstrophy takes place, as already reported in Refs.

27 and 53. This is more clearly seen in the DNS, see, e.g.,

the time of the peak of enstrophy for runs D512-3 and

D512H-3 in Fig. 1(b). Finally, in the helical runs, helicity

seems to decay as the enstrophy, just slightly slower than the

� t�17=7 law.

Similar results are observed for bounded flows, i.e., for

initial conditions with the initial energy containing scale close

to the size of the box (runs with a � k�4 spectrum from k¼ 4

to 14, peaking at k¼ 4). In this case, all runs are consistent

with a � t�2 decay for the energy (see the insets of Fig. 1) in

agreement with Eq. (19), and a decay for the enstrophy close

to � t�3 in agreement with Eq. (38). In the helical runs, helic-

ity decays again slightly slower than the enstrophy but close

to the � t�3 power law.

B. Rotating flows

1. Global quantities

As rotation is increased, the simulations show a shallower

power law in the energy decay. As an illustration, Fig. 2

shows the energy decay rate in simulations of unbounded

non-helical flows with increasing rotation rate X. As reported

in previous numerical simulations24 and experiments,12,13 as

FIG. 1. (a) Energy decay for non-rotating unbounded runs. Non-helical runs

D512-2 (solid), L96-1 (dashed), and L192-1 (dashed-dotted) and helical

runs D512H-2 (solid, thick), L96H-1 (dashed, thick), and L192H-1 (dashed-

dotted, thick) are shown. A –10=7 slope is shown as a reference. The inset

shows the energy decay for non-rotating bounded runs D256-1 (solid) and

D256H-1 (solid, thick). (b) Enstrophy decay for the same runs, with a –17=7

slope shown as a reference. The inset shows the enstrophy decay in the

bounded runs. (c) Helicity decay in the unbounded helical runs of (a); the

inset shows the helicity decay for the bounded helical run D256H-1.
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X increases the decay slows down until reaching a saturated

decay for Ro � 0:1. We will focus in the following in simula-

tions with Rossby number small enough to observe this satu-

rated decay, although not so small that the rotation quenches

all non-linear interactions giving only exponential decay. A

detailed study of the transition between the non-rotating and

rotating cases can be found in Ref. 12.

Figure 3 shows the energy, enstrophy, and helicity decay

in simulations of rotating flows with and without helicity, in

the unbounded and bounded cases (the latter in the insets).

The energy decay in the unbounded non-helical runs (thin

lines in Fig. 3) is slightly steeper than what Eq. (25) predicts

(E � t�5=7). A better agreement is observed for the enstro-

phy, which is closer to a � t�12=7 law. As will be shown

next, the agreement between the phenomenological argu-

ments for the energy and the simulations is improved if the

decay of 2D and 3D modes is considered separately.

Alternatively, the unbounded helical runs (thick lines in

Fig. 3) show for the energy a � t�1=3 decay or steeper

(although shallower than � t�5=7). Runs with ABC initial

conditions tend to develop a clearer power law decay and to

be closer to a � t�1=3 decay than runs with random helical

modes. Again, these differences can be explained consider-

ing the decay of 2D and 3D modes, as well as the effect of

anisotropy in the initial conditions which is specially rele-

vant for this particular case. The enstrophy and helicity show

a decay close to � t�12=7. Note that in the presence of rota-

tion, helicity not only slows down the occurrence of the peak

of enstrophy as already reported in Ref. 27, but it also

changes the energy decay after this peak. The enstrophy

decay is not affected by the presence of helicity.

Overall, the case of constrained runs shows a similar sce-

nario, with a significant slow down of the decay rates in the

presence of rotation, and with an extra slow down of energy

decay in the presence of helicity (see the insets in Fig. 3).

Rotating non-helical flows are close to EðtÞ � t�1, XðtÞ �
t�2, and HðtÞ � t�2, while helical flows in this case display a

shallower decay in the energy consistent with E � t�1=3 as

predicted by the phenomenological arguments that take into

account the effect of helicity in the energy spectrum of rotat-

ing turbulence. As in the unbounded case, the presence of hel-

icity does not affect the decay rate of enstrophy.

2. Anisotropic global quantities

Although the impact of rotation and helicity in the energy

decay is clear, the predictions given by the isotropic phenome-

nological arguments in Sec. B do not coincide in all cases

with the results from the simulations. This can be ascribed to

the fact that these arguments assume an isotropic energy scal-

ing, while rotation breaks down isotropy, making spectral

energy distribution become axisymmetric with the preferred

direction along the axis of rotation. Two-dimensionalization

of the flow has already been reported during the decay,24,27 as

FIG. 3. (a) Energy decay for rotating unbounded runs (X ¼ 10). Non-helical

runs D512-3 (solid), L96-6 (dashed), and L192-2 (dashed-dotted) and helical

runs D512H-3 (solid, thick), L96H-3 (dashed, thick), L96H-2 (dashed-tripe-

dotted, thick), and L192H-2 (dashed-dotted, thick) are shown. At late times,

the non-helical runs decay slightly faster than t�5=7, while the helical runs

are close to a –1=3 decay. The inset shows bounded non-helical runs D256-2

(solid) and D512-1 (dashed) and helical runs D256H-2 (solid, thick) and

D512H-1 (dashed, thick). (b) Enstrophy decay for the same runs, with a –

12=7 slope shown as a reference. The inset shows the enstrophy decay in the

bounded runs. (c) Helicity decay in the unbounded helical runs; bounded

helical runs are shown in the inset.

FIG. 2. Energy decay for different values of X from 0 to 10 for unbounded,

non-helical runs L96-1, L96-2, L96-3, L96-4, L96-5, and L96-6. The decay

becomes slower with increasing rotation rate. We also show t�10=7 and t�5=7

laws as references.
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well as weak coupling of 2D and 3D modes6,15 for very small

Rossby numbers. Based on this, we discriminate between the

energy contained in 3D modes with kz 6¼ 0 (E3D) and the

energy in slow 2D modes with kz¼ 0 (E2D). At this point, it is

important to point out that as the energy decays in the simula-

tions, the Rossby number also monotonically decreases with

time. As a rule, the Rossby numbers decrease by one order of

magnitude in the first turnover times (from the values listed in

Table I, which correspond to the time of maximum dissipa-

tion) and another order of magnitude at t � 100.

In Fig. 4, we show E3D and E2D as a function of time for

several runs. In each and every case, we can clearly identify

distinct behaviors for the 2D and 3D energies, obeying differ-

ent power-law decays. On the one hand, E3D always shows a

decay close to some power law expected for a (bounded or

unbounded) non-rotating case, with the unbounded non-heli-

cal runs having E3D � t�10=7 in agreement with Eq. (20) as

illustrated in Fig. 4(a), and with most helical runs (bounded

and unbounded) with E3D � t�2 in agreement with Eq. (19)

(which corresponds to the bounded non-rotating decay) as

illustrated in Figs. 4(b)–4(d). On the other hand, E2D follows

power laws close to the ones predicted by Eqs. (31)–(37). The

unbounded non-helical runs are compatible with E2D � t�2=3,

and the helical runs show � t�1=2 or � t�1=3 (note in the heli-

cal case, the power laws predicted are for the case of maxi-

mum helicity, and for intermediate helicity, the power laws

are bounded between the non-helical and the maximally heli-

cal values).

The results in Fig. 4 indicate clearer power law decay

(and better agreement with phenomenological arguments) is

obtained for the separate energy in 2D and 3D modes, than

when the total energy is considered (compare, e.g., the extent

of the power laws in this figure with the ones in Fig. 3). This

is clearer in the non-helical case, where all unbounded runs

show a decay consistent with Eq. (33) for the 2D modes (all

non-helical runs with random initial conditions have a � k3
?

initial energy spectrum, per virtue of the isotropic initial

� k4 spectrum), and with Eq. (20) for the 3D modes. The

separate evolution of E3D and E2D seems to be independent

of the initial ratio of energy in 3D and 2D modes, at least for

the range of parameters explored in this work.

To further show the agreement with the phenomenologi-

cal arguments, the evolution of I, I2D, and K must be consid-

ered to verify whether these quantities behave in agreement

with the assumptions used to derive the decay laws in Sec.

FIG. 4. Energy decay for E3D (solid) and E2D (dashed) for runs with rota-

tion. (a) Unbounded non-helical D512-3 (thin) and L96-6 (thick);

E3D � t�10=7 and E2D � t�2=3 decays are indicated. (b) Unbounded helical

with ABC initial conditions D512H-3 (thin) and L96H-3 (thick); E2D is close

to t�1=3. (c) Unbounded helical with random initial conditions L96H-2; E2D

is close to t�1=2. (d) Bounded helical with ABC initial conditions D512H-1.

FIG. 5. Evolution of I=I(0) (thick lines) and I2D=I2D(0) (thin lines) for runs

D512-3 (solid) and L96-6 (dashed). While in both runs I2D maintains an

approximately constant value, I growths monotonically and during the self-

similar energy decay increases by one order of magnitude.
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III. Figure 5 shows the time evolution of I and I2D for two

simulations with rotation, normalized by their initial values

at t¼ 0. In both cases, I grows monotonically in time by a

factor of � 50 during the decay. This fast increase of I is

observed in all rotating runs. Meanwhile, I2D settles and

remains approximately constant, fluctuating around its initial

value.

The helical runs show more disparity in the time evolu-

tion of the 2D and 3D energies. Bounded runs show

E2D � t�1=3 and E3D � t�2, which agree with the previous

scenario where 3D modes decay as in the non-rotating case

and slow 2D modes decay according to the anisotropic predic-

tion with rotation (in this case, corresponding to Eqs. (24) and

(19), respectively). But for initial conditions that peak at

k � 14, in some cases, they show decays of E3D and E2D that

are consistent with predictions for bounded flows (Fig. 4 (b)),

FIG. 6. (a) Evolution of the isotropic energy spectrum E(k) for L96-6 (non-

helical, X ¼ 10, initial � k4 spectrum peaking at k¼ 14) from t¼ 5 to

t¼ 100 with time increments Dt ¼ 5. Inset: reduced perpendicular energy

spectrum Eðk?Þ for the same times. (b) Evolution of the isotropic energy

spectrum for L96H-2 (helical, X ¼ 10, initial � k4 spectrum peaking at

k¼ 14) at the same times, with the reduced perpendicular energy spectrum

in the inset.

FIG. 7. Axisymmetric energy spectrum eðkk; k?Þ= sin h for different times

for run L96-6 (non-helical, X ¼ 10, initial energy spectrum � k4 peaking at

k¼ 14).

FIG. 8. Axisymmetric energy spectrum eðkk; k?Þ= sin h for different times

for run L96H-3 (helical with ABC initial conditions, X ¼ 10, initial energy

spectrum � k4 peaking at k¼ 14).

FIG. 9. Energy decay for different initial anisotropies. Thick lines corre-

spond to the energy in 2D modes (E2D), while thin lines correspond to

energy in 3D modes (E3D). Simulations shown are L192HA-1 (solid),

L192HA-2 (dotted), and L192HA-3 (dashed), with increasing anisotropy.
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while in others, they show decays as in the unbounded case

(Fig. 4(c)). It may be the case that in the presence of helicity,

more separation of scales is needed between the initial energy

containing scale and the size of the box in order to study

unbounded flows (indeed, run L192H-2, which has an initial

energy spectrum peaking at k¼ 30, shows a decay compatible

with E3D � t�10=7). But it is also observed that these decay

laws also depend on whether ABC or random helical initial

conditions are used. In the ABC flow, two-thirds of the ini-

tially excited modes are in the kk ¼ 0 plane (see Eq. (8)),

while random initial conditions excite modes in Fourier space

distributed more isotropically, resulting in a smaller percent-

age of energy in the kk ¼ 0 modes when compared with the

energy in kk 6¼ 0. This dependence in the initial ratio of

energy in 2D and 3D modes may indicate a stronger coupling

between 2D and 3D modes in the presence of helicity (in Sec.

V, we will explicitly show how changes in the initial anisot-

ropy affect these results).

On dimensional grounds, the impact of helicity in the

coupling can be explained as follows. If decoupling takes

place in the limit of fast rotation, it should hold until a time

t	 � Ro�2, after which higher order terms in the multiple

time scale expansion make non-resonant interactions rele-

vant.14,15 In non-helical unbounded turbulence, E � t�5=7

and L � t1=7 (under approximate conservation of I). The

Rossby number then decays as

Ro ¼ E1=2

21=2LX
� t�1=2; (39)

and t* grows as t. As a result, if decoupling takes place in the

freely decaying non-helical case, it can be sustained for long

times. The same result (Ro � t�1=2) is obtained if the argu-

ment is refined to consider the 2D invariants K or I2D using

Eq. (31) or (33), or in the bounded case using Eq. (22). How-

ever, in the helical case (e.g., using Eq. (24)), a much slower

decay of the Rossby number obtains

Ro � t�1=6; (40)

and thus t* grows only as t1=3.

C. Spectral evolution and anisotropy

The isotropic and reduced perpendicular energy spectra

are shown in Fig. 6 for LES of rotating flows (X ¼ 10) with

and without helicity. Energy at large scales grows in all

cases, indicating an inverse energy transfer (as also evi-

denced by a negative flux of energy in that range). Also, the

energy spectrum in the helical case (e.g., at the time of maxi-

mum enstrophy; not shown) is slightly steeper than in the

non-helical case (see, e.g., Refs. 54 and 55).

To further investigate the energy spectral distribution

among different directions, we show in Figs. 7 and 8 plots of

the axisymmetric energy spectrum eðkk; k?Þ for runs L96-6

and L96H-3. Note that to obtain contour levels corresponding

FIG. 10. Evolution of the velocity-derivative skewness for non-rotating runs

(a) D512-2 and L96-1 (non-helical) and (b) D512H-2 and L96H-1 (helical).

DNS have filled symbols while LES have empty symbols, with squares for

Sx, triangles for Sy, and diamonds for Sz. The three components of S oscillate

around � �0:5 independently of helicity content. The insets show the three

components of the kurtosis for the same runs using the same labels.

FIG. 11. Evolution of the velocity-derivative skewness for runs (a) L96-6

and (b) L96H-3. Symbols are squares for Sx, triangles for Sy, and diamonds

for Sz. The inset shows the evolution of velocity-derivative kurtosis for the

same runs.
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to circles in the isotropic case, here and in the following, the

axisymmetric energy spectrum is divided by sin h, where

h ¼ arctanðkk=k?Þ.
In the case without rotation, the spectrum has an iso-

tropic distribution of energy evidenced by circular contour

levels, which maintain their shape as the flow decays (not

shown). Alternatively, when rotation is present, the distribu-

tion of energy becomes anisotropic with more energy near

the kk ¼ 0 axis at late times (Fig. 7). This preferential transfer

towards slow 2D modes is well known, see e.g., Refs. 3–5.

However, for helical rotating flows, there is even more energy

near the kk ¼ 0 axis (Fig. 8), and energy is also more concen-

trated at large scales (small k? wave numbers), in agreement

with our previous observations of a faster increase of integral

scales in the presence of helicity.

V. EFFECT OF INITIAL ANISOTROPY

As mentioned before, some of the differences observed

in the evolution of E2D and E3D in helical runs are associated

with differences in the initial conditions. In particular, runs

with ABC and with random helical initial conditions differ

FIG. 12. (Color online) Visualization of

xz at late times for run L96H-3. From

top to bottom and from left to right, the

images correspond to t¼ 42.5, 47.5, 55,

70, t¼ 87.5, and 100. Note that the four

anti-cyclonic vortices at t¼ 42.5 merge

in pairs and become two larger columnar

vortices at t¼ 47.5. Eventually, they

merge again becoming one column.

065105-12 T. Teitelbaum and P. D. Mininni Phys. Fluids 23, 065105 (2011)



in the fact that the ABC flow initially has 2/3 of the excited

modes in Fourier space in the slow 2D manifold, while in the

random case energy is more isotropically distributed.

To further investigate this effect, we consider a set of hel-

ical runs with random initial conditions but with increasing

initial anisotropy (runs L192HA-1, L192HA-2, and L192HA-

3). Anisotropy is introduced by weighting the amplitude of all

modes with kk ¼ 0 with a parameter a (a ¼ 1 corresponds to

the isotropic initial conditions considered before, and a > 1

corresponds to larger amplitude of the 2D modes relative

to the 3D modes). The runs have a ¼ 1 (L192HA-1), 5

(L192HA-2), and 10 (L192HA-3), resulting in initial ratios of

the energy in 2D to 3D modes E2D=E3D � 0:024, 0.626, and

2.408, respectively. The runs also have initial energy and hel-

icity spectra peaking at k¼ 25, thus allowing us to study

unbounded cases with larger scale separation.

Figure 9 shows that E3D decays approximately as

� �10=7 regardless of the anisotropy of the initial condi-

tions, while E2D changes its decay becoming shallower as an-

isotropy grows. On the one hand, the isotropic case (a ¼ 1) is

closer to a E2D � t�1=3 law, a result consistent with the 2D
decay shown in Fig. 4(d). On the other hand, the decay in the

most anisotropic case (a ¼ 10) is closer to � t�1=6, which is

consistent with the decay for helical flows in the case when

K is approximately constant; see Eq. (35). Indeed, it was veri-

fied that K remains approximately constant during the decay

of this run (not shown).

VI. SKEWNESS AND KURTOSIS

In this section, we consider the time evolution of skew-

ness Si and kurtosis Ki of velocity derivatives defined as

Si ¼
@ui

@xi

� �3
* +,

@ui

@xi

� �2
* +3=2

; (41)

Ki ¼
@ui

@xi

� �4
,

@ui

@xi

� �2
* +2

;

+*
(42)

where i denotes the Cartesian coordinates x, y, or z.

Figure 10 shows S and K for non-rotating runs D512-2

and L96-1 (non-helical) and D512H-2 and L96H-1 (helical).

Only a few times are shown for the DNS runs, to compare

with the LES. Overall, the DNS and LES show good agree-

ment. The three components of the skewness fluctuate

around � �0:5, a value observed in experiments56 and simu-

lations.57 Also, the kurtosis evolves towards a value near 3.5.

Helicity does not affect the values of S nor K in the absence

of rotation.

When rotation is present, skewness is substantially

reduced, with all components of S fluctuating around S � 0.

This is shown in Fig. 11 for runs L96-6 and L96H-3 (DNS

show the same behavior and are not shown for clarity). Such

a decrease of skewness with decreasing Rossby number has

already been reported in simulations.5 Anisotropy is also evi-

dent, manifested in a distinct behavior of Sx, Sy, and Sz.

While fluctuations of Sz are small, Sx and Sy show large and

sudden departures from zero with Sx � �Sy at all times. This

anti-correlation between the x and y components can be qual-

itatively understood from the quasi-two-dimensionalization

of the flow. Indeed, for a purely 2D flow, the incompressibil-

ity condition becomes

@ux

@x
¼ � @uy

@y
; (43)

which leads to Sx � �Sy. Note, however, that rotating flows

differ from 2D flows, e.g., in the asymmetry between cyclo-

nes and anti-cyclones.

The kurtosis in the runs with rotation has more fluctua-

tions but seems to evolve towards a value near 3. This is

clearer for Kz, while Kx and Ky also show signs of quasi-two-

dimensionalization with Kx � Ky at all times.

Visualization of the flow vorticity indicates that maxima

and minima of Sx and Sy correspond to times when two col-

umn-like structures in the flow merge. As an example, Fig.

12 shows the evolution of the z component of the vorticity in

run L96H-3. When two columns with the same sign of vor-

ticity merge, intense gradients are created in ux or uy, giving

rise to an increase in Sx or Sy.

VII. CONCLUSIONS

In this work, we presented a study of the self-similar

decay laws that arise in turbulent rotating flows depending

on (1) the characteristic scale of the initial conditions (com-

pared with the size of the box), (2) the presence or absence

of helicity in the flow, (3) the values of the Rossby and

Reynolds numbers, and (4) the amount of anisotropy in the

initial conditions. Phenomenological decay laws were

obtained for each case considered, and the decay laws were

contrasted with the numerical results from DNS and LES

using different flows as the initial conditions.

A large number of power laws were identified. It is well

known that rotation decreases the energy decay

rate,3,7,10,12,13,24,25 and our simulations are in agreement with

this result. However, our simulations further show that in the

presence of rotation, helicity can further decrease this decay.

This is different from the non-rotating case, where helicity

does not affect the self-similar decay of energy. This result,

together with previous studies in the case of forced rotating

flows,11,54,55 further confirm that helicity plays a more im-

portant role in rotating turbulence than what it does in the

isotropic and homogeneous cases.

In the presence of rotation, the decay of enstrophy is

well described by phenomenological arguments based on

isotropic scaling. This can be expected as enstrophy (as well

as helicity) is a small-scale quantity, more isotropic than the

energy.

The energy in rotating non-helical flows follows either a

decay close to a � t�1 law (when the integral scale of the

flow is close to the size of the box) or a decay slightly steeper

than � t�5=7 (when the integral scale is smaller than the size

of the box, and the large scale energy spectrum is � k4). Bet-

ter agreement with power-law decay is obtained when the

evolution of 2D modes and 3D modes is considered sepa-

rately. In that case, the energy in 2D modes decays close to

E2D � t�2=3, and the 3D modes decay as in the non-rotating

case, i.e., close to E3D � t�10=7.

065105-13 The decay of turbulence in rotating flows Phys. Fluids 23, 065105 (2011)



These power-law decays can be obtained from phe-

nomenological arguments that consider the energy in 2D

and 3D modes separately, that assume approximately con-

stant axisymmetric integrals instead of the isotropic Loit-

syanski’s integral, and that take into account the slow down

in the energy transfer associated with rotation. Note we are

not claiming that there is decoupling between 2D and 3D

modes in rotating flows, a topic which is beyond the scope

of this work. What we show instead is that the energy in 2D

and 3D modes in the simulations decay with different rates,

both following power laws, and that considering this in the

phenomenological description gives better agreement with

the numerical results.

The decay of energy in the presence of rotation and hel-

icity shows further variety. When the integral scale of the

flow is close to the size of the box, the energy decay is close

to E � t�1=3. This decay can be obtained from phenomeno-

logical arguments taking into account the role played by the

helicity cascade in further slowing down the energy transfer.

In simulations with integral scale smaller than the size of the

box, the decay is between E � t�5=7 and � t�1=3. As in the

non-helical case, clearer power laws arise if the decay of E2D

and E3D is considered. In that case, E2D shows decays

between � t�1=2 and � t�1=6, and E3D shows decays close to

either E � t�2 or E � t�10=7.

The results with helicity seem to be more dependent on

scale separation (i.e., on the separation between the initial in-

tegral scale of the flow, and the size of the box) and on initial

anisotropy. It is worth mentioning that the importance of the

initial conditions in the decay of rotating turbulence has been

recently pointed out also in experiments.58

Finally, we presented a study of the time evolution of

the skewness and kurtosis of velocity derivatives. Two-

dimensionalization of rotating flows leads to an anti-corre-

lation of the x and y components of the skewness, which

fluctuate around zero. Large departures of these quantities

from this value are associated with merging events of col-

umns in the flow.
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