Alkali Treatment of the Polysaccharides from the Cystocarpic Stage from *Iridaea Undulosa*

María L. Flores¹, Alberto S. Cerezo² and Carlos A. Stortz²

¹Farmacognosia, FCN, UNPSJB, Km 4, 9000, Comodoro Rivadavia
²Depto. Química Orgánica, FCEyN, UBA, C.Universitaria, 1428, Buenos Aires, Argentina E-mail: stortz@qo.fcen.uba.ar

Abstract: The polysaccharides from cystocarpic *Iridaea undulosa*, soluble and insoluble in 2M potassium chloride, Cs and Ci, respectively, were treated with alkali and fractionated by precipitation with increasing concentrations of KCl. They were later separated by ion-exchange chromatography, to yield fractions enriched in an α -(1 \rightarrow 6)-glucan, agaroids and carrageenans.

Introduction

The red seaweed *Iridaea undulosa* is an important source of carrageenans. The structure of the galactans from cystocarpic and tetrasporic thalli has been studied [1]. The presence of galactans containing *L*-Gal was proved in the 2M KCl-soluble fractions from cystocarpic *Gigartina skottsbergii* after alkali treatment and further KCl precipitation [2], and also in the soluble fraction of the polysaccharides from tetrasporic *Iridaea undulosa* [3].

Herein we report the results of the alkali treatment of the 2M KCl-soluble and -insoluble fractions of cystocarpic *Iridaea undulosa* polysaccharides, and of their further fractionation by ion-exchange chromatography.

Experimental

The polysaccharide from cystocarpic *Iridaea undulosa* was fractionated with 2M KCl. Both the insoluble (**Ci**) and soluble (**Cs**) weres obtained after centrifugation, dialysis and liophylization. **Cs** and **Ci** were treated with 1M NaOH (5 h, 80°C), and their solutions, after dialysis and freeze-drying (**CsT** and **CiT**), were refractionated with KCl from 0.1M to 2M. The fractions soluble in 2M KCl (**CsTs-2** and **CiTs-2**) were subfractionated by ion-exchange chromatography on DEAE Sephadex A-50 mixed up with Sephadex G-100 stabilized on 0.2M NaCl, by elution with increasing concentrations of NaCl (up to 4 M). The constituting monosaccharides were determined by GC, after hydrolysis with 2 M TFA and derivatization to the corresponding aldononitriles and aminoalditols acetates [1,4].

Results and Discussion

The first fractionation of the polysaccharide yielded 31% of **Cs** and 62% of **Ci**. After alkali treatment, 95% of **Cs** was recovered (**CsT**), yielding four new fractions after precipitation with increasing concentrations of KCl: **CsTi-0.1**, **CsTi-1**, **CsTi-2** and **CsTs-2**. The first one (81%) is a carrageenan (88% D-Gal), with traces of L-Gal, Glc and Rha. On the other hand **CiT** was similarly fractioned with KCl, yielding also four equivalent fractions. The major one, **CiTi-0.1**, (92%) contained 93% of D-Gal and trace amounts of 3-*O*- and 6-*O*-Me-*D*-Gal. Fractionation of **CsTs-2** by ion-exchange chromatography yielded 5 main fractions. The one eluted with 0.2M NaCl contained a α -1,6 glucan and significant amounts of agaroids (26% of *L*-Gal). Subfractions **F1/s** and **F1.5/s** contained D- and L-Gal (3:1 ratio for both). The late-eluting fraction **F2/s**, contained 80% of D-Gal and minor proportions of Glc, 3-*O*methyl and 6-*O*-methyl-*D*-Gal.

Acknowledgements: This work constitutes part of the Research Projects from UBA, CONICET and UNPSJB.

References and Notes

- 1. Stortz, C.A.; Cerezo, A.S. Carbohydr. Res. 1993, 242, 217.
- 2. Ciancia, M.; Matulewicz, M.C.; Cerezo, A.S. Phytochemistry 1993, 34, 1541.
- 3. Stortz, C.A.; Cases, M.R.; Cerezo, A.S. Carbohydr. Polym. 1997, 34, 61.
- 4. Cases, M.R.; Cerezo, A.S.; Stortz, C.A. Carbohydr. Res. 1995, 269, 333.