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Abstract

We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctua-

tions, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations

in the framework of a single field inflationary model where the quasi-exponential expansion is driven

by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for

fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturba-

tions can be neglected and the fluid is irrotacional.
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I. INTRODUCTION

The big bang theory has provided a remarkably successful description of the evolution

of the universe and now rests upon solid observational foundations. Over the last decades

cosmologists have also drawn up architectural sketches of a model which may account for

the origin and evolution of structure within this framework: primordial perturbations from

an early epoch of inflation, which subsequently grow by gravitational instability to form

galaxies and larger structures. The standard picture of inflation introduced in 1981[1] re-

lied on a scalar field, called the inflaton, which during inflation was assumed to have no

interaction with any other field. The inflationary scenario postulates that the universe un-

derwent a phase of very rapid, accelerated expansion in its distant past. Observations have

provided strong support for the paradigm. However, despite this success, the mechanism

which drove the inflationary expansion has yet to be indentified. A multitude of inflationary

models involving a broad range of energy scales have been discussed in the literature, in-

cluding chaotic inflation[2], warm inflation[3], stochastic inflation[4], fresh inflation[5], brane

inflation[6], STM inflation[7], and many others.

The scalar fluctuations of the metric are associated with density perturbations. These

are the spin-zero projections of metric perturbations and were induced by the vacuum fluc-

tuations of the inflaton field during inflation. Furthermore, they played a crucial role in the

generation of primordial inhomogeneities which gave rise to the large scale structure of the

present day universe as well as the observed anisotropies of the cosmic microwave background

of radiation. Gauge invariance guarantees that equation for the fluctuations of the geometry

do not change when moving from one coordinate system to other. This allows us to formu-

late the problem of the evolution for the amplitude of scalar metric perturbations around the

Friedmann-Robertson-Walker (FRW) universe in a coordinate-independent manner at every

moment in time. The issue of gauge invariance becomes critical when attempt to analyze

how the scalar metric perturbations produced in the early universe influence a globally flat,

isotropic and homogeneous universe on super Hubble scales. Space-time fluctuations can also

lead to decoherence of matter waves[10]. In the infrared (IR) sector these fluctuations can

be represented by a coarse-grained field, which describes a stochastic dynamics[11]. With

respect to perturbative approaches, second order gauge invariant perturbations quantities

have been calculated in [12] and third order perturbations are supposed to be negligible[13]

2



during inflation, but not for large fluctuations.

In this work we examine a perturbed FRW metric using the proposal developed in[14],

which is an extension of the well known linearized line element ds2 = (1+2ψ)dt2−a(t)2 (1−
2ψ) d~r2, for a longitudinal gauge. Our results show a coincidence of different approaches for

small fluctuations; the formalism developed in [14] and the standard method.

II. FORMALISM

We consider a scalar field ϕ which is minimally coupled to gravity. The action of the

system is

I =

∫

d4x
√−g

[ R
16πG

+
1

2
gµνϕ,µϕ,ν − V (ϕ)

]

, (1)

where g = −e−4ψa6(t) is the determinant of the covariant metric tensor with components

gµν (µ, ν run from 0 to 3) and V (ϕ) is the potencial related to the inflaton field. To study

the gauge invariant scalar metric fluctuations ψ (xα), we propose the following perturbed

metric

dS2 = e2ψ dt2 − a2(t)e−2ψ d~r2, (2)

where d~r2 = dx2 + dy2 + dz2 and ψ(t, ~r) is the scalar metric fluctuation. The metric (2)

is the perturbed version of the background FRW one, which is spatially flat, isotropic,

homogeneous and has a scalar curvature R̄ = 6
[

ä
a
+
(

ȧ
a

)2
]

. This metric describe non-

perturbative gravitational fluctuations on cosmological scales, on which vector and tensor

perturbations of the metric can be neglected and the fluid can be considered as irrotacional.

Furthermore, using the continuity equation on large scales

∂ρ

∂τ
= −3H (ρ+ P ) , (3)

where H = d
dτ

[

ln
(

a(t) e−ψ
)]

and dτ = eψdt. One can show that exists a conserved quantity

in time at any order in perturbation theory

f = ln
(

ae−ψ
)

+
1

3

∫ ρ dρ′

(P ′ + ρ′)
. (4)

Considering the invariant ω, which characterizes the equation of state P = ω ρ. The pertur-

bation δf = −ψ + 1
3(1+ω)

ln (ρ/ρ̄), is a gauge-invariant quantity representing the non-linear

extension of the curvature perturbation for adiabatic fluids on uniform energy density hy-

persurfaces on superhorizon scales[14]. Here, (P̄ , ρ̄) denote the background pressure and
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energy density and (P, ρ) denote pressure and energy density on the perturbed metric (2).

The scalar curvature of this metric is

R = 6e−2ψ

[[

ä

a
+

(

ȧ

a

)2
]

− ψ̈e4ψ − 5ψ̇

(

ȧ

a

)

+
e4ψ

3a2

[

∇2ψ −
(

~∇ψ
)2
]

+ 3ψ̇2

]

. (5)

Now we shall use the Lagrangian formalism to describe the dynamics of ϕ and ψ. The

equation of motion for ϕ is

ϕ̈+

[

3

(

ȧ

a

)

− 4ψ̇

]

ϕ̇− 1

a2
e4ψ∇2ϕ+ e2ψV ′(ϕ) = 0, (6)

where V ′(ϕ) ≡ dV
dϕ
. The equation (6) is an operatorial one because ϕ is considered as a

quantum scalar field. The equation of motion for ψ is
[

∂R
∂ψ

− ∂

∂xµ
∂R
∂ψ,µ

]

−2R− 1√−g
∂
√−g
∂t

∂R
∂ψ̇

= 32πG

[

e−2ψϕ̇2 − e2ψ
1

a2

(

~∇ϕ
)2

− V (ϕ)

]

, (7)

such that both, ϕ and ψ comply with the commutation relations

[ϕ(t, ~r),Πϕ(t,~r)] = i δ(3) (~r −~r) , (8)

[ψ(t, ~r),Πψ(t,~r)] = i δ(3) (~r −~r) , (9)

Πϕ and Πψ being respectively the conjugate momentums for ϕ and ψ:

Πϕ =
∂L

∂ϕ̇
, Πψ =

∂L

∂ψ̇
,

such that L =
√−g

[

R
16πG

+ 1
2
gµνϕ,µϕ,ν − V (ϕ)

]

is the density Lagrangian of the system.

To complete the description of the dynamics, we need to write the Einstein equations Gαβ =

−8πGTαβ . Taking into account cartesian coordinates, the diagonal Einstein equations are

− 2

a2
e4ψ∇2ψ + 6Hψ̇ − 3ψ̇2 +

e4ψ

a2

(

~∇ψ
)2

+ 3H2

= −8πG

[

ϕ̇2

2
+ e4ψ

1

2a2

(

~∇ϕ
)2

+ V (ϕ)e2ψ
]

, (10)

−8πG

[

3e−4ψ

2
ϕ̇2 − 1

2a2

(

~∇ϕ
)2

− 3e−2ψV

]

= − 2

a2

(

~∇ψ
)2

− 24Hψ̇e−4ψ

+15ψ̇2e−4ψ + 6e−4ψ

(

ä

a

)

− 6ψ̈e−4ψ − 3H2e−4ψ, (11)

where Gα
β = Rα

β − 1
2
Rgαβ is the Einstein tensor and T αβ = ϕ,αϕ,β − gαβ

[

1
2
ϕ,ρϕ,ρ − V (ϕ)

]

is the Energy - Momentum tensor for a scalar field. On the other hand, the non-diagonal

Einstein equations have the form

1

a

∂

∂xi

[

∂

∂t
(aψ)

]

− ∂ψ

∂t

∂ψ

∂xi
= 4π G

∂ϕ

∂t

∂ϕ

∂xi
, (12)
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so that, using the eq. (12) in eqs. (10) and (11), we obtain the exact equation of motion for

ψ

ψ̈ + 7Hψ̇ − e4ψ

a2
∇2ψ − 4ψ̇2 − 5e4ψ

3a2

(

~∇ψ
)2

+ 8πGV (ϕ)e2ψ = −8πG

3a2

(

~∇ϕ
)2

, (13)

which describes the dynamics of ψ with arbitrary amplitude. However, it is very difficult

to solve these equations in an exact manner. Notice that we have used the Einstein

equations, and not the Lagrange one, to obtain the dynamics of ψ. One could make the

inverse procedure, because both manners to work are equivalent. However, in this case the

calculations with the Einstein equations are more simple.

III. LINEAR APPROXIMATION

In the weak field limit, it is sufficient to make a linear approximation on the scalar metric

perturbations, so that one can write e±2ψ(xα) ≃ 1± 2ψ(xα) in the exact equations of motion

(6) and (13), for ψ and ϕ. In this limit the metric (2) preserves gauge invariance and the

linearized line element

dS2 = (1 + 2ψ) dt2 − a(t)2 (1− 2ψ)d~r2,

takes the form of a longitudinal gauge so that coordinate transformations induce difeomor-

fism transformations[8].

The equation of motion for the inflaton in its exact form is given by (6). However, in the

weak field limit we can make the semi-classical approximation ϕ(xα) = 〈E|ϕ|E〉 + φ(xα).

Here, 〈E|ϕ|E〉 = φc(t) is the expectation value of ϕ evaluated on the quantum state |E〉.
Furthermore, in this limit the quantum fluctuations of the inflaton field are considered to be

very small and 〈E|φ|E〉 =
〈

E|φ̇|E
〉

= 0. With this representation we obtain the following

dynamical equations for the fluctuations of the inflaton field φ and the classical field φc:

φ̈+ 3

(

ȧ

a

)

φ̇− 1

a2
∇2φ+ V ′′(φc)φ = 4ψ̇φ̇c + 2ψV ′(φc), (14)

φ̈c + 3

(

ȧ

a

)

φ̇c + V ′(φc) = 0. (15)

The background Friedmann equations are

3H2
c = 8πG

[

φ̇2
c

2
+ V (φc)

]

, (16)
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where V (φc) ≡ V (ϕ)|φc is the scalar potential evaluated on the classical background field

φc(t) and the Hubble parameter with back-reaction effects included is

H =
ȧ

a
≃ Hc(t) +

4πG

3Hc
〈E| φ̇

2

2
+

(~∇φ)2
2a2

+

∞
∑

n=1

V (n)(φc)

n!
φn(xα) |E〉 . (17)

When the metric fluctuations are small it is sufficient to make Hc ≃ ȧ
a
, because the last

term in the right hand of the expression (17) is negligible with respect to the first one.

This approximation is valid only on large scales, which are super Hubble scales during the

inflationary epoch. Furthermore, the primer denotes the derivative with respect to ϕ, such

that V ′(φc) ≡ dV (ϕ)
dϕ

∣

∣

∣

φc
.

Furthermore, the Einstein equations (12) now hold

1

a

∂2

∂xi∂t
[aψ] = 4πG

∂

∂xi

[

φ̇c φ
]

, (18)

from which (once we have taken into account that 〈E|φ|E〉 = 0) we obtain that the evolution

for the expectation value of ψ goes as

〈E|ψ|E〉 ∼ a−1, (19)

which decreases with the inverse of the scale factor of the universe. Finally, the linearized

dynamics of ψ can be obtained from the Einstein equations (10) and (11): δGµ
ν = −8πG δT µν

ψ̈ +

[

H − 2
φ̈c

φ̇c

]

ψ̇ − 1

a2
∇2ψ + 2

[

Ḣ − φ̈c

φ̇c
H

]

ψ = 0, (20)

which, as one expects, is the same as the equation obtained in[9]. Note that the equation

(20) is the equation (13) once linearized, with the constriction (18).

IV. AN EXAMPLE

In this section we shall illustrate the formalism in the linearized approximation, when the

expansion is governed by a power-law expansion a = β tp. In this case the Hubble parameter

is given by H = p/t and the classical field φc(t) is

φc(t) = φ0

[

1− ln

(

H0t

p

)]

, (21)

where the power p is

p = 4πGφ2
0,
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φ0 being the value of φc(t0) when inflation begins (i.e., at t = t0). The equation of state is

given by ω = P̄
ρ̄
= −(p−2/3)

p
, ω being an invariant. Furthermore, the classical potential V (φc)

is

V (φc) =
3H2

0

8πG

(

3p− 1

3p

)

e2φc/φ0 . (22)

The solution for the ψ-modes, once normalized, are

ξk(t) =

√
π

2

√

t

(p− 1)
H(2)
µ

[

k t1−p

(p− 1)β

]

×
(

t

t0

)−(p+2)/2

, (23)

where H(2)
µ [x(t)] is the second kind Hankel function with µ = p+1

2(p−1)
. Using the small

argument Hankel functions limit, we obtain that these modes have the following expression

on super Hubble scales:

ξk(t)|k≫1/(aH) ≃ i

√

π

4(p− 1)
Γ

[

(p+ 1)

2(p− 1)

] [

2(p− 1)β

π

]

(p+1)
2(p−1)

k
−(p+1)
2(p−1) , (24)

which is independent of time. The equation of motion for the modes of the inflaton field on

cosmological scales can be approximated to

¨̃
ξk(t) +

3p

t
˙̃
ξk(t) +

[

k2

β2 t2p
+

4 (6πGφ2
0 − 1)

t2

]

ξ̃k(t)

= i

[

(3p− 2)φ0

t2

]
√

π

p− 1
Γ

(

p+ 1

2(p− 1)

)[

2β(p− 1)

π

]

(p+1)
2(p−1)

k−
(p+1)
2(p−1) , (25)

which, on super Hubble scales, has the solution

ξ̃k(t) ≃ t
1
2
(1−3p)

×
{

A Jν2 [x(k, t)] +B Yν2 [x(k, t)]− iγβ

√

π

p− 1
Γ

(

p+ 1

2(p− 1)

)[

2β(p− 1)

π

]
p+1

2(p−1)

k
1−3p
2(p−1)

×
[

Jν2 [x(k, t)]
∫

dt t
5
2
(p−1) Yν2 [x(k, t)]

[Jν2 [x(k, t)] Yν1 [x(k, t)]−Yν2 [x(k, t)] Jν1 [x(k, t)]]

−
[

Yν2 [x(k, t)]
∫

dt t
5
2
(p−1) Jν2 [x(k, t)]

[Jν2 [x(k, t)] Yν1 [x(k, t)]Yν2 [x(k, t)] Jν1 [x(k, t)]]

]]}

, (26)
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where γ = 3(p − 2)φ0, 3p > m2 = 4(6πGφ2
0 − 1), ν2 =

√
9p2−6p+1−4m2

2(p−1)
, ν1 = 1 − ν2 and

x(k, t) = kt(1−p)

β(p−1)
. For x(t) ≪ 1 this solution can be written as

ξ̃k(t) ≃ −B
π
Γ (ν2)

(

k

2β(p− 1)

)−ν2

t−(1−p)ν2+
1
2
(1−3p)

+ iβ(3p− 2)φ0Γ

(

p+ 1

2(p− 1)

) [

2β(p− 1)

π

]
p+1

2(p−1)

×
[

Γ (ν2 + 1) t−(ν1+1)(1−p)

2Γ (ν1 + 1) [(ν2 − ν1)(p− 1)]

(

k

2β(p− 1)

)ν2−ν1

×
∞
∑

n=0

1
[

5p−3+2ν1(p−1)
4(ν2−ν1)(1−p)

+ 1
]

[

−Γ(ν2 + 1)Γ(ν1)

Γ(ν2)Γ(ν1 + 1)
x(k, t)

]2n(ν2−ν1)

+
Γ(ν2) t

−(2ν2+1)(1−p)

2Γ(ν2 + 1) (ν2 − ν1) (p− 1)

(

k

2β(p− 1)

)−2ν2

×
∞
∑

n=0

1
[

5p−3+2ν2(p−1)
4(ν2−ν1)(p−1)

+ 1
]

[

−Γ(ν1 + 1)Γ(ν2)

Γ(ν1)Γ(ν2 + 1)
x(k, t)

]2n(ν1−ν2)


 , (27)

where −1/2 < ν1 < 1/2 and 1/2 < ν2 < 3/2.

Now we are interested in obtaining the spectrum of the ψ and ϕ squared-fluctuations.

Their spectrums Pϕ(k, t) and Pψ(k, t) on cosmological scales, are given respectively by the

expressions

Pϕ(k, t)|IR =
k3

2π2

(

ξ̃kξ̃
∗
k

)

≃ k3

2π2

[

A2
1(t)k

−2ν2 +

[

B1(t)k
2(ν2−ν1)

∞
∑

n=0

[α1 x(k, t)]
2n(ν2−ν1)

(v1 + 1)

+ B2(t)k
2(ν1−ν2)

∞
∑

n=0

[α2 x(k, t)]
2n(ν1−ν2)

(v2 + 1)

]2


 , (28)

Pψ(k, t)|IR =
k3

2π2
(ξkξ

∗
k) ≃

1

4π(p− 1)
Γ

(

p+ 1

2(p− 1)

)2 [

2(p− 1)β

π

]
p+1
p−1

k3−
p+1
p−1 , (29)
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where

B1(t) =
β(3p− 2)φ0Γ(ν2 + 1)Γ

(

p+1
2(p−1)

)

[2β(p− 1)]
p+1

2(p−1)
+ν2−ν1

2π
p+1

2(p−1)Γ(ν1 + 1) [(ν2 − ν1)(p− 1)]
t−(ν1+1)(1−p), (30)

B2(t) =
β(3p− 2)φ0Γ(ν2)Γ

(

p+1
2(p−1)

)

[2β(p− 1)]
p+1

2(p−1)
+2ν2

2π
p+1

2(p−1)Γ(ν2 + 1) [(ν2 − ν1)(p− 1)]
t−(2ν2+1)(1−p), (31)

A = −BΓ(ν2) t
ν2(p−1)+(1−3p)/2

π [2β(p− 1)]
, (32)

α1 = −Γ(ν2 + 1) Γ(ν1)

Γ(ν2) Γ(ν1 + 1)
, (33)

α2 = −Γ(ν1 + 1) Γ(ν2)

Γ(ν2) Γ(ν2 + 1)
, (34)

v1 =
5p− 3 + 2ν1(p− 1)

4(ν2 − ν1)(1− p)
, (35)

v2 =
5p− 3 + 2ν2(p− 1)

4(ν2 − ν1)(p− 1)
. (36)

Notice that for p → ∞ Pψ(k, t)|IR goes as k2. An interesting result for Pϕ(k, t) is that it

depends on 3p < m2 = 4(6πGφ2
0 − 1) < p(2p− 1), and hence it is required that p > 2. On

the other hand, for sufficiently large t the first term in (28) is dominant, so that

Pϕ(k, t)|IR|t→∞ ∼ k3−2ν2 ,

which approaches to a scale invariant spectrum for p→ ∞.

V. FINAL REMMARKS

In this work we have studied an example of the formalism developed in [14], which is an

extension of the well-known formalism for gauge-invariant scalar metric fluctuations during

inflation. The formalism here examined is valid also for fluctuations with large amplitude,

but the equations are very difficult to be solved due to the non-linearity of the Einstein

and Lagrange equations. In the proposal here studied vector and tensor perturbations of

the metric are neglected and the fluid is considered as irrotacional. Of course, the analysis

is only valid in a cosmological context on super Hubble scales when the universe expands

adiabatically. We have confirmated that, for small fluctuations the linear approximations

give us the same dynamics that for the standard method. In this work we have illustrated

one example where the universe grows with a scale factor a(t) ∼ tp, (with p≫ 1). We found

9



that, for very large p, at the end of inflation the spectrum Pϕ(k, t)|IR|t→∞ becomes scale

invariant on cosmological scales, but Pψ(k, t)|IR|t→∞ goes as k2. However, at the beginning

of inflation it is not true, because the spectrum of the ϕ-fluctuations is altered by the modes

of metric fluctuations ξ̃k(t). Furthermore 〈E|ψ|E〉 ∼ 1/a, so that we conclude that at the

end of inflation (and later), next order effects due to metric fluctuations on cosmological

scales should be negligible.
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