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Abstract. In prior work, a series of two-point boundary value problems have
been investigated for a steady state two-ion electro-diffusion model system in

which the sum of the valencies ν+ and ν− is zero. In that case, reduction

is obtained to the canonical Painlevé II equation for the scaled electric field.
Here, a physically important Neumann boundary value problem in the generic

case when ν+ +ν− 6= 0 is investigated. The problem is novel in that the model

equation for the electric field involves yet to be determined boundary values of
the solution. A reduction of the Neumann boundary value problem in terms of

elliptic functions is obtained for privileged valency ratios. A topological index

argument is used to establish the existence of a solution in the general case,
under the assumption ν+ + ν− ≤ 0.

1. Introduction. The theory of electro-diffusion originated in the liquid-junction
theory of Nernst [1] and Planck [2]. It provides a macroscopic description of the
transmission of charged particles through material barriers and has applications
notably, in the modeling of biological membranes [3, 4] and in electrochemistry [5].

Here, it proves convenient to partition the ions into m classes characterized by
the same electric charge qj = q0νj where q0 is the unit of charge and νj is a non-
zero integral signed valency. The m-ion electro-diffusion model in steady régimes
then reduces to the Nernst-Planck equations [6].

dni
dx

= νinip− ci, νi 6= 0, i = 1, · · · ,m (1)
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coupled to Gauss’ equation

dp

dx
=

m∑
i=1

νini . (2)

Here,

ni =
Ni
N0

, (3)

and

p =

[
q0λ̄

κ T

]
E , (4)

where Ni are the ion densities, N0 is an arbitrary unit of ionic density, E is the elec-
tric field, T the temperature, κ the Boltzmann constant, and λ̄ = [ εκT/(4πq20N0) ]1/2

is the Debye length where ε is the dielectric constant. The ci are arbitrary constants
of integration. The Painlevé analysis of the system (1)−(2) has recently been un-
dertaken in [7].

Attention is restricted to the two-ion case and, in the notation of [8], we set
n1 = n+, n2 = n−, ν1 = ν+, ν2 = ν−, c1 = c+, c2 = c− whence (1)−(2) yield

n′+ = ν+n+p− c+ , (5)

n′− = ν−n−p− c− , (6)

p′ = ν+n+ + ν−n− . (7)

The two-ion system (5)−(7) in the special case when ν+ + ν− = 0 was investigated
by Grafov and Chernenko [9] and independently by Bass [10]. An analogous system
was subsequently derived independently in the context of semi-conductor theory by
Kudryashov [11]. In both cases, reduction to the Painlevé II equation was obtained.
This integrable connection has been exploited in [12] and [13] to apply a Bäcklund
transformation sequentially to generate solutions of the Bass system.

Addition of (5) and (6) together with use of (7) yields, on integration,

n+ + n− =
p2

2
− cx− k , (8)

where c = c+ + c− and k is an arbitrary constant of integration. Elimination of n+
between (7) and (8) then gives

p′ = n−(ν− − ν+) + ν+
p2

2
− cν+x− ν+k

whence

p′′ = (ν− − ν+)(ν−n−p− c−) + ν+pp
′ − cν+

= ν−p

[
p′ − ν+

p2

2
+ c ν+x+ kν+

]
− c−[ν− − ν+] + ν+pp

′ − cν+

so that

p′′ = (ν+ + ν−)pp′ −
(ν+ν−

2

)
p3 + (cx+ k)ν+ν−p− (ν+c+ + ν−c−) . (9)

The condition that there is no net current in the junction yields [8]

ν+D+c+ + ν−D−c− = 0 (10)

where D± = u±kT so that

ν+u+c+ + ν−u−c− = 0 (11)
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whence

(ν+u+c+ + ν−u−c−)(ν+ − ν−) = 0 . (12)

Accordingly,

ν+c+ + ν−c− =
(D+ −D−)cν+ν−
ν+D+ − ν−D−

(13)

and (9) becomes

p′′ − (ν+ + ν−)pp′ + ν+ν−

[
p3

2
− (cx+ k)p

]
+

(D+ −D−) c ν+ν−
ν+D+ − ν−D−

= 0 . (14)

If the junction has boundaries at x = 0 and x = δ then, on introduction of the
scalings

x = δx∗, p =
y

δ
√−ν+ν−

, (15)

(14) yields

y′′ =

(
ν+ + ν−√−ν+ν−

)
yy′ +

y3

2
+ δ2ν+ν−(cδx∗ + k)y − cδ3Dν+ν− (16)

where ′ now denotes the derivative with respect to x∗ and

c = n(0)− n(1) +
1

2δ2ν+ν−
[ y2(0)− y2(1) ] , (17)

k =
y2(0)

2δ2ν+ν−
− n(0) , (18)

D =

√−ν+ν−(D+ −D−)

ν+D+ − ν−D−
, ν+ν− < 0 . (19)

It is observed that (14) and (16) incorporate via c and k the boundary values
n(0) = n+(0) + n−(0), n(1) = n+(1) + n−(1), together with y(0) and y(1). It is
anticipated that the interface concentrations n+(0), n−(0), n+(1), n−(1) be known
(Bass [10]). However, the boundary terms y(0) and y(1) dependent on the yet to
be determined solution y remain.

Insertion of (17), (18) into (16) yields

y′′ =

(
ν+ + ν−√−ν+ν−

)
yy′ +

y3

2
+ δ

[
δ2ν+ν−(n(0)− n(1)) +

1

2
(y2(0)− y2(1))

]
x∗y

−
[
y2(0)

2
+ δ2ν+ν−n(0)

]
y − δ

[
δ2ν+ν−(n(0)− n(1)) +

1

2
(y2(0)− y2(1))

]
D ,

that is, if we set λ = −δ2ν+ν−n(0), l = [n(1)− n(0)]/n(0),

y′′ =

(
ν+ + ν−√−ν+ν−

)
yy′ +

y3

2
+ δ

[
λl +

1

2
(y2(0)− y2(1))

]
x∗y

−
[
y2(0)

2
− λ
]
y − δ

[
λl +

1

2
(y2(0)− y2(1))

]
D (20)

The involvement of the boundary terms y(0) and y(1) in (20) poses a formidable
impediment to its analysis and will be addressed in the sequal. It is anticipated that
analogous procedures to those presented will be applicable mutatis mutandis to the
corresponding (one-point) boundary value problem on the semi-infinite domain.



2302 PABLO AMSTER, MAN KAM KWONG AND COLIN ROGERS

2. Reduction to elliptic integral formulation for privileged valency ratios.
Here, we consider the Neumann boundary value problem

p′′−(ν++ν−)pp′+ν+ν−

[
p3

2
− (cx+ k)p

]
+

(D+ −D−)(c+ + c−)ν+ν−
ν+D+ − ν−D−

= 0 , (21)

p′(0) = p′(1) = 0 (22)

on the region [0,1] It is noted that the boundary conditions (22) imply, by virtue of
Gauss’ equation (7) that

ν+n+(0) + ν−n−(0) = 0 , (23)

ν+n+(1) + ν−n−(1) = 0 , (24)

The latter conditions correspond to charge neutrality at the boundaries and can be
imposed at the outset. These imply the necessary requirements

n+(0)

n−(0)
= −ν−

ν+
=

n+(1)

n−(1)
(25)

on the interface concentration data. In particular, if, as in [8, 10, 11], ν+ +ν− = 0 ,
it is seen that

n+(0)

n−(0)
=

n+(1)

n−(1)
= 1 (26)

Here, we proceed with the generic case

ν+ + ν− 6= 0

On introduction of the ansatz

p =
a w′

w
(27)

where (
w′

w

)2

= A w−2 +B w−1 + C +D w + E w2 (28)

into the model equation (21) for the scaled electric field p, it is seen that,

c+ + c− = 0 , ν+c+ + v−c− = 0

so that

c+ = c− = 0 (ν+ 6= ν−) † (29)

whence c = 0. Moreover,

C =
2k

a2
(30)

and

I A(aν+ + 2)(aν− + 2) = 0 (31)

II B(aν+ + 1)(aν− + 1) = 0 (32)

III D(aν+ − 1)(aν− − 1) = 0 (33)

IV E(aν+ − 2)(aν− − 2) = 0 . (34)

†It is noted that the corresponding arbitrary constants in the 3-ion case are required to be zero
in Bass [14].
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The Specializations with ν+ν− < 0, ν+ + ν− 6= 0
These are

A 6= 0 ν+ = −2

a
or ν− = −2

a
⇓ ⇓ , B = E = 0

D 6= 0 ν− =
1

a
or ν+ =

1

a

(35)

or

B 6= 0 ν+ = −1

a
or ν− = −1

a
⇓ ⇓ , A = D = 0

E 6= 0 ν− =
2

a
or ν+ =

2

a

(36)

In the two canonical cases with valencies

ν+ =
1

a
, ν− = −2

a
(37)

ν+ =
2

a
, ν− = −1

a
(38)

the electric field equation becomes, in turn

a2p′′ + app′ − p3 + 2k p = 0 , (39)

or
a2p′′ − app′ − p3 + 2k p = 0 (40)

with general solution (27) where w is given in terms of elliptic integrals via

w′ = ±
√
A+ 2kw2/a2 +Dw3 (41)

or
w′ = ±

√
Bw + 2kw2/a2 + Ew4 (42)

respectively. The positive sign is taken in the sequel.

Case I
Here, we proceed with the case (37) with ν+ : ν− = 1 : −2 as obtained via

Painlevé analysis in [7]. Insertion of (27) into (5) and (6) with c+ = c− = 0 on
integration yields

n+ = k+w
aν+ = k+w (43)

n− = k−w
aν− = k−w

−2 (44)

where the Gauss equation (7) shows that

k+ =
aD

2ν+
=
a2D

2
,

k− = −aA
ν−

=
a2A

2
,

whence, the concentrations are given by

n+ =
a2Dw

2 ,
(45)

n− =
a2A

2w2
. (46)

The Neumann boundary conditions (22) require that

−2Aw(0)−2 +Dw(0) = 0 , −2Aw(1)−2 +Dw(1) = 0 ,
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so that

w(0) = w(1) =

(
2A

D

)1/3

. (47)

Moreover,

n+(0) =
a2D w(0)

2
=
a2D

2

(
2A

D

)1/3

= n+(1) ,

n−(0) =
a2A w−2(0)

2
=
a2A

2

(
2A

D

)−2/3
= n−(1) ,

so that

AD2 =
4n3+(0)

a6
=

32n3−(0)

a6
. (48)

If we denote

n+|x=0 = n+|x=1 = n+ (49)

n−|x=0 = n−|x=0 = n− (50)

so that

n+ =
n+w

w(0)
, n− = n−

(
w

w(0)

)−2
(51)

and

p =
√

2(n+w/w(0) + n−(w/w(0))−2 + k) (52)

so that

p|x=0 =
√

2(n+ + n− + k) = p|x=1 . (53)

It is noted that the requirement (25) shows that the constants n+ and n− are related
by

n+

n−
= −ν−

ν+
= 2 . (54)

In the above, w is given via

w′ = ±1

a

√
2

(
n+w3

w(0)
+ kw2 + n−w2(0)

)
(55)

= ±
√
A+ 2kw2/a2 +Dw3

where it is required that the constants A, D and k be specified.

Case II
Here, we consider the case (38) with ν+ : ν− = 2 : −1 so that, in relations (43),

(44) for the concentrations,

k+ =
aE

ν+
=
a2E

2
, (56)

k− = − aB
2ν−

=
a2B

2
, (57)

whence

n+ =
a2Ew2

2
, (58)

n− =
a2B

2w
. (59)
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The Neumann boundary conditions (43) require that

w(0) = w(1) = −
(
B

2E

)1/3

(60)

be applied to

w′ =

√
Bw +

2kw2

a2
+ Ew4 . (61)

Illustration
Here, we set

w(0) = w(1) = 1 (62)

together with A = 1 so that, from (47), D = 2. The corresponding class of solutions
of the two-ion system is then given by

n+ = a2w , n− =
a2w−2

2
, (63)

p = a

√
w−2 +

2k

a2
+ 2w (64)

where

w′ =

√
1 +

2kw2

a2
+ 2w3 . (65)

In the sequel, we apply an exact shooting method to a Neumann boundary
value problem for the nonlinear equation (20) when reduction to an elliptic integral
formalism is not available.

3. The case ν+ + ν− ≤ 0. Here, we consider (20) under Neumann conditions,
namely the problem

y′′ =

(
ν+ + ν−√−ν+ν−

)
yy′ +

y3

2
+ δ

[
λl +

1

2
(y2(0)− y2(1))

]
xy

−
[
y2(0)

2
− λ
]
y − δ

[
λl +

1

2
(y2(0)− y2(1))

]
D (66)

y′(0) = y′(1) = 0, (67)

without the assumption of any privileged valency ratio, except requiring ν++ν− ≤ 0.
We shall show the existence of solutions. It proves convenient to set

C :=
ν+ + ν−√−ν+ν−

.

and it is noted that λ = −δ2ν+ν−n(0) > 0.
The main result of this section reads as follows:

Theorem 3.1. Assume that ν++ν− ≤ 0, δ ≤ 1 and l > 0. Then problem (66)-(67)
admits at least one solution, provided that 0 < D < 1 + 1

l .

The above extends our previous result proved in [15] for the case ν+ + ν− = 0
and δ = 1.

The proof will follow from a series of lemmas.
First, we observe that, on searching for positive solutions, if we set z = y/γ,

where γ = y(0), then (66)-(67) is equivalent to
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z′′(x)− Cγz(x)z′(x) =

[
λ− γ2

2
(1− z(x)2) + γαx

]
z(x)− αD, (68)

with conditions

z(0) = 1, z′(0) = z′(1) = 0, (69)

where

α =
δ

γ

(
lλ+

γ2

2
(1− z(1)2)

)
. (70)

In the original problem, the parameter l together with the other parameters, λ,
D, and δ, are given, and we seek a solution y of (66) which satisfies the boundary
conditions (67). As noted before, the fact that the differential equation (66) contains
the unknown boundary values y(0) and y(1) makes the problem unconventional and
cannot be adequately solved by traditional methods. To circumvent this difficulty,
we consider the new problem (68) and (69). Here the parameter l is no longer given
beforehand. Instead, we prescribe the parameters α and γ and proceed to solve
the initial value problem (68) with the first two conditions in (69). By adjusting α
appropriately, we can coerce the third condition in (69) to hold also, and then we
recover l from the solution by solving (70). If the calculated l coincides with the
given value of the parameter, we have our desired solution.

Thus, it suffices to find a pair (α, γ) such that the corresponding solution of the
initial value problem satisfies z′(1) = 0 and

l =
2αγ − δγ2(1− z(1)2)

2δλ
.

However, it is observed that an impediment arises on the fact that z may or may
not be ‘properly’ defined throughout the entire interval [0, 1]. One situation is that
z(t) can blow up to infinity before t reaches the endpoint 1 of the interval. Another
possibility is that z(t) can hit the t-axis somewhere inside [0, 1] and then becomes
negative subsequently. Let us define an ‘endpoint’ σ ∈ (0, 1] of the solution z in the
following way:

Case 1: If 0 < z < 2 on [0, t0) ⊂ [0, 1] and z(t0) = 0, then σ := t0.

Case 2: If 0 < z < 2 on [0, t0) ⊂ [0, 1] and z(t0) = 2, then σ := t0.
Case 3: If 0 < z < 2 on [0, 1] then σ := 1.

Thus, we are able to define a two-dimensional shooting operator T given by

T (α, γ) := (z′(σ), L),

where L is given by

L = L(α, γ) :=
2αγ − δγ2(1− z(σ)2)

2δλ
. (71)

Although physical considerations mean that we are interested only in those (α, γ)
in the (open) first quadrant, we note parenthetically that T is defined also for γ = 0.
We seek a pair (α, γ) such that T (α, γ) = (0, l): in that case it shall be seen that
σ = 1 and γ > 0, and hence the corresponding z is a positive solution of (68)-(69)
with α as in (70).

We shall make use of two comparison lemmas. The first is well known (see, for
example, [16]) and the second is specific to our equation.
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Lemma 3.2. Let Z,W : [0, a]→ R satisfy

Z ′′(x) ≥ F (x, Z(x))

and
W ′′(x) = F (x,W (x))

for x ∈ [0, a], where F is continuous and non-decreasing in the second variable for
each fixed x ∈ [0, a]. If, in addition, it is assumed that

Z(0) ≥W (0), Z ′(0) ≥W ′(0),

then
Z(x) ≥W (x), Z ′(x) ≥W ′(x)

for all x ∈ [0, a].

Lemma 3.3. Let z be a solution of (68) with α > 0, and either γ > 0, or γ = 0
but λ 6= αD. Assume that 0 ≤ z(x0) ≤ z(x1) and z′′(x0) ≥ Cγz(x0)z′(x0) for some
x0 < x1.

Then
z′′(x0)− Cγz(x0)z′(x0) < z′′(x1)− Cγz(x1)z′(x1). (72)

Proof. First assume that γ > 0. As z′′(x0) ≥ Cγz(x0)z′(x0), it follows that[
λ− γ2

2
(1− z(x0)2) + γαx0

]
z(x0) ≥ αD > 0.

This implies that the righthand side term of (68) has positive z-derivative for z ≥
z(x0). As it is also an increasing function of x, the result obviously follows.

When γ = 0 and λ 6= αD, (68) becomes z′′ = λz − αD. A direct computation
gives

z(x) =
αD

λ
+

1

2

(
1− αD

λ

)(
e
√
λx + e−

√
λx
)
. (73)

The conclusion of the Lemma can then be verified directly.

Note that if γ = 0, and λ = αD, then (68) has the constant solution z ≡ 1, and
(72) does not hold.

Lemma 2 allows us to establish two fundamental facts about the shooting oper-
ator T . These are set down below:

Lemma 3.4. T is continuous. Moreover, if T (α, γ) = (0, l) with γ > 0 then y := γz
is a solution of the original problem (66)-(67).

Proof. We start by proving the following claim: if z′(σ) = 0, then 0 < z < 2 on
[0, 1].

In other words, z′(σ) = 0 precludes Cases 1 and 2 and we must have σ = 1.
Suppose first that Case 1 holds. Then σ is the global minimum of z on [0, σ],

which implies z′′(σ) ≥ 0. But from (68) we have z′′(σ) = −αD < 0, a contradiction.
Next, suppose that Case 2 holds. Let x0 be the global minimum of z in [0, σ].

Then 0 < z(x0) < z(σ) and z′′(x0) ≥ 0. As z′(x0) = z′(σ) = 0, from Lemma 3.3,
we obtain z′′(σ) > 0, a contradiction, except when γ = 0 and λ = αD. For the
exceptional case, the claim is trivially true.

Continuity of T now follows from the standard continuous dependence result for
ordinary differential equations.

Finally, if T (α, γ) = (0, l) then from the above claim, σ = 1 and the equality
L = l implies that α satisfies (70), and y is therefore a solution of the original
problem.
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In order to prove the existence of a pair (α, γ) such that T (α, γ) = (0, l), we shall
find a bounded domain C ⊂ (0,+∞)× [0,+∞) such that the topological index I of
the curve T ◦ ∂C, which is the image of the boundary of C under T , satisfies

I (T ◦ ∂C, (0, l)) 6= 0.

From the standard topological index theory, this implies that the equation T = (0, l)
has at least one solution in C. More specifically, C shall be defined as the rectangle
PQRS given by the vertices

S :=

(
λ

D
, γ∗
)
, R := (α∗, γ∗)

P :=

(
λ

D
, 0

)
, Q := (α∗, 0)

where α∗ and γ∗ are suitable constants to be chosen later.

Lemma 3.5. Let γ > 0. If z attains a local minimum at x0 < σ, then z′(x) > 0
for x > x0 (in particular, z′(σ) > 0). If furthermore αD ≥ λ, then L > 0.

Proof. If z′(x1) = 0 for some x1 > x0, then either z(x1) < z(x0) or else from Lemma
3.3 we obtain z′′(x1) > 0 and x1 is a local minimum. In both cases, z attains a
local maximum at some x2 ∈ (x0, x1) with z(x2) ≥ z(x0), and again we obtain
z′′(x2) > 0, a contradiction. Thus z′ does not vanish after x0, and then z′(x) > 0
for x > x0. It is observed that, in particular, Case 1 cannot hold.

Note that If Case 2 holds, or if Case 3 holds and z(1) ≥ 1, then (from the
definition of L) L > 0, regardless of whether αD ≥ λ. or not. For the remaining
case, when σ = 1 and z(1) < 1, we have

0 < z′′(1)− Cγz(1)z′(1)

= z(1)

(
λ(1 + L) + γα

(
1− 1

δ

))
− αD

< λ(1 + L)− λ.
The first inequality follows from Lemma 3.3, the equality in the second line from
the differential equation (68) and the definition (71), and the inequality in the third
line from the assumptions δ ≤ 1, z(1) < 1, and αD ≥ λ. Hence, we have L > 0.

The following lemmas provide a picture of the image of ∂C.

Lemma 3.6. The segment PQ is mapped one-to-one onto the segment P ′Q′, where
P ′ = (0, 0) and Q′ = (−r, 0) for some r > 0.

Proof. Along the segment PQ, γ = 0 and z(x) is given by (73). Hence, T (P ) =
(0, 0). The injectiveness property of T on PQ is actually not needed in the proof
of Theorem 1. To prove it, we have to consider two cases. As we increase α from
λ/D, initially we have Case 3, in which σ = 1. We can then use (73) to get

∂

∂α
z′(1) =

−D
2
√
λ

(
e
√
λ − e−

√
λ
)
< 0,

to see that z′(σ) is decreasing in α. However, after α reaches a critical value α0,
i.e. for α > α0, Case 1 prevails. In this case, we multiply the differential equation
z′′ = λz − αD by z′ and integrate from x = 0 to x = σ to obtain

z′2(σ)

2
=
λz2(σ)

2
− αDz(σ)− λ

2
+ αD = −λ

2
+ αD.
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Hence, z′2(σ) is an increasing function of α. However, z′(σ) is negative. Thus z′(σ)
is a decreasing function of α.

The next lemma shows that, except for the point P , the image of the segment
PS lies in the first quadrant:

Lemma 3.7. If α = λ/D and γ > 0 then z′(σ) > 0 and L > 0.

Proof. If z is initially increasing, then 0 is a local minimum and Lemma 3.5 applies.
If z is initially decreasing, then as C ≤ 0 and z′ ≤ 0 in [0, ε] for some ε > 0, we

obtain:

z′′ ≥
[
λ− γ2

2
(1− z2)

]
z − λ

on [0, ε]. Applying Lemma 3.2 with W ≡ 1, we deduce that z ≥ 1 on [0, ε], a
contradiction.

Finally, if neither of the previous situations occurs, z would have more than one
local minimum, and this contradicts Lemma 3.5.

The remaining two lemmas concern a convenient choice of α∗ and γ∗.

Lemma 3.8. Let α > λ (1 + l) /D and γ ≥ 0. If z′(σ) = 0, then L > l.

Proof. As z′(σ) = 0, we are in Case 3 and it is readily seen that γ > 0. From
Lemma 3.5, z cannot have a local minimum in [0, 1). Hence the global minimum
of z is attained at the endpoint σ = 1, and we deduce that z′′(1) ≥ 0 and z is
nonincreasing. From (68), we also deduce that z 6≡ 1, then z(1) < 1 and

0 ≤ z′′(1)

= z(1)

(
λ(1 + L) + γα

(
1− 1

δ

))
− αD

< λ(1 + L)− λ(1 + l),

which implies L > l. Again, the equality in the second line follows from (68) and
(71).

In view of the preceding result, we fix a constant α∗ such that

α∗ >
λ (1 + l)

D
, (74)

and proceed with the last lemma.

Lemma 3.9. If γ∗ is large enough, then the image of the segment RS lies on the
first quadrant.

Proof. We already know that T (S) lies on the first quadrant, so we may assume
that α > λ/D. Then z′′ < 0 in a neighborhood of 0 and z is initially decreasing. If
z attains a local minimum at some point x0 < σ, then Lemma 3.5 applies. Thus, it
suffices to prove that z cannot be strictly decreasing all the time.

Suppose, on the contrary, that z decreases strictly on [0, σ], then the term
−Cγz(x)z′(x) is nonnegative. Also, as z ≤ 1, we have that (1 − z2)z ≤ 2(1 − z),
and hence from (68) we obtain:

z′′ ≥ −γ∗2(1− z) + (λ+ γ∗αx) z − αD.
Next, fix a constant m such that α∗D/(α∗ + λ) < m < 1. This can be done since
D < 1 + 1

l , and the value of α∗ can be modified if necessary, as far as it satisfies
(74).
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Finally, define W as the solution of the linear problem

W ′′(x) = −γ∗2(1−W ) + (λ+ γ∗αx)m− αD

W (0) = 1, W ′(0) = 0.

Direct computation shows that

W (x) = 1 + C1e
γ∗x + C2e

−γ∗x −R(x),

where

C1 =
(λ+ α)m− αD

2γ∗2
, C2 =

(λ− α)m− αD
2γ∗2

and

R(x) =
1

γ∗

(
αmx+

λm− αD
γ∗

)
.

As α ≤ α∗, it follows from the choice of m that C1 > 0, and for γ∗ large enough we
also have that |C2e

−γ∗x−R(x)| ≤ 1−m for every x ∈ [0, 1], which, in turn, implies
W > m on [0, 1]. Now, suppose that z(x0) = m, then

z′′ ≥ −γ∗2(1− z) + (λ+ γ∗αx)m− αD

on [0, x0]. From Lemma 3.2, we deduce that z ≥W > m on [0, x0], a contradiction.
Thus, z > m and the previous inequality holds on [0, 1]. Applying Lemma 3.2
again, it follows that z ≥ W on [0, 1]. Since C1e

γ∗ → +∞ as γ∗ → +∞, for γ∗

large enough, we get W (1) > 1, and this contradicts the fact that z ≤ 1.

Proof of Theorem 3.1. From the previous lemmas we conclude that the index
of the curve T ◦ ∂C relative to the point (0, l) is −1, and hence T (α, γ) = (0, l) for
some (α, γ) ∈ C. �
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Figure 1. Image of PQRS under the mapping T

To help us to visualize the proof, we plot the image P ′Q′R′S′ of the rectangle
PQRS under the mapping T in Figure 1, for a special case in which the physical
parameters have been chosen to be λ = 1, D = 1, and δ = 1, and the constants
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α∗ and γ∗ in the definition of the rectangle PQRS have been chosen to be 6 and 4
respectively. The numerical experiment is done with the help of MATLAB.

The two distinctive kinks, one on the curve Q′R′ and the other on R′S′ represent
the locations where there is a switch of case of the nature of the endpoint σ (between
the three cases listed before Lemma 1). Let O denote the origin and A where the
curve Q′R′ intersects the L-axis. Then the topological index of P ′Q′R′S′ is 1 for
every point that lies on the line segment OA. Hence, the original Neumann problem
has a solution for these values of L. By increasing α∗ and γ∗, more values of L will
be covered (Lemmas 7 and 8).

If we reduce γ∗ to 3, the image of the side RS becomes R′′S′′. As shown in
the figure, it does not lie entire in the first quadrant. This attests the fact that
Lemma 8 only holds if γ∗ is sufficiently large.
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system, J. Phys. A, 40 (2007), F1031–F1040.
[8] H. B. Thompson, Existence for two-point boundary value problems in two-ion electrodiffusion,

J. Math. Anal. Appl, 184 (1994), 82–94.
[9] B. M. Grafov and A. A. Chernenko, Theory of the passage of a constant current through a

solution of a binary electrolyte, Dokl. Akad. Nauk. SSR, 146 (1962), 135–138.

[10] L. Bass, Electrical structures of interfaces in steady electrolysis, Trans. Faraday Soc., 60
(1964), 1655–1663.
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