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LIMITS FOR MONGE-KANTOROVICH MASS
TRANSPORT PROBLEMS.

JESUS GARCIA-AZORERO, JUAN J. MANFREDI, IRENEO PERAL AND
JULIO D. ROSSI

Abstract. In this paper we study the limit of Monge-Kantorovich
mass transfer problems when the involved measures are supported
in a small strip near the boundary of a bounded smooth domain,
Ω. Given two absolutely continuos measures (with respect to the
surface measure) supported on the boundary ∂Ω, by performing a
suitable extension of the measures to a strip of width ε near the
boundary of the domain Ω we consider the mass transfer problem
for the extensions. Then we study the limit as ε goes to zero of
the Kantorovich potentials for the extensions and obtain that it
coincides with a solution of the original mass transfer problem.
Moreover we look for the possible approximations of these prob-
lems by solutions to equations involving the p−Laplacian for large
values of p.

1. Introduction.

The main goal of this article is to obtain a solution to the Monge-
Kantorovich mass transport problem for some measures supported on
surfaces, as a limit when ε→ 0 of solutions to usual solid mass trans-
port, the masses being supported on small strips of width ε. We will
also analyze approximations involving the p−Laplacian of these trans-
port problems and its viscosity limits.

First, let us briefly present what are the main features of the problem
under consideration. Assume that we have a bounded domain Ω ⊂ RN

with smooth boundary ∂Ω and a continuous funtion g : ∂Ω 7→ R with∫
∂Ω

g dσ =

∫
∂Ω∩{g>0}

g+ dσ −
∫

∂Ω∩{g<0}
g− dσ = 0,

where dσ denotes the area measure on ∂Ω. Hence, we have two subsets
Γ+ = ∂Ω ∩ {g > 0}, Γ− = ∂Ω ∩ {g < 0} and two positive functions

Key words and phrases. Mass transport, quasilinear elliptic equations, Neumann
boundary conditions.
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(densities) g+ and g− such that∫
Γ+

g+ dσ =

∫
Γ−

g− dσ.

Our aim is to solve the following Monge-Kantorovich mass transfer
problem: among all mappings T̃ : Γ+ → Γ− that preserve the measures
given by the two densities choose one that minimizes the transport cost

C(T̃ ) =

∫
Γ+

|x− T̃ (x)|g+(x) dσ.

Applying the Kantorovich optimality principle to the mass trans-
fer problem for the measures g+HN−1x ∂Ω and g−HN−1x ∂Ω that are
concentrated on ∂Ω we obtain the maximization problem

(1.1) max

{∫
∂Ω

wg dσ : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖∞ ≤ 1

}
.

The maximizers of (1.1) are maximal Kantorovich potentials, see [1]
and [15]. Note that one usually defines Kantorovich potentials as max-
imizers of (1.1) without imposing that

∫
Ω
w = 0. Here we use this

normalization to gain compactness.

As first noticed in [8] (see also [6]), a natural approach to the max-
imization problem (1.1) is to consider limits of optimization problems
involving the p-Laplacian. That is, we consider up,0 the solution of the
maximization problem

(1.2) max

{∫
∂Ω

wg dσ : w ∈ W 1,p(Ω),

∫
Ω

w = 0, ‖Dw‖Lp(Ω) ≤ 1

}
.

In [9] the limit as p → ∞ of the family up,0 is studied. It is proved
there that a uniform limit of a subsequence {upi,0}, pi → ∞, v∞, is a
solution to (1.1). Since we are interested in large values of p we will
assume throughout this paper that p > N .

These variational problems can be studied as a singular limit of mass
transport problems where the measures are supported in small strips
near the boundary. In this sense we get a natural Neumann problem
for the p-Laplacian while in the paper [8] the relevant problem is of
Dirichlet type.

More precisely, consider the subset of Ω,

ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} .
Note that this set has measure |ωδ| ∼ δHN−1(Ω) for small values of δ
(here HN−1(Ω) stands for the N−1 dimensional measure of ∂Ω). Then
for sufficiently small s ≥ 0 we can define the parallel interior boundary
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Γs = {z − sν(z), z ∈ ∂Ω} where ν(z) denotes the outwards normal
unit at z ∈ ∂Ω. Note that Γ0 = ∂Ω. Then we can also look at the set
ωδ as the neighborhood of Γ0 defined by

ωδ = {y = z − sν(z), z ∈ ∂Ω, s ∈ (0, δ)} =
⋃

0<s<δ

Γs

for sufficiently small δ, say 0 < δ < δ0. We also denote Ωs = {x ∈ Ω :
dist(x, ∂Ω) > s} and for s small we have that ∂Ωs = Γs.

Let us consider the transport problem for a suitable extension of g.
To define this extension, as we have mentioned, let us denote by dσ and
dσs the surface measures on the sets ∂Ω and Γs respectively. Given a
function φ defined on Ω̄, and given y ∈ Γs (with s small) , there exists
z ∈ ∂Ω such that y = z − sν(z). Hence, we can change variables:∫

Γs

φ(y)dσs =

∫
∂Ω

φ(z − sν(z))G(s, z) dσ

where G(s, z) depends on Ω (more precisely, it depends on the surface
measures dσ and dσs), and by the regularity of ∂Ω, G(s, z) → 1 as
s→ 0 uniformly for z ∈ ∂Ω.

Using these ideas, we define the following extension of g in Ω. Con-
sider η : [0,∞) → [0, 1] a C∞ function such that η(s) = 1 if 0 ≤ s ≤ 1

2
,

0 < η(s) < 1 when 1
2
< s < 1, η(s) = 0 if s ≥ 1, and

∫∞
0
η(s) ds = A.

Defining ηε(s) = 1
Aε
η

(
s
ε

)
, we get

∫∞
0
ηε(s) ds = 1. For ε < δ0 consider

Γs and let

gε(y) = ηε(s)
g(z)

G(s, z)
, y = z − sν(z), for 0 ≤ s ≤ ε,

extended as gε(y) = 0 in the rest of Ω; that is, in Ω \ ωε.

We have gε ∈ C(Ω). Moreover,∫
Ω

gε(x) dx =

∫ ε

0

∫
Γs

gε(y) dσs ds

=

∫ ε

0

∫
∂Ω

gε(z − sν(z))G(s, z) dσ ds

=

∫ ε

0

ηε(s)

∫
∂Ω

g(z) dσ ds = 0.

Associated to this extension we could consider the following two
variational problems. First, the maximization problem in W 1,p(Ω),

(1.3) max

{∫
ωε

wgε : w ∈ W 1,p(Ω),

∫
Ω

w = 0, ‖Dw‖Lp(Ω) ≤ 1

}
,
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and the maximization problem in W 1,∞(Ω),

(1.4) max

{∫
ωε

wgε : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}
.

We call up,ε a solution to (1.3) and u∞,ε a solution to (1.4).

Remark 1.1. Notice that the extremal functions up,ε, up,0, u∞,ε, u∞,0

satisfy

‖Dup,ε‖Lp(Ω) = ‖Dup,0‖Lp(Ω) = ‖Du∞,ε‖L∞(Ω) = ‖Du∞,0‖L∞(Ω) = 1,

unless g ≡ 0.

Our first result says that we can take the limits as ε→ 0 and p→∞
in these variational problems. With the above notations we have the
following commutative diagram

(1.5)

u∞,ε −→ u∞,0

p→∞
x x
up,ε −→ up,0

ε→ 0

This diagram can be understood in two ways, either taking into
account the variational properties satisfied by the functions, or consid-
ering the corresponding PDEs that the functions satisfy.

From the variational viewpoint, we can state our first result:

Theorem 1. Diagram (1.5) is commutative in the following sense:

(1) Maximizers of (1.3), up,ε, converge along subsequences uni-
formly in Ω to up,0 a maximizer of (1.2) as ε→ 0.

(2) Maximizers of (1.3), up,ε, converge along subsequences uni-
formly in Ω to u∞,ε a maximizer of (1.4) as p→∞.

(3) Maximizers of (1.4), u∞,ε, converge along subsequences uni-
formly in Ω to u∞,0 a maximizer of (1.1) as ε→ 0.

(4) Maximizers of (1.2), up,0, converge along subsequences uni-
formly in Ω to u∞,0 a maximizer of (1.1) as p→∞.

We turn now our attention to the PDE verified by the limits in the
viscosity sense (see Section 3 for the precise definition) or in the weak
sense.
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When p → ∞ we find the ∞-Laplacian, a well known nonlinear
operator, given by

∆∞u =
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi

,

see [5], [13]. The ∞-Laplacian appears naturally when one considers
absolutely minimizing Lipschitz extensions of a boundary function f ,
see [2], [3], and [12].

Up to a Lagrange multiplier λp the functions up,0 are viscosity (and
weak) solutions to the problem,

(1.6)

{
−∆pu = 0 in Ω,

|Du|p−2 ∂u
∂ν

= λp g on ∂Ω.

Let us to point out that it is easily seen that λ
1/p
p → 1 as p→∞ (see

the remark at the end of Section 2.)

In [9] (see also [10]) the limit as p→∞ of the family up,0 is studied
in the viscosity setting. It is proved that the problem that is satisfied
by a uniform limit u∞,0 in the viscosity sense is as follows,

(1.7)

{
∆∞u = 0 in Ω,

B(x, u,Du) = 0, on ∂Ω,

Here

B(x, u,Du) ≡


min

{
|Du| − 1 , ∂u

∂ν

}
if g > 0,

max{1− |Du| , ∂u
∂ν
} if g < 0,

H(|Du|)∂u
∂ν

if g = 0,

and H(a) is given by

H(a) =

{
1 if a ≥ 1,

0 if 0 ≤ a < 1.

Moreover, the function u∞,0 satisfies the inequalities

|Du| ≤ 1 and − |Du| ≥ −1

in the viscosity sense.

On the other hand, when we deal with the problems in the strips, the
functions up,ε are weak (and hence viscosity) solutions to the problem,

(1.8)

{
−∆pu = gε in Ω,

|Du|p−2 ∂u
∂ν

= 0 on ∂Ω.
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Passing to the limit as p → ∞ in these problems we get that the
function u∞,ε satisfy the following properties in the viscosity sense:

(1.9)


|Du| ≤ 1 in Ω,

−|Du| ≥ −1 in Ω,
∂u
∂ν

= 0 on ∂Ω,

and, in the different regions determined by gε:

(1.10)



−∆∞u = 0 in Ω \ ωε,

|Du| = 1 in {gε > 0},

−|Du| = −1 in {gε < 0},

−∆∞u ≥ 0 in Ω ∩ ∂{gε > 0} \ ∂{gε < 0},

−∆∞u ≤ 0 in Ω ∩ ∂{gε < 0} \ ∂{gε > 0}.

Theorem 2.

(1) The limit up,0 of a uniformly converging sequence up,ε of weak
solutions to (1.8) as ε → 0 is a weak solution to (1.6) (and
hence a viscosity solution).

(2) The limit u∞,0 of a uniformly converging sequence up,0 of viscos-
ity solutions to (1.6) as p→∞ is a viscosity solution to (1.7).

Let us to point out that when ε→ 0, gε concentrates on the bound-
ary, and therefore the sequence {gε} is not uniformly bounded. This
makes it difficult t to pass to the limit in the viscosity sense when
ε → 0. Hence in this case, we consider the variational characteriza-
tion of the sequence {up,ε} (that is equivalent to the fact of being a
weak solution). To the best of our knowledge, it is not known that the
notions of viscosity and weak solutions coincide for solutions to (1.8),
cf. [14] where such equivalence is only proved for Dirichlet boundary
conditions.

Now, we deal with the rest of the commutative diagram. To pass to
the limit in the sequence u∞,ε we need the variational characterization
and a uniqueness result for the limit problem. The latter has been
proved in [9] and it says that:

If Ω is convex and {g = 0}o = ∅, then there is a unique function
which satisfies the extremal property (1.1).

Here {g = 0}o denotes the interior of the set {g = 0} in the topology
of ∂Ω.

Let us to point out that the hypothesis {g = 0}o = ∅ implies also
the uniqueness of the extremals to (1.4), see [11]. Therefore, under this
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hypothesis there exists a unique u∞,ε reached as a limit of the solutions
up,ε as p→∞.

Next, we state our second theorem.

Theorem 3.

(1) The limit u∞,ε of a uniformly converging sequence up,ε of vis-
cosity solutions to (1.8) as p → ∞ is a viscosity solution to
(1.9)-(1.10).

(2) Assume that Ω is convex and {g = 0}o = ∅. Consider the
viscosity solutions u∞,ε to (1.9)-(1.10), obtained as a uniform
limit as p→∞ of the solutions up,ε. Then, the sequence {u∞,ε}
converges uniformly to a viscosity solution to (1.7), u∞,0.

Note that in (2) we are considering solutions u∞,ε that are limits of
up,ε as p → ∞. We note that whether a similar statement holds for
arbitrary solutions is an open question.

The rest of the paper is organized as follows: in Section 2 we pass to
the limit in the variational sense and prove Theorem 1 and in Section 3
we deal with viscosity solutions and prove Theorems 2 and 3.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1 that shows that
diagram (1.5) commutes in the variational sense.

Proof of Theorem 1. The proof of the uniform convergence (along sub-
sequences) of up,0 to u∞,0 is contained in [9].

Let us prove that up,ε converges to up,0 as ε→ 0. We have

‖Dup,ε‖Lp(Ω) ≤ 1.

Note that we can assume ‖Dup,ε‖Lp(Ω) = 1 unless g = 0.

Therefore we can extract a subsequence (that we still call up,ε) such
that

up,ε ⇀ v, as ε→ 0,

weakly in W 1,p(Ω) and, since p > N ,

up,ε → v, as ε→ 0,

uniformly in Ω (in fact, convergence holds in a Hölder space C0,β for
some suitable β > 0). This limit v verifies the normalization constraint∫

Ω

v = 0
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and moreover

‖Dv‖Lp(Ω) ≤ 1.

On the other hand, thanks to the uniform convergence and to the
definition of the extension gε we obtain,

lim
ε→0

∫
ωε

gεup,ε = lim
ε→0

∫ ε

0

∫
Γs

gε(y)up,ε(y) dσs ds

= lim
ε→0

∫ ε

0

∫
∂Ω

gε(z − sν(z))up,ε(z − sν(z))G(s, z) dσ ds

= lim
ε→0

∫ ε

0

ηε(s)

∫
∂Ω

g(z)up,ε(z − sν(z)) dσ ds

=

∫
∂Ω

gv dσ

and hence

(2.1)

∫
Ω

|Dv|p −
∫

∂Ω

gv dσ ≤ lim inf
ε→0

(∫
Ω

|Dup,ε|p −
∫

ωε

gεup,ε

)
.

On the other hand for every w ∈ C1(Ω) we have∫
Ω

|Dw|p −
∫

∂Ω

gw dσ = lim
ε→0

∫
Ω

|Dw|p −
∫

ωε

gεw.

Taking w ∈ C1(Ω) with ‖Dw‖Lp(Ω) = 1,and
∫

Ω
w = 0, by the extremal

characterization of up,ε, we have∫
Ω

|Dw|p −
∫

∂Ω

gwdσ

≥ lim inf
ε→0

∫
Ω

|Dup,ε|p −
∫

ωε

gεup,ε.

Therefore by (2.1) we obtain

inf
w∈W 1,p(Ω),

R
Ω w=0,‖Dw‖Lp(Ω)=1

{∫
Ω

|Dw|p −
∫

∂Ω

gwdσ

}
≥

∫
Ω

|Dv|p −
∫

∂Ω

gv dσ,

and hence it follows that all possible limits v = up,0 satisfy the extremal
property (1.2).

Next we prove that u∞,ε converges to u∞,0, a maximizer of (1.1).
Recall that u∞,ε is a solution to the problem

Mε = max

{∫
ωε

wgε : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖∞ ≤ 1

}
.
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That is, we have

Mε =

∫
ωε

u∞,εgε.

Therefore u∞,ε is bounded in W 1,∞(Ω) and then there exists a sub-
sequence (that we still denote by u∞,ε) such that,

(2.2)
u∞,ε

∗
⇀ v weakly-* in W 1,∞(Ω) and

u∞,ε → v uniformly in Ω,

as ε→ 0. Hence

lim
ε→0

∫
ωε

u∞,εgε =

∫
∂Ω

vg dσ.

On the other hand, for every z ∈ C1(Ω) it holds that

lim
ε→0

∫
ωε

gεz =

∫
∂Ω

gz dσ.

Hence, if we call

(2.3) M = max

{∫
∂Ω

wg dσ : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖∞ ≤ 1

}
,

we obtain, from (2.2),

M ≤ lim inf
ε→0

Mε =

∫
∂Ω

vg dσ.

We can conclude that v = u∞,0 is a maximizer of (2.3), as we wanted
to prove.

Finally, let us prove that up,ε → u∞,ε. Recall that∫
ωε

up,εgε = max

{∫
ωε

wgε : w ∈ W 1,p(Ω),

∫
Ω

w = 0, ‖Dw‖Lp(Ω) ≤ 1

}
.

In particular, for any q < p

‖Dup,ε‖Lq(Ω) ≤ ‖Dup,ε‖Lp(Ω)

(
|Ω|

p−q
p

)1/q

≤ (|Ω|+ 1)
p−q
pq .

Hence, we can extract a subsequence (still denoted by up,ε) such that,

up,ε → u, uniformly in Ω,

as p→∞ with

‖Du‖Lq(Ω) ≤ (|Ω|+ 1)
1
q .

Letting q →∞ and using that ‖Du‖Lq(Ω) → ‖Du‖L∞(Ω) we get

‖Du‖L∞(Ω) ≤ 1.
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Then we have ∫
ωε

up,εgε →
∫

ωε

ugε, as p→∞.

This limit u verifies that∫
ωε

ugε ≤ max

{∫
ωε

wgε : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}
.

Let us prove that we have an equality here. If not, there exists a
function v such that v ∈ W 1,∞(Ω),

∫
Ω
v = 0, ‖Dv‖L∞(Ω) ≤ 1 with∫

ωε

ugε <

∫
ωε

vgε.

If we normalize, taking ϕp = v/|Ω|1/p, we obtain a function in W 1,p(Ω)
with

∫
Ω
ϕp = 0, ‖Dϕp‖Lp(Ω) ≤ 1 and such that

lim
p→∞

∫
ωε

up,εgε =

∫
ωε

ugε <

∫
ωε

vgε = lim
p→∞

|Ω|1/p

∫
ωε

ϕpgε.

Note that ∫
ωε

ϕpgε ≤
∫

ωε

up,εgε,

for any p, and hence we arrive to a contradiction.

This contradiction proves that∫
ωε

ugε = max

{∫
ωε

wgε : w ∈ W 1,∞(Ω),

∫
Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}
.

This ends the proof. �

Let us close this section with the following remark.

Remark. The limits of the solutions to the maximization problems
(1.2) and (1.3) coincide with the limits of the solutions to the corre-
sponding PDEs (1.6) and (1.8) when p→∞.

In fact, the unique maximizer of (1.2), up, is a weak solution to

(2.4)

{
−∆pup = 0 in Ω,

|Dup|p−2 ∂up

∂ν
= λp g on ∂Ω.

Here λp is a Lagrange multiplier. If we take

ũp = (λp)
1/(p−1)up

we get a solution to (1.6), that is,{
−∆pũp = 0 in Ω,

|Dũp|p−2 ∂ũp

∂ν
= g on ∂Ω.
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From the weak form of (2.4) and our previous results we get

lim
p→∞

λp = lim
p→∞

(∫
∂Ω

gup dσ

)−1

=

(∫
∂Ω

gu∞ dσ

)−1

6= 0.

Therefore,

lim
p→∞

ũp = lim
p→∞

(λp)
1/(p−1)up = lim

p→∞
up.

In a completely analogous way it can be proved that the limits as p→
∞ of the solutions to the maximization problems (1.3) and solutions
to the PDEs (1.8) coincide.

3. Proofs of Theorems 2 and 3

In this section we deal with the PDE version of the commutative
diagram (1.5). To this end it is natural to consider solutions in the
viscosity sense.

Following [4] let us recall the definition of viscosity solution for el-
liptic problems with general boundary conditions. Assume

F : Ω× RN × SN×N → R

a continuous function. The associated equation

F (x,Du,D2u) = 0

is called (degenerate) elliptic if

F (x, ξ,X) ≤ F (x, ξ, Y ) if X ≥ Y.

Definition 3.1. Consider the boundary value problem{
F (x,Du,D2u) = 0 in Ω,

B(x, u,Du) = 0 on ∂Ω.

(1) A lower semi-continuous function u is a viscosity supersolution
if for every φ ∈ C2(Ω) such that u−φ has a strict minimum at
the point x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ ∂Ω, we
have the inequality

max{B(x0, φ(x0), Dφ(x0)), F (x0, Dφ(x0), D
2φ(x0))} ≥ 0

and if x0 ∈ Ω then we require

F (x0, Dφ(x0), D
2φ(x0)) ≥ 0.
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(2) An upper semi-continuous function u is a subsolution if for ev-
ery ψ ∈ C2(Ω) such that u − ψ has a strict maximum at the
point x0 ∈ Ω with u(x0) = ψ(x0) we have: If x0 ∈ ∂Ω the
inequality

min{B(x0, ψ(x0), Dψ(x0)), F (x0, Dψ(x0), D
2ψ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0, Dψ(x0), D
2ψ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolu-
tion.

In the sequel, we will use the same notation as in the definition: φ
stands for the test functions touching from below the graph of u, and
ψ stands for the test functions touching from above the graph of u.

First, we point out a lemma that is implicit in the arguments in [5]
(see Propositions 5.1 and 5.2 in [5]) and in [8].

Lemma 3.2. The extremal functions in Theorem 1 satisfy in the vis-
cosity sense:

|Du∞,ε| ≤ 1 ; |Du∞,0| ≤ 1 ; −|Du∞,ε| ≥ −1 ; −|Du∞,0| ≥ −1 .

On the other hand, at level p we can pass from weak solutions to
solutions in the sense of viscosity:

Lemma 3.3. Let up,0 be a continuous weak solution of (1.6) for p > N .
Then up,0 is a viscosity solution to{

−∆pup,0 = 0 in Ω,

|Dup,0|p−2 ∂up,0

∂ν
= g on ∂Ω.

Proof. See [9], Lemma 2.3. �

Proof of Theorem 2. We decompose the proof in several steps.

Step 1. First, assume that a sequence of viscosity solutions to (1.6),
up,0 converge, as p → ∞, uniformly in Ω to a limit u∞,0, then it is
proved in [9] that u∞,0 is a viscosity solution to (1.7).

Step 2. As we have mentioned in the introduction at this part of the
proof we have to deal with weak solutions since the right hand side of
the problem (1.8) is not uniformly bounded in ε.

Assume that we have a sequence of weak solutions to (1.8), up,ε that
converge, as ε→ 0, uniformly in Ω to a limit up,0 then let us prove that
up,0 is a weak (and a viscosity) solution of (1.6).
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As it was proved in the previous section, we can pass to the limit in
the variational formulation (that is equivalent to the weak formulation)
of (1.8) to obtain that every limit of up,ε is a variational solution (and
hence a weak solution) to (1.6).

To finish we just have to observe that a continuous weak solution to
(1.6) is in fact a viscosity solution, thanks to Lemma 3.3. �

Next, we pass to the proof of Theorem 3.

Proof of Theorem 3. We recall that, thanks to lemma 3.2, we have the
estimates |Du∞,ε| ≤ 1 ; |Du∞,0| ≤ 1 ,−|Du∞,ε| ≥ −1 ; −|Du∞,0| ≥ −1,
in the sense of viscosity, in all the domain Ω.

To find the equation that u∞,ε satisfies in the viscosity sense, assume
that u∞,ε − φ has a strict minimum at x0 ∈ Ω. Depending on the
location of the point x0 we have different cases. First, suppose that
x0 ∈ Ω \ ωε. By the uniform convergence of upi,ε to u∞,ε there exists
points xpi

such that upi,ε − φ has a minimum at xpi
with xpi

∈ Ω \ ωε

for pi large. Using that upi
is a viscosity solution to (1.8) we obtain

−∆pφ(xpi
) = −div(|Dφ|pi−2Dφ)(xpi

) ≥ 0.

Therefore

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
)− |Dφ|pi−2∆φ(xpi

) ≥ 0.

If Dφ(x0) = 0 we get −∆∞φ(x0) = 0. If this is not the case, we have
that Dφ(xpi

) 6= 0 for large i and then

−∆∞φ(xpi
) ≥ 1

pi − 2
|Dφ|2∆φ(xpi

) → 0, as pi →∞.

We conclude that

(3.1) −∆∞φ(x0) ≥ 0.

That is u∞,ε is a viscosity supersolution of −∆∞u∞,ε = 0 in Ω \ ω.

The fact that it is a viscosity subsolution of −∆∞u∞,ε = 0 in Ω \ ω
is completely analogous.

Next suppose that x0 lies on the region where gε > 0.

Assume that we have a test function φ touching from below the graph
of u∞,ε, that is, u∞,ε − φ has a strict minimum at the point x0 . Then,
for pi large, there exist points xpi

such that upi,ε − φ has a minimum
at xpi

with gε(xpi
) > 0. Using that upi

is a viscosity solution to (1.8)
we obtain

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
)− |Dφ|pi−2∆φ(xpi

) ≥ gε(xpi
) > 0.
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In particular |Dφ(xpi
)| 6= 0 and therefore

−∆∞φ(xpi
) ≥ 1

pi − 2
|Dφ|2∆φ(xpi

) +
gε(xpi

)

(p− 2)|Dφ(xpi
)|p−4

.

Since gε(xpi
) → g(x0) > 0, this means that |Dφ(x0)| cannot be smaller

than 1 (in this case the right hand side of the inequality tends to
infinity). Therefore, we conclude that |Dφ(x0)| ≥ 1.

Assume now that we have a test function ψ that touches from above
the graph of u∞,ε. Then, for pi large, there exists points xpi

such that
upi,ε − ψ has a minimum at xpi

with gε(xpi
) > 0. Using that upi

is a
viscosity solution to (1.8) we obtain

−(pi − 2)|Dψ|pi−4∆∞ψ(xpi
)− |Dψ|pi−2∆ψ(xpi

) ≤ gε(xpi
)(> 0).

Then, if |Dψ(x0)| > 1 , it follows that −∆∞ψ(x0) ≤ 0. Therefore, the
condition on ψ reads

(3.2) min{|Dψ(x0)| − 1,−∆∞ψ(x0)} ≤ 0.

But notice that this condition is always satisfied, since we know that
|Du∞,ε| ≤ 1 in the sense of viscosity. Therefore, (3.1) and (3.2) imply
that, if gε(x0) > 0, then |Du∞,ε(x0)| = 1.

Similar computations give us that if we look at a point x0 such that
gε(x0) < 0 then −|Du∞,ε(x0)| = −1.

The next case to consider, is when gε(x0) = 0 and the point x0 can
be reached as a limit of points xpi

that could be contained in the region
{gε > 0} or in the region {gε = 0}. In other words, x0 ∈ Ω ∩ ∂{gε >
0} ∩ (∂{gε < 0})C .

In this case, if we consider a test function φ touching from below the
graph of u∞,ε at x0, then we get a sequence {xpi

} converging to x0, such
that upi,ε − φ has a strict minimum at xpi

. Passing to a subsequence if
necessary, we have two possibilities: either gε(xpi

) = 0, or gε(xpi
) > 0.

If we assume gε(xpi
) = 0, then

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
)− |Dφ|pi−2∆φ(xpi

) ≥ 0.

Then, if |Dφ(xpi
)| 6= 0 it follows that −∆∞φ(x0) ≥ 0. On the other

hand, if |Dφ(xpi
)| = 0 for infinitely many indexes, then −∆∞φ(x0) = 0.

If we assume gε(xpi
) > 0, then |Dφ(xpi

)| 6= 0 and therefore passing
to the limit we get −∆∞φ(x0) ≥ 0.

Concerning the test functions ψ touching from above the graph of
u∞,ε, when gε(xpi

) = 0, then we have

−(pi − 2)|Dψ|pi−4∆∞ψ(xpi
)− |Dψ|pi−2∆ψ(xpi

) ≤ 0.
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This implies that −∆∞ψ(x0) ≤ 0. But if gε(xpi
) > 0, then, as in

a previous case, we get that min{|Dψ(x0)| − 1,−∆∞ψ(x0)} ≤ 0, and
this condition is always satisfied because |Du∞,ε| ≤ 1 .

As a conclusion, if x0 ∈ Ω∩∂{gε > 0}∩(∂{gε < 0})C , we have in the
sense of viscosity that −∆∞u∞,ε ≥ 0 (jointly with the general viscosity
estimates on the gradient, valid in all Ω).

In an analogous way, if x0 ∈ Ω ∩ (∂{gε > 0})C ∩ ∂{gε < 0}, we have
in the sense of viscosity that −∆∞u∞,ε ≤ 0 (jointly with the general
viscosity estimates on the gradient, valid in the whole domain Ω).

The next region consists on the points x0 ∈ Ω that can be reached
as limits of sequences contained either in {gε > 0}, either in {gε = 0},
either in {gε < 0}. That is, x0 ∈ Ω∩ ∂{gε > 0}∩ ∂{gε < 0}. The same
arguments as before give us that in this set the equation satisfied in
the sense of viscosity is simply |Du∞,ε| ≤ 1 and −|Du∞,ε| ≥ −1.

Finally, the boundary condition satisfied by u∞,ε in the sense of
viscosity is

∂u∞,ε

∂ν
= 0.

To see this fact, we use that the p-Laplacian satisfies hypothesis of the
“strict monotonicity in the direction of the normal”as it is stated in [4].
Then, for instance, the boundary condition at level p reads simply

|Dφ(xp)|p−2∂φ

∂ν
(xp) ≥ 0,

for any test function φ touching the graph of up,ε from below at a point
xp ∈ ∂Ω. Test functions touching the graph from above can be handled
in a similar way.

The last step of the proof consists of taking limits on the sequence
{u∞,ε}. Notice that these functions, as limits of the sequence {up,ε} as
p→∞, satisfy the extremal property (1.4). Therefore, by Theorem 1,
the limit u∞,0 is an extremal of (1.1). From hypothesis {g = 0}o = ∅,
we obtain a uniqueness result for u∞,0 (see [9]), and then it must be the
same function that we reach as the limit of the sequence {up,0} when
p→∞, and, as it was proved in [9], it satisfies (1.7). �
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