Lowness Properties and Approximations of the Jump

Santiago Figueira ${ }^{1,4}$
Department of Computer Science, FCEyN
University of Buenos Aires Argentina
André Nies ${ }^{2}$
Department of Computer Science
University of Auckland
New Zealand
Frank Stephan ${ }^{3,5}$
Departments of Computer Science and Mathematics
National University of Singapore
Singapore

Abstract

We study and compare two combinatorial lowness notions: strong jump-traceability and wellapproximability of the jump, by strengthening the notion of jump-traceability and ω-r.e. for sets of natural numbers. We prove that there is a strongly jump-traceable set which is not computable, and that if A^{\prime} is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and the corresponding strong variant in terms of Kolmogorov complexity, and we investigate other properties of these lowness notions.

Keywords: Lowness, traceability, ω-r.e., K-triviality, Kolmogorov complexity

[^0]
1 Introduction

A lowness property of a set A says that A is computational weak when used as an oracle, and hence A is close to being computable. In this article we study and compare some "combinatorial" lowness properties in the direction of characterizing K-trivial sets.

A set is K-trivial when it is highly compressible in terms of Kolmogorov complexity (see Section 2 for the formal definition). In [8], Nies proved that a set is K-trivial if and only if A is low for Martin-Löf-random (i.e. each Martin-Löf-random set is already random relative to A).

Terwijn and Zambella [12] defined a set A to be recursively traceable if there is a recursive bound p such that for every $f \leq_{T} A$, there is a recursive r such that for all $x,\left|D_{r(x)}\right| \leq p(x)$, and $\left(D_{r(x)}\right)_{x \in \mathbb{N}}$ is a set of possible values of f : for all x, we have and $f(x) \in D_{r(x)}$. They showed that this combinatorial notion characterizes the sets that are low for Schnorr tests.

This property was modified in [9] to jump-traceability. A set A is jump traceable if its jump at argument e, written $J^{A}(e)=\{e\}^{A}(e)$, has few possible values.

Definition 1.1 A uniformly r.e. family $T=\left\{T_{0}, T_{1}, \ldots\right\}$ of sets of natural numbers is a trace if there is a recursive function h such that $\forall n\left|T_{n}\right| \leq h(n)$. We say that h is a bound for T. The set A is jump-traceable if there is a trace T such that $\forall e\left[J^{A}(e) \downarrow \Rightarrow J^{A}(e) \in T_{e}\right]$. We say that A is jump traceable via a function h if, additionally, T has bound h.

Another notion studied in [9] is super-lowness, first introduced in [2,7].
Definition 1.2 A set A is ω-r.e. iff there exists a recursive function b such that $A(x)=\lim _{s \rightarrow \infty} g(x, s)$ for a recursive $\{0,1\}$-valued g such that $g(x, s)$ changes at most $b(x)$ times. In this case, we say that A is ω-r.e. via the function g and bound b. A is super-low iff A^{\prime} is ω-r.e.

Both jump-traceable and super-low sets are closed downward under Turing reducibility and imply being generalized low (i.e. $A^{\prime} \leq A \oplus \emptyset^{\prime}$). In [9] jumptraceability and super-lowness were studied and compared, proving that these two lowness notions coincide within the r.e. sets but that none of them implies the other within the ω-r.e. sets.

In this article, we define the notions of strong jump-traceability (see Definition 3.2) and well-approximability (see Definition 4.1), by strengthening the notions of jump-traceability and ω-r.e., respectively. A special emphasis is given to the case where the jump of A is ω-r.e. The strong variant of these notions consider all orders as the bound instead of just some recursive bound.

Here, an order is a slowly growing but unbounded recursive function (see Definition 3.1). Among our main results are:

- There is a non-computable strongly jump-traceable set;
- If A^{\prime} is well-approximable then A is strongly jump-traceable. The converse also holds, if A is r.e.

Our approach is used to study interesting lowness properties related to plain and prefix-free Kolmogorov complexity. We investigate the properties of sets A such that the Kolmogorov complexity relative to A is only a bit smaller than the unrelativized one. We prove some characterizations of jump-traceability and its strong variant in terms of prefix-free (denoted with K) and plain (denoted with C) Kolmogorov complexity, respectively:

- A is jump-traceable if and only if there is a recursive p, growing faster than linearly such that $K(y)$ is bounded by $p\left(K^{A}(y)+c_{0}\right)+c_{1}$, for some constants c_{0} and c_{1};
- A is strongly jump-traceable if and only if $C(x)-C^{A}(x)$ is bounded by $h\left(C^{A}(x)\right)$, for every order h and almost all x.
We know that K-triviality implies jump-traceability, but it is unknown whether K-triviality implies strong jump-traceability. The reverse direction is also open.

2 Basic definitions

If A is a set of natural numbers then $A(x)=1$ if $x \in A$; otherwise $A(x)=$ 0 . We denote with $A \upharpoonright n$ the string of length n which consists of the bits $A(0) \ldots A(n-1)$.

If A is given a Δ_{2}^{0}-approximation and Ψ is a functional, we write $\Psi^{A}(e)[s]$ for $\Psi_{s}^{A_{s}}(e)$. From a partial recursive functional Ψ, one can effectively obtain a primitive recursive and strictly increasing function α, called a reduction function for Ψ, such that $\forall X \forall e \Psi^{X}(e)=J^{X}(\alpha(e))$.

For each real A, we want to define $K^{A}(y)$ as the length of a shortest prefixfree description of y using oracle A. An oracle machine is a partial recursive functional $M:\{0,1\}^{\infty} \times\{0,1\}^{*} \mapsto\{0,1\}^{*}$. We write $M^{A}(x)$ for $M(A, x)$. M is an oracle prefix-free machine if the domain of M^{A} is an antichain under inclusion of strings, for each A. Let $\left(M_{d}\right)_{d \in \mathbb{N}}$ be an effective listing of all oracle prefix-free machines. The universal oracle prefix-free machine U is given by $U^{A}\left(0^{d} 1 \sigma\right)=M_{d}^{A}(\sigma)$ and the prefix-free Kolmogorov complexity relative to A is defined as $K^{A}(y)=\min \left\{|\sigma|: U^{A}(\sigma)=y\right\}$, where $|\sigma|$ denotes the length of σ. If $A=\emptyset$, we simply write $U(\sigma)$ and $K(y)$. As usual, $U(\sigma)[s] \downarrow=y$
indicates that $U(\sigma)=y$ and the computation takes at most s steps. We say that $A \in\{0,1\}^{\infty}$ is Martin-Löf random iff $\exists c \forall n K(A \upharpoonright n)>n-c$. A set A is K-trivial iff $\exists c \forall n K(A \upharpoonright n) \leq K(n)+c$.

The Kraft-Chaitin Theorem states that from a computably enumerable sequence of pairs $\left(\left\langle n_{i}, \sigma_{i}\right\rangle\right)_{i \in \mathbb{N}}($ known as axioms $)$ such that $\sum_{i \in \mathbb{N}} 2^{-n_{i}} \leq 1$, we can effectively obtain a prefix-free machine M such that for each i there is a τ_{i} of length n_{i} with $M\left(\tau_{i}\right) \downarrow=\sigma_{i}$, and $M(\rho) \uparrow$ unless $\rho=\tau_{i}$ for some i.

If we drop the condition of the domain of M^{A} being an antichain, we obtain a similar notion, called plain Kolmogorov complexity and denoted by C. Hence, $C^{A}(y)$ will denote the length of the shortest description of y using oracle A, when we do not have the restriction on the domain

A binary machine is a partial recursive function $\tilde{M}:\{0,1\}^{*} \times\{0,1\}^{*} \mapsto$ $\{0,1\}^{*}$. Let \tilde{U} be a binary universal function i.e. $\tilde{U}\left(0^{d} 1 \sigma, x\right)=\tilde{M}_{d}(\sigma, x)$, where $\left(\tilde{M}_{d}\right)_{d \in \mathbb{N}}$ is an enumeration of all partial recursive functions of two arguments. We define the plain conditional Kolmogorov complexity $C(y \mid x)$ as the length of the shortest description of y using \tilde{U} with string x as the second argument, i.e. $C(y \mid x)=\min \{|\sigma|: \tilde{U}(\sigma, x)=y\}$.

Let str: $\mathbb{N} \rightarrow\{0,1\}^{*}$ be the standard enumeration of the strings. The string $\operatorname{str}(n)$ is that binary sequence $b_{0} b_{1} \ldots b_{m}$ for which the binary number $1 b_{0} b_{1} \ldots b_{m}$ has the value $n+1$. Thus, $\operatorname{str}(0)=\lambda, \operatorname{str}(1)=0, \operatorname{str}(2)=1$, $\operatorname{str}(3)=00, \operatorname{str}(4)=01$ and so on.

3 Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a recursive function p and an effective approximation $\left(A_{s}\right)_{s \in \mathbb{N}}$ of A such that, for each e, if $\left|W_{e}\right|=\infty$ then $\exists s \exists x\left[x \in W_{e, s} \backslash W_{e, s} \wedge x \in A_{p(s)} \backslash A_{p(s)-1}\right]$. In this section, we introduce a stronger version of jump-traceability and we prove that there is a promptly simple (hence non recursive) strongly jump-traceable set. We also prove that there is no maximal order as bound for jump-traceability.

Definition 3.1 A function $h: \mathbb{N} \rightarrow \mathbb{N}^{+}$is an order iff h is recursive, $\forall x h(x) \leq$ $h(x+1)$ and $\lim _{x \rightarrow \infty} h(x)=\infty$.

Notice that any reduction function is an order.
Definition 3.2 A set A is strongly jump-traceable iff for each order h, A is jump traceable via h.

Clearly, strong jump-traceability implies jump-traceability and it is not difficult to see that strong jump-traceability is closed downward under Turing reducibility.

Notice that if A is recursive then A is strongly jump-traceable because we can trace the jump by $T_{e}=\left\{J^{A}(e)\right\}$ if $J^{A}(e) \downarrow$ and $T_{e}=\emptyset$ otherwise.

Theorem 3.4 below shows that the converse is not true. To prove it, we need the following Lemma which states that there is a function growing slower than all orders which is recursively approximable from above.

Lemma 3.3 There exists $g: \mathbb{N} \rightarrow \mathbb{N}$ such that
(i) $\forall x g(x)=\lim _{s \rightarrow \infty} g_{s}(x)$, where $g(s, x)=g_{s}(x)$ is recursive and $g_{s}(x) \geq$ $g_{s+1}(x)$;
(ii) $\lim _{x \rightarrow \infty} g(x)=\infty$;
(iii) For all orders $h, g(x) \leq h(x)$ for almost all x.

Proof. Define $G_{s}(x)=x+\max \left\{\varphi_{e, s}(y): \varphi_{e, s}(y) \downarrow \wedge e \leq x \wedge y \leq x\right\}$. Clearly, $G(s, x)=G_{s}(x)$ is recursive and it is easy to see that for all $x, G_{s}(x) \leq G_{s+1}(x)$ and for all $s, G_{s}(x)<G_{s}(x+1)$. Also $G_{s}(x) \geq \varphi_{e, s}(x)$ for all $e \leq x$. Let us define $G=\lim _{s \rightarrow \infty} G_{s}$. Then G grows faster than any recursive function, that is, if $\varphi_{e}(x)$ is defined, then $G(x) \geq \varphi_{e}(x)$ for all $e \leq x$.

Let us define now the "inverse of G " as follows: $g_{s}(y)=\max \left\{x: G_{s}(x) \leq y\right\}$ if $G_{s}(0) \leq y$ and $g_{s}(y)=0$ otherwise; we also define $g=\lim _{s \rightarrow \infty} g_{s}$. Since G_{s} is recursive and monotone increasing in x, g_{s} is recursive and $g_{s} \geq g_{s+1}$. This proves (i).

Also g is unbounded because G is. Hence, (ii) is satisfied.
For (iii), let h be any order. The function $H(x)=\min \{y: h(y) \geq x\}$ is recursive because h is unbounded by hypothesis. Then, there is e such that $H=\varphi_{e}$. By the construction of $G, \forall x[x \geq e \Rightarrow G(x) \geq H(x)]$. We will prove that $g(y)=\max \{x: G(x) \leq y\} \leq h(y)$ for all $y \geq G(e)$ and $g(y) \geq e$. Fix $y \geq G(e)$ and suppose that $x \geq e$ and $G(x) \leq y$. Since h is monotone, $h(G(x)) \leq h(y)$ and since H is below G beyond $e, h(H(x)) \leq h(G(x))$. By the definition of $H, h(H(x)) \geq x$, so finally we obtain $x \leq h(y)$.

Theorem 3.4 There exist a promptly simple strongly jump-traceable set.
Proof. We construct a promptly simple set A in stages satisfying the requirements

$$
P_{e}:\left|W_{e}\right|=\infty \Rightarrow \exists s \exists x\left[x \in W_{e, s} \backslash W_{e, s-1} \wedge x \in A_{s} \backslash A_{s-1}\right]
$$

During the construction, P_{e} may destroy $J^{A}(k)$ at stage s only if $e<g_{s}(k)$.
Construction of A. Let g_{s} be the one defined in Lemma 3.3.
Stage 0: set $A_{0}=\emptyset$.
Stage $s+1$: choose the least $e \leq s$ such that

- P_{e} yet not satisfied;
- There exists x such that $x \in W_{e, s+1} \backslash W_{e, s}, x>2 e$ and for all k such that $g_{s}(k) \leq e$, if $J^{A}(k)[s]$ is defined then x is greater than the use of $J^{A}(k)[s]$.
If such e exists, put least such x for e into A_{s+1}. We say that P_{e} receives attention at stage $s+1$, and declare P_{e} satisfied. Otherwise, $A_{s+1}=A_{s}$. Finally, define $A=\bigcup_{s} A_{s}$.

Verification. Clearly, P_{e} receives attention at most once. So we can use below the fact that every requirement influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order h. We will prove that there exists an r.e. trace T for J^{A} as in Definition 1.1. Let h be any order. By Lemma 3.3, there exists k_{0} such that for all $k \geq k_{0}, g(k) \leq h(k)$. Define the recursive function $f(k)=\min \left\{s: g_{s}(k) \leq h(k)\right\}$ if $k \geq k_{0}$ and $f(k)=0$ otherwise. For $k \geq k_{0}$ and $s \geq f(k), g_{s}(k)$ will be below $h(k)$, so $J^{A}(k)$ may change because P_{e} receives attention, for $e<g_{s}(k) \leq h(k)$. Since each P_{e} receives attention at most once, $J^{A}(k)$ can change at most $h(k)$ times after stage $f(k)$. So

$$
T_{k}= \begin{cases}\left\{J^{A}(k)[s]: J^{A}(k)[s] \downarrow \wedge s \geq f(k)\right\} & \text { if } k \geq k_{0} ; \\ \left\{J^{A}(k)\right\} & \text { if } J^{A}(k) \downarrow \wedge k<k_{0} ; \\ \emptyset & \text { otherwise. }\end{cases}
$$

is as required.
Fix e such that W_{e} is infinite and let us see that P_{e} is met. Let s such that $\forall k\left[g(k) \leq e \Rightarrow g_{s}(k)=g(k)\right]$ and $s^{\prime}>s$ such that no P_{i} receives attention after stage s^{\prime} for any $i<e$. Then, by the construction, no computation $J^{A}(k)$, $g(k) \leq e$ can be destroyed after stage s^{\prime}. So there is $t>s^{\prime}$ such that for all k where $g_{t}(k) \leq e$, if $J^{A}(k)$ converges then the computation is stable from stage t on. Choose $t^{\prime} \geq t$ such that there is $x \in W_{e, t^{\prime}+1} \backslash W_{e, t^{\prime}}, x>2 e$ and x is greater than the use of all converging $J^{A}(k)$ for all k where $g_{t^{\prime}}(k) \leq e$. Now either P_{e} was already satisfied or P_{e} receives attention at stage $t^{\prime}+1$. In either case P_{e} is met.

We investigate about the existence of a maximal bound for jump-traceability. Given an order h, is it always possible to find a jump-traceable set A for which h is too small to be a bound for any trace for the jump of A ? The next Theorem answers this question positively.
Theorem 3.5 For any order h there is an r.e. set A and an order \tilde{h} such that A is jump-traceable via \tilde{h} but not via h.

Proof. We will define an auxiliary functional Ψ and we use α, the reduction function for Ψ (i.e. $\Psi^{X}(e)=J^{X}(\alpha(e))$ for all X and e), in advance by the Recursion Theorem. At the same time, we will define an r.e. set A and a trace
\tilde{T} for J^{A}. Finally, we will verify that there is an order \tilde{h} as stated.
Let $T(0), T(1), \ldots$ be an enumeration of all the traces with bound h, so that $T(e)=\left\{T(e)_{0}, T(e)_{1}, \ldots\right\}$, the e-th such trace, is as in Definition 1.1. Requirement P_{e} tries to show that J^{A} is not traceable via the trace $T(e)$ with bound h, that is,

$$
P_{e}: \exists x \Psi^{A}(x) \notin T(e)_{\alpha(x)}
$$

and requirement N_{e} tries to stabilize the jump when it becomes defined, i.e.

$$
N_{e}:\left[\exists^{\infty} s J^{A}(e)[s] \downarrow\right] \Rightarrow J^{A}(e) \downarrow .
$$

The strategy for a single procedure P_{e} consists of an initial action and a possible later action.

Initial action at stage $s+1$:

- Choose a new candidate $x_{e}=\langle e, n\rangle$, where n is the number of times that P_{e} has been initialized. Define $\Psi^{A}\left(x_{e}\right)[s+1]=0$ with large use.

Action at stage $s+1$:

- Let $x_{e}=\langle e, n\rangle$ be the current candidate. Put y into A_{s+1}, where y is the use of the defined $\Psi^{A}\left(x_{e}\right)[s]$. Notice that this action will not affect $J^{A}(i)[s]$ for $i<e$ because of the choice of y;
- Define $\Psi^{A}\left(x_{e}\right)[s+1]=\Psi^{A}\left(x_{e}\right)[s]+1$ with use $y^{\prime}>y$ and greater than the use of all defined computations of $J^{A}(i)[s+1]$ for $i<e$.
We say that P_{e} requires attention at stage $s+1$ if $\Psi^{A}\left(x_{e}\right)[s] \in T(e)_{\alpha\left(x_{e}\right)}[s]$ and we say that N_{e} requires attention at stage $s+1$ if $J^{A}(e)[s]$ becomes defined for the first time.

We define $\tilde{T}=\left\{\tilde{T}_{0}, \tilde{T}_{1}, \ldots\right\}$ by stages. The s-th stage of \tilde{T}_{i} will be denoted by $\tilde{T}_{i}[s]$. We start with $A_{0}=\emptyset$ and $\tilde{T}_{i}[0]=\emptyset$ for all i. At stage $s+1$ we consider the procedures N_{j} for $j \leq s$ and P_{j} for $j<s$. We also initialize the new P_{s}. We look at the least procedure requiring attention in the order $P_{0}, N_{0}, \ldots, P_{s}, N_{s}$. If there is no one, do nothing. Otherwise, suppose P_{e} is the first one. We let P_{e} take action at $s+1$, changing A below the use of $\Psi^{A}\left(x_{e}\right)[s]$ and redefining $\Psi^{A}\left(x_{e}\right)[s+1]$ without affecting N_{i} for $i<e$. We keep the other computations of P_{j} with the new definition of A, for $j \neq i$ and large use. If N_{e} is the least procedure requiring attention, there is y such that $J^{A}(e)[s] \downarrow=y$. We put y into $\tilde{T}_{e}[s+1]$ and initialize P_{j} for $e<j \leq s$. In this case, we say that N_{e} acts.

Let us prove that P_{e} is met. Take s such that all $J^{A}(i)$ are stable for $i<e$. Suppose x_{e} is the actual candidate of P_{e}. Since P_{e} is not going to be initialized again, x_{e} is the last candidate it picks. Each time $\Psi^{A}\left(x_{e}\right)[t] \in T(e)_{\alpha\left(x_{e}\right)}[t]$ for
$t>s, P_{e}$ acts and changes the definition of $\Psi^{A}\left(x_{e}\right)$ to escape from $T(e)_{\alpha\left(x_{e}\right)}$. Since $\left|T(e)_{\alpha\left(x_{e}\right)}\right| \leq h\left(\alpha\left(x_{e}\right)\right)$, there is $s^{\prime}>s$ such that $T(e)_{\alpha\left(x_{e}\right)}\left[s^{\prime}\right]=T(e)_{\alpha\left(x_{e}\right)}$. By construction, $\Psi^{A}\left(x_{e}\right)\left[s^{\prime}+1\right] \notin T(e)_{\alpha\left(x_{e}\right)}$ and $\Psi^{A}\left(x_{e}\right)\left[s^{\prime}+1\right]$ is stable.

We say that N_{e} is injured at stage $s+1$ if we put y into A_{s+1} and y is \leq the use of $J^{A}(e)[s]$. We define $c_{P}(k)$ as a bound for the number of initializations of P_{r}, for $r \leq k$; and define $c_{N}(k)$ as a bound for the number of injuries to N_{r}, for $r \leq k$. Since P_{0} is initialized just once and makes at most $h(\langle 0,0\rangle)$ changes in $A, c_{P}(0)=1$ and $c_{N}(0)=h(\langle 0,0\rangle)$. The number of times that P_{k+1} is initialized is bounded by the number of times that N_{r} acts, for $r \leq k$, so $c_{P}(k+1)=c_{P}(k)+c_{N}(k)$. Each time N_{r} is injured, for $r \leq k$ then N_{k+1} may also be injured; additionally, N_{k+1} may be injured each time P_{k+1} changes A. The latter occurs at most $h(\langle k+1, i\rangle)$ for the i-th initialization of P_{k+1}. Hence $c_{N}(k+1)=2 c_{N}(k)+\sum_{i \leq c_{P}(k+1)} h(\langle k+1, i\rangle)$.

Once N_{e} is not injured anymore, if $J^{A}(e) \downarrow$ then $J^{A}(e) \in \tilde{T}_{e}$. Since the number of changes of $J^{A}(k)$ is at most the number of injuries to N_{e}, we define the function $\tilde{h}(e)=c_{N}(e)$ which is clearly an order and it constitutes a bound for the trace $\left(\tilde{T}_{i}\right)_{i \in \mathbb{N}}$.

It is still open if there is no minimal bound for jump-traceability, i.e. it is unknown if given an order h there is a set A and an order \tilde{h} such that A is jump-traceable via h but not via \tilde{h}.

4 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to strongly jump-traceable.

Definition 4.1 A set A is well-approximable iff for each order b, A is ω-r.e. via b.

Clearly, if A^{\prime} is well-approximable, then A is super low and it is not difficult to see that well-approximability is closed downward under Turing reducibility. We next prove that if A is r.e. then A is strongly jump-traceable iff A^{\prime} is well-approximable. We first need the following lemmas.
Lemma 4.2 Let f and \hat{f} be orders such that $f(x) \leq \hat{f}(x)$ for almost all x.
(i) If A is jump-traceable via f then A is jump traceable via \hat{f};
(ii) If A is well-approximable via f then A is well-approximable via \hat{f}.

Lemma 4.3 There exists a recursive γ such that for all r.e. A:
(i) If A is jump-traceable via an order h then A is super-low via the order $b(x)=2 h(\gamma(x))+2$;
(ii) If A is super-low via an order b then A is jump-traceable via the order $h(x)=\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor$.
Proof. Follow the proof of [9, Theorem 4.1], together with Lemma 4.3.
Theorem 4.4 Let A be an r.e. set. Then the following are equivalent:
(i) A is strongly jump-traceable;
(ii) A^{\prime} is well-approximable.

Proof. (i) \Rightarrow (ii). Given an order b, let us prove that A is super-low via b. By part i of Lemma 4.3, it suffices to define an order h such that $2 h(\gamma(x))+2 \leq$ $b(x)$ for almost all x. If $b(x) \geq 4$ then define $h(\gamma(x))=\left\lfloor\frac{b(x)-2}{2}\right\rfloor$ and if $b(x)<4$, define $h(\gamma(x))=1$. Since γ can be taken strictly monotone, the above definition is correct and we can complete it to make h an order.
(ii) $\Rightarrow($ i). Given an order h, we will prove that A is jump-traceable via h. By part ii of Lemma 4.3, it suffices to define an order b such that $\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor \leq h(x)$ for almost all x. The argument is similar to the previous case.

Later, in Corollary 5.4, we will improve this result and we will see that, in fact, the implication (ii) \Rightarrow (i) holds for any A.

We finish this section by proving that the prefixes $A \upharpoonright n$ of a well-approximable set A have low Kolmogorov complexity of order logarithmic in n. Hence A is not Martin-Löf random and furthermore, the effective Hausdorff dimension is 0 . The latter is just equivalent of saying that there is no $c>0$ such that $c n$ is a linear lower bound for the prefix-free Kolmogorov complexity of $A \upharpoonright n$ for almost all n.
Theorem 4.5 If A is well-approximable then for almost all $n, K(A \upharpoonright n) \leq$ $4|n|$.

Proof. Suppose $A(n)=\lim _{s \rightarrow \infty} g(n, s)$, where g is recursive and changes at most n times. Given n, there is a unique s and some $m<n$ such that $g(m, s) \neq g(m+1, s)$ but $g(q, t)=g(q, t+1)$ for all $t>s$ and $q<n$. That is, s is the time when g converges on below n and m is the place where the last change takes place. The stage s can be computed from m and the number k of stages with $g(m, t+1) \neq g(m, t)$. So one can compute $A \upharpoonright n$ from m, n, k. Since $k, m \leq n$, one can, for almost all n, code m, n, k in a prefix-free way in $4|n|$ many bits. This is done by using a prefix of the form $1^{q} 0$ followed by $2 q$ bits representing $n, 2 q$ bits representing m and $2 q$ bits representing k as binary numbers; here q is just the smallest number such that $2 q$ bits are enough. Since $k, m \leq n$ and since $2 q \leq|n|+c$ for some constant c and since the additionally necessary coding needed to transform the above representation into a program for U is bounded by a constant, we have that there is a constant d such that
$\forall n K(A \upharpoonright n) \leq 3|n|+|n| / 2+d$ and then the relation $K(A \upharpoonright n) \leq 4|n|$ holds for almost all n. In fact, using binary notation to store q instead of $1^{q} 0$, it would even give $K(A \upharpoonright n) \leq 3(|n|+\log (|n|))$ for almost all n.

5 Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of plain Kolmogorov complexity and we show that if A^{\prime} is well-approximable then A is strongly jump-traceable for any set A.

Theorem 5.1 If A^{\prime} is well-approximable then for every order h and almost all $x, C(x) \leq C^{A}(x)+h\left(C^{A}(x)\right)$.

Proof. For any function f, let define $\hat{f}(y)=y+f(y)$ for all y. Let $\Psi^{A}(m, n, q)$ be a functional which does the following:
(i) Compute $x=U^{A}(q)$. If $U^{A}(q) \uparrow$ then $\Psi^{A}(m, n, q) \uparrow$;
(ii) Find the first program p such that $|p|=n$ and $\tilde{U}(p, q)=x$. If there is no such p then $\Psi^{A}(m, n, q) \uparrow$;
(iii) In case $m \notin[1, n]$ then $\Psi^{A}(m, n, q) \uparrow$. Otherwise, if the m-th bit of p is 1 then $\Psi^{A}(m, n, q) \downarrow$, else $\Psi^{A}(m, n, q) \uparrow$.
Let α be a reduction function such that $J^{A}(\alpha(m, n, q))=\Psi^{A}(m, n, q)$ and let h_{0} be any order. Since $h=\left\lfloor h_{0} / 2\right\rfloor$ is also an order, it is sufficient to show that there is a constant c with $C(x) \leq \hat{h}\left(C^{A}(x)\right)+c$ for almost all x, since this will imply that $C(x) \leq \hat{h}_{0}\left(C^{A}(x)\right)$ for almost all x. Choose an order b such that $b(\alpha(n, n, q)) \leq n h(|q|)$ for all n, q.

Let q_{x} be a minimal A-program for x, that is, $U^{A}\left(q_{x}\right)=x$ and $\left|q_{x}\right|=C^{A}(x)$. Let $n_{x}=C\left(x \mid q_{x}\right)$. Then $\Psi^{A}\left(m, n_{x}, q_{x}\right) \downarrow$ iff the m-th bit of p_{x} is 1 , where p_{x} is the first program such that $\left|p_{x}\right|=n_{x}$ and $\tilde{U}\left(p_{x}, q_{x}\right)=x$.

Since A^{\prime} is ω-r.e. via $b, p_{x}=A^{\prime}\left(\alpha\left(1, n_{x}, q_{x}\right)\right) \ldots A^{\prime}\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right)$ changes at most

$$
n_{x} \max \left\{b\left(\alpha\left(m, n_{x}, q_{x}\right)\right): 1 \leq m \leq n_{x}\right\} \leq n_{x} b\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right) \leq n_{x}^{2} h\left(\left|q_{x}\right|\right)
$$

many times. Since $\tilde{U}\left(p_{x}, q_{x}\right)=x$ and we can describe p_{x} with n_{x}, q_{x} and the number of changes of $A^{\prime}\left(\alpha\left(1, n_{x}, q_{x}\right)\right) \ldots A^{\prime}\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right)$, we have

$$
\begin{equation*}
n_{x}=C\left(x \mid q_{x}\right) \leq 2\left|n_{x}\right|+\left|n_{x}^{2} h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1) \leq 4\left|n_{x}\right|+\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1) . \tag{1}
\end{equation*}
$$

To finish, let us prove that for almost all $x, n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$. Since $C(x) \leq\left|q_{x}\right|+2 n_{x}+\mathcal{O}(1)$, this upper bound of n_{x} will imply that

$$
C(x) \leq\left|q_{x}\right|+h\left(\left|q_{x}\right|\right)+\mathcal{O}(1)=\hat{h}\left(C^{A}(x)\right)+\mathcal{O}(1)
$$

for almost all x, as we wanted. Hence, let us see that $n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$ for almost all x. There is a constant N such that for all $n \geq N, 8|n| \leq n$. We know that for almost all x, q_{x} satisfies $\left|h\left(\left|q_{x}\right|\right)\right| \geq N$. Suppose x has this property. Then either $n_{x} \leq\left|h\left(\left|q_{x}\right|\right)\right|$ or $4\left|n_{x}\right| \leq n_{x} / 2$. In the second case $n_{x}-4\left|n_{x}\right| \geq n_{x} / 2$ and by (1), $n_{x} / 2 \leq\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$. So, in both cases, we have $n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$.

Lemma 5.2 For all $x \in\{0,1\}^{*}$ and $d \in \mathbb{N}$,

$$
|\{y: C(x, y) \leq C(x)+d\}| \leq \mathcal{O}\left(d^{4} 2^{d}\right)
$$

Theorem 5.3 The following are equivalent:
(i) A is strongly jump-traceable;
(ii) For every order h and almost every $x, C(x) \leq C^{A}(x)+h\left(C^{A}(x)\right)$.

Proof. (ii) \Rightarrow (i). Since there are at most $2^{n}-1$ programs of length $<n$, $\forall n \exists x[|x|=n \wedge n \leq C(x)]$. Let c such that $\forall x C^{A}\left(x, J^{A}(|x|)\right) \leq|x|+c$. This last inequality holds because, given x, we can compute $J^{A}(|x|)$ relative to A.

For any function f, let $\hat{f}(y)=y+f(y)$ for all y. Let h be any order and let us prove that A is jump-traceable via h. Define the order g such that for almost all $e, 3^{g(e+c)} \leq h(e)$. By hypothesis, for almost all x, if $J^{A}(x) \downarrow$ then $C\left(x, J^{A}(|x|)\right) \leq \hat{g}\left(C^{A}\left(x, J^{A}(|x|)\right)\right) \leq|x|+g(|x|+c)+c$.

Define the trace $T_{e}=\{y: \forall x[|x|=e \Rightarrow C(x, y) \leq e+g(e+c)+c]\}$. It is clear that for almost all e, if $J^{A}(e) \downarrow$ then $J^{A}(e) \in T_{e}$, because given x such that $|x|=e$, we have $C\left(x, J^{A}(e)\right) \leq e+g(e+c)+c$. To verify that for almost all $e,\left|T_{e}\right| \leq h(e)$, suppose $y \in T_{e}$. Take $x,|x|=e$ and $C(x) \geq e$. Then

$$
C(x, y) \leq e+g(e+c)+c \leq C(x)+g(e+c)+c .
$$

By Lemma 5.2, for almost all e there are at most $3^{g(e+c)} \leq h(e)$ such y 's in T_{e}.
(i) \Rightarrow (ii). Let h_{0} be a given order. As in the proof of Theorem 5.1, it is sufficient to show that $C(x) \leq \hat{h}\left(C^{A}(x)\right)+\mathcal{O}(1)$ for almost all x, where $h=\left\lfloor h_{0} / 2\right\rfloor$. Take α and T as in Proposition 6.2 (part ii) with bound g such that $g(\alpha(x)) \leq h(|\operatorname{str}(x)|)$. Let $m \in \mathbb{N}$ be such that $U^{A}(\operatorname{str}(m))=y$ and $|\operatorname{str}(m)|=C^{A}(y)$. Since $y \in T_{\alpha(m)}$, we can code y with m and a number not greater than $g(\alpha(m))$ (representing the time in which y is enumerated into $\left.T_{\alpha(m)}\right)$, using at most $|\operatorname{str}(m)|+g(\alpha(m)) \leq C^{A}(y)+h\left(C^{A}(y)\right)$ bits. Then $\forall y C(y) \leq \hat{h}\left(C^{A}(y)\right)+\mathcal{O}(1)$.

In [9], it was proven that there is a super-low which is not jump-traceable (namely, a super-low Martin-Löf random set). In contrast, from Theorem 5.1
and Theorem 5.3 we can conclude that the strong version of super-lowness implies strong jump-traceability.
Corollary 5.4 If A^{\prime} is well-approximable then A is strongly jump-traceable.

6 Variations on K-triviality

Throughout this section, let $p: \mathbb{N} \rightarrow \mathbb{N}$ be nondecreasing such that $\lim _{n} p(n)-$ $n=\infty$. Recall that A is K-trivial iff $\exists c \forall n K(A \upharpoonright n) \leq K(n)+c$. Nies [8] showed that A is K-trivial if and only if A is low for K, i.e. $\exists c \forall x K(x) \leq$ $K^{A}(x)+c$. In this section we weaken the notion of lowness for K :
Definition 6.1 A set A is p-low iff $\forall y K(y) \leq p\left(K^{A}(y)+c_{0}\right)+c_{1}$ for some constants c_{0} and c_{1}. Let $\mathcal{M}[p]$ denote the class of such sets.

Clearly, if A is K-trivial then A is p-low and for every p (which we consider in this section). If $A \in \mathcal{M}[p]$ and $B \leq_{T} A$, then $B \in \mathcal{M}[p]$. Indeed, since $B \leq_{T}$ A, there exists a constant c_{2} such that for each string $y, K^{A}(y) \leq K^{B}(y)+c_{2}$. Then $K(y) \leq p\left(K^{A}(y)+c_{0}\right)+c_{1} \leq p\left(K^{B}(y)+c_{0}+c_{2}\right)+c_{1}$.

The following proposition states a relation between jump-traceability and p-lowness. In Theorem 5.3 we proved a similar result, involving strong jumptraceability and plain Kolmogorov complexity.
Proposition 6.2 (i) Suppose p is a recursive function. There is a constant c such that if $A \in \mathcal{M}[p]$ via constants c_{0} and c_{1} then A is jump-traceable via $h(x)=2^{p\left(2|x|+c_{0}+c\right)+c_{1}+1}$;
(ii) There is a reduction function α such that if A is jump-traceable via h then $A \in \mathcal{M}[p]$ for $p(z)=3 z+2\left|h\left(\alpha\left(2^{z+1}\right)\right)\right|$.
Proof. For (i), we know that there is a constant c such that $K^{A}\left(J^{A}(x)\right) \leq$ $2|x|+c$ because we can compute $J^{A}(x)$ from x and the oracle A. Define the trace $T_{x}=\left\{U(\sigma):|\sigma| \leq p\left(2|x|+c_{0}+c\right)+c_{1}\right\}$. Clearly $\left|T_{x}\right| \leq 2^{p\left(2|x|+c_{0}+c\right)+c_{1}+1}$. Let $y=J^{A}(x)$. By hypothesis $K(y) \leq p\left(K^{A}(y)+c_{0}\right)+c_{1}$ and then $K(y) \leq$ $p\left(2|x|+c+c_{0}\right)+c_{1}$. Hence $y \in T_{x}$.

For (ii), let α be a reduction function such that $J^{A}(\alpha(x))=U^{A}(\operatorname{str}(x))$. Let T be a trace for J^{A} with bound h and let us define the trace $\tilde{T}_{n}=$ $\bigcup_{x:|s t r(x)|=n} T_{\alpha(x)}$. Notice that $\left|\tilde{T}_{n}\right| \leq \sum_{x:|\operatorname{str}(x)|=n} h(\alpha(x)) \leq 2^{n} h\left(\alpha\left(2^{n+1}\right)\right)$, since α is increasing. Let $m \in \mathbb{N}$ be such that $U^{A}(\operatorname{str}(m))=y$ and $|\operatorname{str}(m)|=$ $K^{A}(y)$. Since $y \in T_{\alpha(m)}$, we know that $y \in \tilde{T}_{|s t r(m)|}$, hence we describe y by saying " y is the i-th element enumerated into $\tilde{T}_{|\operatorname{str}(m)|}$ ". If we code $|\operatorname{str}(m)|$ in unary and we code i with $2|i| \leq 2\left|2^{|s t r(m)|} h\left(\alpha\left(2^{|\operatorname{str}(m)|+1}\right)\right)\right| \leq 2|\operatorname{str}(m)|+$ $2\left|h\left(\alpha\left(2^{|s t r(m)|+1}\right)\right)\right|$ many bits, we have $K(y) \leq p\left(K^{A}(y)\right)+\mathcal{O}(1)$, for $p(z)=$ $3 z+2\left|h\left(\alpha\left(2^{z+1}\right)\right)\right|$.

Corollary 6.3 A is jump-traceable iff there exists a recursive function p (of the type considered in this section) such that $A \in \mathcal{M}[p]$.

Acknowledgement

The authors acknowledge support from the Marsden fund, Royal Society of New Zealand.

References

[1] K. Ambos-Spies, C. Jockusch and R. Shore, An algebraic decomposition of the recursively enumerable degrees and classes equal to the promptly simple degrees, Transactions of the American Mathematical Society 281:109-128, 1984.
[2] M. Bickford and F. Mills, Lowness properties of r.e. sets, Manuscript, UW Madison, 1982.
[3] C. Calude, P. Hertling, B. Khoussainov and Y. Wang, Recursively enumerable reals and Chaitin's Ω number, in STACS 1998, Lecture Notes in Computer Science 1373:596-606, 1998.
[4] G. Chaitin, A theory of program size formally identical to information theory, Journal of the Association for Computing Machinery 22:329-340, 1975.
[5] R. Downey, D. Hirschfeldt, A. Nies and F. Stephan, Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences, World Scientific, River Edge, NJ, pages 103-131, 2003.
[6] B. Kjos-Hanssen, W. Merkle and F. Stephan, Kolmogorov complexity and the Recursion theorem, Manuscript, 2005.
[7] J. Mohrherr, A refinement of low n and high n for the r.e. degrees, Z. Math. Logik Grundlag. Math., 32(1):5-12, 1986.
[8] A. Nies, Lowness properties and randomness, to appear in Advances in Math.
[9] A. Nies, Reals which compute little, CDMTCS Research Report 202, Dec. 2002.
[10] P.G. Odifreddi, "Classical recursion theory" Volume 1, North-Holland, Amsterdam 1989, Volume 2, Elsevier, Amsterdam 1999.
[11] R. Soare, Recursively enumerable sets and degrees, Springer, Heidelberg, 1987.
[12] S. Terwijn, D. Zambella, Algorithmic randomness and lowness, J. Symbolic Logic, 66:1199$1205,2001$.

[^0]: ${ }^{1}$ Email: sfigueir@dc.uba.ar
 ${ }^{2}$ Email: andre@cs.auckland.ac.nz
 ${ }^{3}$ Email: fstephan@comp.nus.edu.sg
 ${ }^{4}$ S. Figueira is partially supported by a grant of Fundación Antorchas.
 ${ }^{5}$ F. Stephan is partially supported by NUS grant number R252-000-212-112.

