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Abstract

We study and compare two combinatorial lowness notions: strong jump-traceability and well-
approximability of the jump, by strengthening the notion of jump-traceability and ω-r.e. for sets of
natural numbers. We prove that there is a strongly jump-traceable set which is not computable,
and that if A

′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse
holds as well. We characterize jump-traceability and the corresponding strong variant in terms of
Kolmogorov complexity, and we investigate other properties of these lowness notions.
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1 Introduction

A lowness property of a set A says that A is computational weak when used
as an oracle, and hence A is close to being computable. In this article we
study and compare some “combinatorial” lowness properties in the direction
of characterizing K-trivial sets.

A set is K-trivial when it is highly compressible in terms of Kolmogorov
complexity (see Section 2 for the formal definition). In [8], Nies proved that
a set is K-trivial if and only if A is low for Martin-Löf-random (i.e. each
Martin-Löf-random set is already random relative to A).

Terwijn and Zambella [12] defined a set A to be recursively traceable if
there is a recursive bound p such that for every f ≤T A, there is a recursive r
such that for all x, |Dr(x)| ≤ p(x), and (Dr(x))x∈N is a set of possible values of
f : for all x, we have and f(x) ∈ Dr(x). They showed that this combinatorial
notion characterizes the sets that are low for Schnorr tests.

This property was modified in [9] to jump-traceability. A set A is jump
traceable if its jump at argument e, written JA(e) = {e}A(e), has few possible
values.

Definition 1.1 A uniformly r.e. family T = {T0, T1, . . .} of sets of natural
numbers is a trace if there is a recursive function h such that ∀n |Tn| ≤ h(n).
We say that h is a bound for T . The set A is jump-traceable if there is a trace
T such that ∀e [JA(e) ↓ ⇒ JA(e) ∈ Te]. We say that A is jump traceable via

a function h if, additionally, T has bound h.

Another notion studied in [9] is super-lowness, first introduced in [2,7].

Definition 1.2 A set A is ω-r.e. iff there exists a recursive function b such
that A(x) = lims→∞ g(x, s) for a recursive {0, 1}-valued g such that g(x, s)
changes at most b(x) times. In this case, we say that A is ω-r.e. via the

function g and bound b. A is super-low iff A′ is ω-r.e.

Both jump-traceable and super-low sets are closed downward under Turing
reducibility and imply being generalized low (i.e. A′ ≤ A ⊕ ∅′). In [9] jump-
traceability and super-lowness were studied and compared, proving that these
two lowness notions coincide within the r.e. sets but that none of them implies
the other within the ω-r.e. sets.

In this article, we define the notions of strong jump-traceability (see Defi-
nition 3.2) and well-approximability (see Definition 4.1), by strengthening the
notions of jump-traceability and ω-r.e., respectively. A special emphasis is
given to the case where the jump of A is ω-r.e. The strong variant of these
notions consider all orders as the bound instead of just some recursive bound.
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Here, an order is a slowly growing but unbounded recursive function (see
Definition 3.1). Among our main results are:

• There is a non-computable strongly jump-traceable set;

• If A′ is well-approximable then A is strongly jump-traceable. The converse
also holds, if A is r.e.

Our approach is used to study interesting lowness properties related to plain
and prefix-free Kolmogorov complexity. We investigate the properties of sets
A such that the Kolmogorov complexity relative to A is only a bit smaller than
the unrelativized one. We prove some characterizations of jump-traceability
and its strong variant in terms of prefix-free (denoted with K) and plain
(denoted with C) Kolmogorov complexity, respectively:

• A is jump-traceable if and only if there is a recursive p, growing faster than
linearly such that K(y) is bounded by p(KA(y)+c0)+c1, for some constants
c0 and c1;

• A is strongly jump-traceable if and only if C(x) − CA(x) is bounded by
h(CA(x)), for every order h and almost all x.

We know that K-triviality implies jump-traceability, but it is unknown whe-
ther K-triviality implies strong jump-traceability. The reverse direction is also
open.

2 Basic definitions

If A is a set of natural numbers then A(x) = 1 if x ∈ A; otherwise A(x) =
0. We denote with A � n the string of length n which consists of the bits
A(0) . . .A(n − 1).

If A is given a ∆0
2-approximation and Ψ is a functional, we write ΨA(e)[s]

for ΨAs

s (e). From a partial recursive functional Ψ, one can effectively obtain
a primitive recursive and strictly increasing function α, called a reduction

function for Ψ, such that ∀X ∀e ΨX(e) = JX(α(e)).

For each real A, we want to define KA(y) as the length of a shortest prefix-
free description of y using oracle A. An oracle machine is a partial recursive
functional M : {0, 1}∞ × {0, 1}∗ �→ {0, 1}∗. We write MA(x) for M(A, x).
M is an oracle prefix-free machine if the domain of MA is an antichain under
inclusion of strings, for each A. Let (Md)d∈N be an effective listing of all oracle
prefix-free machines. The universal oracle prefix-free machine U is given by
UA(0d1σ) = MA

d (σ) and the prefix-free Kolmogorov complexity relative to A
is defined as KA(y) = min{|σ|: UA(σ) = y}, where |σ| denotes the length
of σ. If A = ∅, we simply write U(σ) and K(y). As usual, U(σ)[s] ↓= y
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indicates that U(σ) = y and the computation takes at most s steps. We say
that A ∈ {0, 1}∞ is Martin-Löf random iff ∃c ∀n K(A � n) > n − c. A set A
is K-trivial iff ∃c ∀n K(A � n) ≤ K(n) + c.

The Kraft-Chaitin Theorem states that from a computably enumerable
sequence of pairs (〈ni, σi〉)i∈N (known as axioms) such that

∑
i∈N

2−ni ≤ 1, we
can effectively obtain a prefix-free machine M such that for each i there is a
τi of length ni with M(τi) ↓= σi, and M(ρ) ↑ unless ρ = τi for some i.

If we drop the condition of the domain of MA being an antichain, we
obtain a similar notion, called plain Kolmogorov complexity and denoted by
C. Hence, CA(y) will denote the length of the shortest description of y using
oracle A, when we do not have the restriction on the domain

A binary machine is a partial recursive function M̃ : {0, 1}∗ × {0, 1}∗ �→
{0, 1}∗. Let Ũ be a binary universal function i.e. Ũ(0d1σ, x) = M̃d(σ, x), where
(M̃d)d∈N is an enumeration of all partial recursive functions of two arguments.
We define the plain conditional Kolmogorov complexity C(y|x) as the length
of the shortest description of y using Ũ with string x as the second argument,
i.e. C(y|x) = min{|σ|: Ũ(σ, x) = y}.

Let str : N → {0, 1}∗ be the standard enumeration of the strings. The
string str(n) is that binary sequence b0b1 . . . bm for which the binary number
1b0b1 . . . bm has the value n + 1. Thus, str(0) = λ, str(1) = 0, str(2) = 1,
str(3) = 00, str(4) = 01 and so on.

3 Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a
recursive function p and an effective approximation (As)s∈N of A such that, for
each e, if |We| = ∞ then ∃s ∃x [x ∈ We,s \We,s ∧ x ∈ Ap(s) \Ap(s)−1]. In this
section, we introduce a stronger version of jump-traceability and we prove that
there is a promptly simple (hence non recursive) strongly jump-traceable set.
We also prove that there is no maximal order as bound for jump-traceability.

Definition 3.1 A function h: N → N
+ is an order iff h is recursive, ∀x h(x) ≤

h(x + 1) and limx→∞ h(x) = ∞.

Notice that any reduction function is an order.

Definition 3.2 A set A is strongly jump-traceable iff for each order h, A is
jump traceable via h.

Clearly, strong jump-traceability implies jump-traceability and it is not dif-
ficult to see that strong jump-traceability is closed downward under Turing
reducibility.
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Notice that if A is recursive then A is strongly jump-traceable because we
can trace the jump by Te = {JA(e)} if JA(e) ↓ and Te = ∅ otherwise.

Theorem 3.4 below shows that the converse is not true. To prove it, we
need the following Lemma which states that there is a function growing slower
than all orders which is recursively approximable from above.

Lemma 3.3 There exists g: N → N such that

(i) ∀x g(x) = lims→∞ gs(x), where g(s, x) = gs(x) is recursive and gs(x) ≥
gs+1(x);

(ii) limx→∞ g(x) = ∞;

(iii) For all orders h, g(x) ≤ h(x) for almost all x.

Proof. Define Gs(x) = x+max{ϕe,s(y) : ϕe,s(y) ↓ ∧ e ≤ x ∧ y ≤ x}. Clearly,
G(s, x) = Gs(x) is recursive and it is easy to see that for all x, Gs(x) ≤ Gs+1(x)
and for all s, Gs(x) < Gs(x + 1). Also Gs(x) ≥ ϕe,s(x) for all e ≤ x. Let us
define G = lims→∞ Gs. Then G grows faster than any recursive function, that
is, if ϕe(x) is defined, then G(x) ≥ ϕe(x) for all e ≤ x.

Let us define now the “inverse of G” as follows: gs(y) = max{x: Gs(x) ≤ y}
if Gs(0) ≤ y and gs(y) = 0 otherwise; we also define g = lims→∞ gs. Since Gs

is recursive and monotone increasing in x, gs is recursive and gs ≥ gs+1. This
proves (i).

Also g is unbounded because G is. Hence, (ii) is satisfied.

For (iii), let h be any order. The function H(x) = min{y: h(y) ≥ x} is
recursive because h is unbounded by hypothesis. Then, there is e such that
H = ϕe. By the construction of G, ∀x [x ≥ e ⇒ G(x) ≥ H(x)]. We will
prove that g(y) = max{x: G(x) ≤ y} ≤ h(y) for all y ≥ G(e) and g(y) ≥ e.
Fix y ≥ G(e) and suppose that x ≥ e and G(x) ≤ y. Since h is monotone,
h(G(x)) ≤ h(y) and since H is below G beyond e, h(H(x)) ≤ h(G(x)). By
the definition of H , h(H(x)) ≥ x, so finally we obtain x ≤ h(y). �

Theorem 3.4 There exist a promptly simple strongly jump-traceable set.

Proof. We construct a promptly simple set A in stages satisfying the require-
ments

Pe : |We| = ∞ ⇒ ∃s∃x [x ∈ We,s \ We,s−1 ∧ x ∈ As \ As−1].

During the construction, Pe may destroy JA(k) at stage s only if e < gs(k).

Construction of A. Let gs be the one defined in Lemma 3.3.

Stage 0: set A0 = ∅.

Stage s + 1: choose the least e ≤ s such that

• Pe yet not satisfied;

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 49



• There exists x such that x ∈ We,s+1 \ We,s, x > 2e and for all k such that
gs(k) ≤ e, if JA(k)[s] is defined then x is greater than the use of JA(k)[s].

If such e exists, put least such x for e into As+1. We say that Pe receives

attention at stage s + 1, and declare Pe satisfied. Otherwise, As+1 = As.
Finally, define A =

⋃
s As.

Verification. Clearly, Pe receives attention at most once. So we can use below
the fact that every requirement influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order h. We will
prove that there exists an r.e. trace T for JA as in Definition 1.1. Let h be any
order. By Lemma 3.3, there exists k0 such that for all k ≥ k0, g(k) ≤ h(k).
Define the recursive function f(k) = min{s: gs(k) ≤ h(k)} if k ≥ k0 and
f(k) = 0 otherwise. For k ≥ k0 and s ≥ f(k), gs(k) will be below h(k), so
JA(k) may change because Pe receives attention, for e < gs(k) ≤ h(k). Since
each Pe receives attention at most once, JA(k) can change at most h(k) times
after stage f(k). So

Tk =

{
{JA(k)[s]: JA(k)[s] ↓ ∧ s ≥ f(k)} if k ≥ k0;
{JA(k)} if JA(k) ↓ ∧ k < k0;
∅ otherwise.

is as required.

Fix e such that We is infinite and let us see that Pe is met. Let s such that
∀k [g(k) ≤ e ⇒ gs(k) = g(k)] and s′ > s such that no Pi receives attention
after stage s′ for any i < e. Then, by the construction, no computation JA(k),
g(k) ≤ e can be destroyed after stage s′. So there is t > s′ such that for all k
where gt(k) ≤ e, if JA(k) converges then the computation is stable from stage
t on. Choose t′ ≥ t such that there is x ∈ We,t′+1 \ We,t′, x > 2e and x is
greater than the use of all converging JA(k) for all k where gt′(k) ≤ e. Now
either Pe was already satisfied or Pe receives attention at stage t′+1. In either
case Pe is met. �

We investigate about the existence of a maximal bound for jump-traceability.
Given an order h, is it always possible to find a jump-traceable set A for
which h is too small to be a bound for any trace for the jump of A? The next
Theorem answers this question positively.

Theorem 3.5 For any order h there is an r.e. set A and an order h̃ such

that A is jump-traceable via h̃ but not via h.

Proof. We will define an auxiliary functional Ψ and we use α, the reduction
function for Ψ (i.e. ΨX(e) = JX(α(e)) for all X and e), in advance by the
Recursion Theorem. At the same time, we will define an r.e. set A and a trace
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T̃ for JA. Finally, we will verify that there is an order h̃ as stated.

Let T (0), T (1), . . . be an enumeration of all the traces with bound h, so
that T (e) = {T (e)0, T (e)1, . . .}, the e-th such trace, is as in Definition 1.1.
Requirement Pe tries to show that JA is not traceable via the trace T (e) with
bound h, that is,

Pe : ∃x ΨA(x) /∈ T (e)α(x)

and requirement Ne tries to stabilize the jump when it becomes defined, i.e.

Ne : [∃∞s JA(e)[s] ↓] ⇒ JA(e) ↓ .

The strategy for a single procedure Pe consists of an initial action and a
possible later action.

Initial action at stage s + 1:

• Choose a new candidate xe = 〈e, n〉, where n is the number of times that
Pe has been initialized. Define ΨA(xe)[s + 1] = 0 with large use.

Action at stage s + 1:

• Let xe = 〈e, n〉 be the current candidate. Put y into As+1, where y is the
use of the defined ΨA(xe)[s]. Notice that this action will not affect JA(i)[s]
for i < e because of the choice of y;

• Define ΨA(xe)[s + 1] = ΨA(xe)[s] + 1 with use y′ > y and greater than the
use of all defined computations of JA(i)[s + 1] for i < e.

We say that Pe requires attention at stage s+1 if ΨA(xe)[s] ∈ T (e)α(xe)[s] and
we say that Ne requires attention at stage s + 1 if JA(e)[s] becomes defined
for the first time.

We define T̃ = {T̃0, T̃1, . . .} by stages. The s-th stage of T̃i will be denoted
by T̃i[s]. We start with A0 = ∅ and T̃i[0] = ∅ for all i. At stage s + 1 we
consider the procedures Nj for j ≤ s and Pj for j < s. We also initialize
the new Ps. We look at the least procedure requiring attention in the order
P0, N0, . . . , Ps, Ns. If there is no one, do nothing. Otherwise, suppose Pe is
the first one. We let Pe take action at s + 1, changing A below the use of
ΨA(xe)[s] and redefining ΨA(xe)[s + 1] without affecting Ni for i < e. We
keep the other computations of Pj with the new definition of A, for j �= i and
large use. If Ne is the least procedure requiring attention, there is y such that
JA(e)[s] ↓= y. We put y into T̃e[s + 1] and initialize Pj for e < j ≤ s. In this
case, we say that Ne acts.

Let us prove that Pe is met. Take s such that all JA(i) are stable for i < e.
Suppose xe is the actual candidate of Pe. Since Pe is not going to be initialized
again, xe is the last candidate it picks. Each time ΨA(xe)[t] ∈ T (e)α(xe)[t] for
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t > s, Pe acts and changes the definition of ΨA(xe) to escape from T (e)α(xe).
Since |T (e)α(xe)| ≤ h(α(xe)), there is s′ > s such that T (e)α(xe)[s

′] = T (e)α(xe).
By construction, ΨA(xe)[s

′ + 1] /∈ T (e)α(xe) and ΨA(xe)[s
′ + 1] is stable.

We say that Ne is injured at stage s+1 if we put y into As+1 and y is ≤ the
use of JA(e)[s]. We define cP (k) as a bound for the number of initializations
of Pr, for r ≤ k; and define cN (k) as a bound for the number of injuries to
Nr, for r ≤ k. Since P0 is initialized just once and makes at most h(〈0, 0〉)
changes in A, cP (0) = 1 and cN (0) = h(〈0, 0〉). The number of times that Pk+1

is initialized is bounded by the number of times that Nr acts, for r ≤ k, so
cP (k + 1) = cP (k) + cN(k). Each time Nr is injured, for r ≤ k then Nk+1 may
also be injured; additionally, Nk+1 may be injured each time Pk+1 changes A.
The latter occurs at most h(〈k+1, i〉) for the i-th initialization of Pk+1. Hence
cN(k + 1) = 2cN(k) +

∑
i≤cP (k+1) h(〈k + 1, i〉).

Once Ne is not injured anymore, if JA(e) ↓ then JA(e) ∈ T̃e. Since the
number of changes of JA(k) is at most the number of injuries to Ne, we define
the function h̃(e) = cN(e) which is clearly an order and it constitutes a bound
for the trace (T̃i)i∈N. �

It is still open if there is no minimal bound for jump-traceability, i.e. it is
unknown if given an order h there is a set A and an order h̃ such that A is
jump-traceable via h but not via h̃.

4 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to
strongly jump-traceable.

Definition 4.1 A set A is well-approximable iff for each order b, A is ω-r.e.
via b.

Clearly, if A′ is well-approximable, then A is super low and it is not difficult
to see that well-approximability is closed downward under Turing reducibility.
We next prove that if A is r.e. then A is strongly jump-traceable iff A′ is
well-approximable. We first need the following lemmas.

Lemma 4.2 Let f and f̂ be orders such that f(x) ≤ f̂(x) for almost all x.

(i) If A is jump-traceable via f then A is jump traceable via f̂ ;

(ii) If A is well-approximable via f then A is well-approximable via f̂ .

Lemma 4.3 There exists a recursive γ such that for all r.e. A:

(i) If A is jump-traceable via an order h then A is super-low via the order

b(x) = 2h(γ(x)) + 2;
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(ii) If A is super-low via an order b then A is jump-traceable via the order

h(x) = �1
2
b(γ(x))�.

Proof. Follow the proof of [9, Theorem 4.1], together with Lemma 4.3. �

Theorem 4.4 Let A be an r.e. set. Then the following are equivalent:

(i) A is strongly jump-traceable;

(ii) A′ is well-approximable.

Proof. (i)⇒(ii). Given an order b, let us prove that A is super-low via b. By
part i of Lemma 4.3, it suffices to define an order h such that 2h(γ(x)) + 2 ≤

b(x) for almost all x. If b(x) ≥ 4 then define h(γ(x)) = � b(x)−2
2

� and if
b(x) < 4, define h(γ(x)) = 1. Since γ can be taken strictly monotone, the
above definition is correct and we can complete it to make h an order.

(ii)⇒(i). Given an order h, we will prove that A is jump-traceable via h. By
part ii of Lemma 4.3, it suffices to define an order b such that �1

2
b(γ(x))� ≤ h(x)

for almost all x. The argument is similar to the previous case. �

Later, in Corollary 5.4, we will improve this result and we will see that, in
fact, the implication (ii)⇒(i) holds for any A.

We finish this section by proving that the prefixes A � n of a well-approx-
imable set A have low Kolmogorov complexity of order logarithmic in n. Hence
A is not Martin-Löf random and furthermore, the effective Hausdorff dimen-
sion is 0. The latter is just equivalent of saying that there is no c > 0 such
that cn is a linear lower bound for the prefix-free Kolmogorov complexity of
A � n for almost all n.

Theorem 4.5 If A is well-approximable then for almost all n, K(A � n) ≤
4|n|.

Proof. Suppose A(n) = lims→∞ g(n, s), where g is recursive and changes at
most n times. Given n, there is a unique s and some m < n such that
g(m, s) �= g(m + 1, s) but g(q, t) = g(q, t + 1) for all t > s and q < n. That is,
s is the time when g converges on below n and m is the place where the last
change takes place. The stage s can be computed from m and the number k
of stages with g(m, t + 1) �= g(m, t). So one can compute A � n from m, n, k.
Since k, m ≤ n, one can, for almost all n, code m, n, k in a prefix-free way in
4|n| many bits. This is done by using a prefix of the form 1q0 followed by 2q
bits representing n, 2q bits representing m and 2q bits representing k as binary
numbers; here q is just the smallest number such that 2q bits are enough. Since
k, m ≤ n and since 2q ≤ |n|+ c for some constant c and since the additionally
necessary coding needed to transform the above representation into a program
for U is bounded by a constant, we have that there is a constant d such that
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∀n K(A � n) ≤ 3|n| + |n|/2 + d and then the relation K(A � n) ≤ 4|n| holds
for almost all n. In fact, using binary notation to store q instead of 1q0, it
would even give K(A � n) ≤ 3(|n| + log(|n|)) for almost all n. �

5 Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of plain Kol-
mogorov complexity and we show that if A′ is well-approximable then A is
strongly jump-traceable for any set A.

Theorem 5.1 If A′ is well-approximable then for every order h and almost

all x, C(x) ≤ CA(x) + h(CA(x)).

Proof. For any function f , let define f̂(y) = y+f(y) for all y. Let ΨA(m, n, q)
be a functional which does the following:

(i) Compute x = UA(q). If UA(q) ↑ then ΨA(m, n, q) ↑;

(ii) Find the first program p such that |p| = n and Ũ(p, q) = x. If there is no
such p then ΨA(m, n, q) ↑;

(iii) In case m /∈ [1, n] then ΨA(m, n, q) ↑. Otherwise, if the m-th bit of p is 1
then ΨA(m, n, q) ↓, else ΨA(m, n, q) ↑.

Let α be a reduction function such that JA(α(m, n, q)) = ΨA(m, n, q) and let
h0 be any order. Since h = �h0/2� is also an order, it is sufficient to show that
there is a constant c with C(x) ≤ ĥ(CA(x))+ c for almost all x, since this will
imply that C(x) ≤ ĥ0(C

A(x)) for almost all x. Choose an order b such that
b(α(n, n, q)) ≤ nh(|q|) for all n, q.

Let qx be a minimal A-program for x, that is, UA(qx) = x and |qx| = CA(x).
Let nx = C(x|qx). Then ΨA(m, nx, qx) ↓ iff the m-th bit of px is 1, where px

is the first program such that |px| = nx and Ũ(px, qx) = x.

Since A′ is ω-r.e. via b, px = A′(α(1, nx, qx)) . . . A′(α(nx, nx, qx)) changes
at most

nx max{b(α(m, nx, qx)): 1 ≤ m ≤ nx} ≤ nxb(α(nx, nx, qx)) ≤ n2
xh(|qx|)

many times. Since Ũ(px, qx) = x and we can describe px with nx, qx and the
number of changes of A′(α(1, nx, qx)) . . . A′(α(nx, nx, qx)), we have

nx = C(x|qx) ≤ 2|nx| + |n2
xh(|qx|)| + O(1) ≤ 4|nx| + |h(|qx|)| + O(1).(1)

To finish, let us prove that for almost all x, nx ≤ 2|h(|qx|)| + O(1). Since
C(x) ≤ |qx| + 2nx + O(1), this upper bound of nx will imply that

C(x) ≤ |qx| + h(|qx|) + O(1) = ĥ(CA(x)) + O(1),
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for almost all x, as we wanted. Hence, let us see that nx ≤ 2|h(|qx|)| + O(1)
for almost all x. There is a constant N such that for all n ≥ N , 8|n| ≤ n.
We know that for almost all x, qx satisfies |h(|qx|)| ≥ N . Suppose x has this
property. Then either nx ≤ |h(|qx|)| or 4|nx| ≤ nx/2. In the second case
nx − 4|nx| ≥ nx/2 and by (1), nx/2 ≤ |h(|qx|)| + O(1). So, in both cases, we
have nx ≤ 2|h(|qx|)| + O(1). �

Lemma 5.2 For all x ∈ {0, 1}∗ and d ∈ N,

|{y : C(x, y) ≤ C(x) + d}| ≤ O(d42d).

Theorem 5.3 The following are equivalent:

(i) A is strongly jump-traceable;

(ii) For every order h and almost every x, C(x) ≤ CA(x) + h(CA(x)).

Proof. (ii)⇒(i). Since there are at most 2n − 1 programs of length < n,
∀n ∃x [|x| = n ∧ n ≤ C(x)]. Let c such that ∀x CA(x, JA(|x|)) ≤ |x| + c.
This last inequality holds because, given x, we can compute JA(|x|) relative
to A.

For any function f , let f̂(y) = y + f(y) for all y. Let h be any order and
let us prove that A is jump-traceable via h. Define the order g such that for
almost all e, 3g(e+c) ≤ h(e). By hypothesis, for almost all x, if JA(x) ↓ then
C(x, JA(|x|)) ≤ ĝ(CA(x, JA(|x|))) ≤ |x| + g(|x| + c) + c.

Define the trace Te = {y: ∀x [|x| = e ⇒ C(x, y) ≤ e + g(e + c) + c]}. It is
clear that for almost all e, if JA(e) ↓ then JA(e) ∈ Te, because given x such
that |x| = e, we have C(x, JA(e)) ≤ e + g(e+ c)+ c. To verify that for almost
all e, |Te| ≤ h(e), suppose y ∈ Te. Take x, |x| = e and C(x) ≥ e. Then

C(x, y) ≤ e + g(e + c) + c ≤ C(x) + g(e + c) + c.

By Lemma 5.2, for almost all e there are at most 3g(e+c) ≤ h(e) such y’s in Te.

(i)⇒(ii). Let h0 be a given order. As in the proof of Theorem 5.1, it
is sufficient to show that C(x) ≤ ĥ(CA(x)) + O(1) for almost all x, where
h = �h0/2�. Take α and T as in Proposition 6.2 (part ii) with bound g such
that g(α(x)) ≤ h(|str(x)|). Let m ∈ N be such that UA(str(m)) = y and
|str(m)| = CA(y). Since y ∈ Tα(m), we can code y with m and a number not
greater than g(α(m)) (representing the time in which y is enumerated into
Tα(m)), using at most |str(m)| + g(α(m)) ≤ CA(y) + h(CA(y)) bits. Then

∀y C(y) ≤ ĥ(CA(y)) + O(1). �

In [9], it was proven that there is a super-low which is not jump-traceable
(namely, a super-low Martin-Löf random set). In contrast, from Theorem 5.1
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and Theorem 5.3 we can conclude that the strong version of super-lowness
implies strong jump-traceability.

Corollary 5.4 If A′ is well-approximable then A is strongly jump-traceable.

6 Variations on K -triviality

Throughout this section, let p : N → N be nondecreasing such that limn p(n)−
n = ∞. Recall that A is K-trivial iff ∃c ∀n K(A � n) ≤ K(n) + c. Nies [8]
showed that A is K-trivial if and only if A is low for K, i.e. ∃c ∀x K(x) ≤
KA(x) + c. In this section we weaken the notion of lowness for K:

Definition 6.1 A set A is p-low iff ∀y K(y) ≤ p(KA(y) + c0) + c1 for some
constants c0 and c1. Let M[p] denote the class of such sets.

Clearly, if A is K-trivial then A is p-low and for every p (which we consider in
this section). If A ∈ M[p] and B ≤T A, then B ∈ M[p]. Indeed, since B ≤T

A, there exists a constant c2 such that for each string y, KA(y) ≤ KB(y)+ c2.
Then K(y) ≤ p(KA(y) + c0) + c1 ≤ p(KB(y) + c0 + c2) + c1.

The following proposition states a relation between jump-traceability and
p-lowness. In Theorem 5.3 we proved a similar result, involving strong jump-
traceability and plain Kolmogorov complexity.

Proposition 6.2 (i) Suppose p is a recursive function. There is a constant

c such that if A ∈ M[p] via constants c0 and c1 then A is jump-traceable

via h(x) = 2p(2|x|+c0+c)+c1+1;

(ii) There is a reduction function α such that if A is jump-traceable via h
then A ∈ M[p] for p(z) = 3z + 2|h(α(2z+1))|.

Proof. For (i), we know that there is a constant c such that KA(JA(x)) ≤
2|x| + c because we can compute JA(x) from x and the oracle A. Define the
trace Tx = {U(σ): |σ| ≤ p(2|x|+ c0 + c) + c1}. Clearly |Tx| ≤ 2p(2|x|+c0+c)+c1+1.
Let y = JA(x). By hypothesis K(y) ≤ p(KA(y) + c0) + c1 and then K(y) ≤
p(2|x| + c + c0) + c1. Hence y ∈ Tx.

For (ii), let α be a reduction function such that JA(α(x)) = UA(str(x)).
Let T be a trace for JA with bound h and let us define the trace T̃n =⋃

x:|str(x)|=n Tα(x). Notice that |T̃n| ≤
∑

x:|str(x)|=n h(α(x)) ≤ 2nh(α(2n+1)),

since α is increasing. Let m ∈ N be such that UA(str(m)) = y and |str(m)| =
KA(y). Since y ∈ Tα(m), we know that y ∈ T̃|str(m)|, hence we describe y by

saying “y is the i-th element enumerated into T̃|str(m)|”. If we code |str(m)|
in unary and we code i with 2|i| ≤ 2|2|str(m)|h(α(2|str(m)|+1))| ≤ 2|str(m)| +
2|h(α(2|str(m)|+1))| many bits, we have K(y) ≤ p(KA(y)) + O(1), for p(z) =
3z + 2|h(α(2z+1))|. �

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5756



Corollary 6.3 A is jump-traceable iff there exists a recursive function p (of
the type considered in this section) such that A ∈ M[p].
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