
Lowness Properties and

Approximations of the Jump

Santiago Figueira1 ,4

Department of Computer Science, FCEyN
University of Buenos Aires

Argentina

André Nies2

Department of Computer Science
University of Auckland

New Zealand

Frank Stephan3 ,5

Departments of Computer Science and Mathematics
National University of Singapore

Singapore

Abstract

We study and compare two combinatorial lowness notions: strong jump-traceability and well-
approximability of the jump, by strengthening the notion of jump-traceability and ω-r.e. for sets of
natural numbers. We prove that there is a strongly jump-traceable set which is not computable,
and that if A

′ is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse
holds as well. We characterize jump-traceability and the corresponding strong variant in terms of
Kolmogorov complexity, and we investigate other properties of these lowness notions.

Keywords: Lowness, traceability, ω-r.e., K-triviality, Kolmogorov complexity

1 Email: sfigueir@dc.uba.ar
2 Email: andre@cs.auckland.ac.nz
3 Email: fstephan@comp.nus.edu.sg
4 S. Figueira is partially supported by a grant of Fundación Antorchas.
5 F. Stephan is partially supported by NUS grant number R252–000–212–112.

Electronic Notes in Theoretical Computer Science 143 (2006) 45–57

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.05.025
Open access under CC BY-NC-ND license.

mailto:sfigueir@dc.uba.ar
mailto:andre@cs.auckland.ac.nz
mailto:fstephan@comp.nus.edu.sg
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

A lowness property of a set A says that A is computational weak when used
as an oracle, and hence A is close to being computable. In this article we
study and compare some “combinatorial” lowness properties in the direction
of characterizing K-trivial sets.

A set is K-trivial when it is highly compressible in terms of Kolmogorov
complexity (see Section 2 for the formal definition). In [8], Nies proved that
a set is K-trivial if and only if A is low for Martin-Löf-random (i.e. each
Martin-Löf-random set is already random relative to A).

Terwijn and Zambella [12] defined a set A to be recursively traceable if
there is a recursive bound p such that for every f ≤T A, there is a recursive r
such that for all x, |Dr(x)| ≤ p(x), and (Dr(x))x∈N is a set of possible values of
f : for all x, we have and f(x) ∈ Dr(x). They showed that this combinatorial
notion characterizes the sets that are low for Schnorr tests.

This property was modified in [9] to jump-traceability. A set A is jump
traceable if its jump at argument e, written JA(e) = {e}A(e), has few possible
values.

Definition 1.1 A uniformly r.e. family T = {T0, T1, . . .} of sets of natural
numbers is a trace if there is a recursive function h such that ∀n |Tn| ≤ h(n).
We say that h is a bound for T . The set A is jump-traceable if there is a trace
T such that ∀e [JA(e) ↓ ⇒ JA(e) ∈ Te]. We say that A is jump traceable via

a function h if, additionally, T has bound h.

Another notion studied in [9] is super-lowness, first introduced in [2,7].

Definition 1.2 A set A is ω-r.e. iff there exists a recursive function b such
that A(x) = lims→∞ g(x, s) for a recursive {0, 1}-valued g such that g(x, s)
changes at most b(x) times. In this case, we say that A is ω-r.e. via the

function g and bound b. A is super-low iff A′ is ω-r.e.

Both jump-traceable and super-low sets are closed downward under Turing
reducibility and imply being generalized low (i.e. A′ ≤ A ⊕ ∅′). In [9] jump-
traceability and super-lowness were studied and compared, proving that these
two lowness notions coincide within the r.e. sets but that none of them implies
the other within the ω-r.e. sets.

In this article, we define the notions of strong jump-traceability (see Defi-
nition 3.2) and well-approximability (see Definition 4.1), by strengthening the
notions of jump-traceability and ω-r.e., respectively. A special emphasis is
given to the case where the jump of A is ω-r.e. The strong variant of these
notions consider all orders as the bound instead of just some recursive bound.

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5746

Here, an order is a slowly growing but unbounded recursive function (see
Definition 3.1). Among our main results are:

• There is a non-computable strongly jump-traceable set;

• If A′ is well-approximable then A is strongly jump-traceable. The converse
also holds, if A is r.e.

Our approach is used to study interesting lowness properties related to plain
and prefix-free Kolmogorov complexity. We investigate the properties of sets
A such that the Kolmogorov complexity relative to A is only a bit smaller than
the unrelativized one. We prove some characterizations of jump-traceability
and its strong variant in terms of prefix-free (denoted with K) and plain
(denoted with C) Kolmogorov complexity, respectively:

• A is jump-traceable if and only if there is a recursive p, growing faster than
linearly such that K(y) is bounded by p(KA(y)+c0)+c1, for some constants
c0 and c1;

• A is strongly jump-traceable if and only if C(x) − CA(x) is bounded by
h(CA(x)), for every order h and almost all x.

We know that K-triviality implies jump-traceability, but it is unknown whe-
ther K-triviality implies strong jump-traceability. The reverse direction is also
open.

2 Basic definitions

If A is a set of natural numbers then A(x) = 1 if x ∈ A; otherwise A(x) =
0. We denote with A � n the string of length n which consists of the bits
A(0) . . .A(n − 1).

If A is given a ∆0
2-approximation and Ψ is a functional, we write ΨA(e)[s]

for ΨAs

s (e). From a partial recursive functional Ψ, one can effectively obtain
a primitive recursive and strictly increasing function α, called a reduction

function for Ψ, such that ∀X ∀e ΨX(e) = JX(α(e)).

For each real A, we want to define KA(y) as the length of a shortest prefix-
free description of y using oracle A. An oracle machine is a partial recursive
functional M : {0, 1}∞ × {0, 1}∗ �→ {0, 1}∗. We write MA(x) for M(A, x).
M is an oracle prefix-free machine if the domain of MA is an antichain under
inclusion of strings, for each A. Let (Md)d∈N be an effective listing of all oracle
prefix-free machines. The universal oracle prefix-free machine U is given by
UA(0d1σ) = MA

d (σ) and the prefix-free Kolmogorov complexity relative to A
is defined as KA(y) = min{|σ|: UA(σ) = y}, where |σ| denotes the length
of σ. If A = ∅, we simply write U(σ) and K(y). As usual, U(σ)[s] ↓= y

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 47

indicates that U(σ) = y and the computation takes at most s steps. We say
that A ∈ {0, 1}∞ is Martin-Löf random iff ∃c ∀n K(A � n) > n − c. A set A
is K-trivial iff ∃c ∀n K(A � n) ≤ K(n) + c.

The Kraft-Chaitin Theorem states that from a computably enumerable
sequence of pairs (〈ni, σi〉)i∈N (known as axioms) such that

∑
i∈N

2−ni ≤ 1, we
can effectively obtain a prefix-free machine M such that for each i there is a
τi of length ni with M(τi) ↓= σi, and M(ρ) ↑ unless ρ = τi for some i.

If we drop the condition of the domain of MA being an antichain, we
obtain a similar notion, called plain Kolmogorov complexity and denoted by
C. Hence, CA(y) will denote the length of the shortest description of y using
oracle A, when we do not have the restriction on the domain

A binary machine is a partial recursive function M̃ : {0, 1}∗ × {0, 1}∗ �→
{0, 1}∗. Let Ũ be a binary universal function i.e. Ũ(0d1σ, x) = M̃d(σ, x), where
(M̃d)d∈N is an enumeration of all partial recursive functions of two arguments.
We define the plain conditional Kolmogorov complexity C(y|x) as the length
of the shortest description of y using Ũ with string x as the second argument,
i.e. C(y|x) = min{|σ|: Ũ(σ, x) = y}.

Let str : N → {0, 1}∗ be the standard enumeration of the strings. The
string str(n) is that binary sequence b0b1 . . . bm for which the binary number
1b0b1 . . . bm has the value n + 1. Thus, str(0) = λ, str(1) = 0, str(2) = 1,
str(3) = 00, str(4) = 01 and so on.

3 Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a
recursive function p and an effective approximation (As)s∈N of A such that, for
each e, if |We| = ∞ then ∃s ∃x [x ∈ We,s \We,s ∧ x ∈ Ap(s) \Ap(s)−1]. In this
section, we introduce a stronger version of jump-traceability and we prove that
there is a promptly simple (hence non recursive) strongly jump-traceable set.
We also prove that there is no maximal order as bound for jump-traceability.

Definition 3.1 A function h: N → N
+ is an order iff h is recursive, ∀x h(x) ≤

h(x + 1) and limx→∞ h(x) = ∞.

Notice that any reduction function is an order.

Definition 3.2 A set A is strongly jump-traceable iff for each order h, A is
jump traceable via h.

Clearly, strong jump-traceability implies jump-traceability and it is not dif-
ficult to see that strong jump-traceability is closed downward under Turing
reducibility.

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5748

Notice that if A is recursive then A is strongly jump-traceable because we
can trace the jump by Te = {JA(e)} if JA(e) ↓ and Te = ∅ otherwise.

Theorem 3.4 below shows that the converse is not true. To prove it, we
need the following Lemma which states that there is a function growing slower
than all orders which is recursively approximable from above.

Lemma 3.3 There exists g: N → N such that

(i) ∀x g(x) = lims→∞ gs(x), where g(s, x) = gs(x) is recursive and gs(x) ≥
gs+1(x);

(ii) limx→∞ g(x) = ∞;

(iii) For all orders h, g(x) ≤ h(x) for almost all x.

Proof. Define Gs(x) = x+max{ϕe,s(y) : ϕe,s(y) ↓ ∧ e ≤ x ∧ y ≤ x}. Clearly,
G(s, x) = Gs(x) is recursive and it is easy to see that for all x, Gs(x) ≤ Gs+1(x)
and for all s, Gs(x) < Gs(x + 1). Also Gs(x) ≥ ϕe,s(x) for all e ≤ x. Let us
define G = lims→∞ Gs. Then G grows faster than any recursive function, that
is, if ϕe(x) is defined, then G(x) ≥ ϕe(x) for all e ≤ x.

Let us define now the “inverse of G” as follows: gs(y) = max{x: Gs(x) ≤ y}
if Gs(0) ≤ y and gs(y) = 0 otherwise; we also define g = lims→∞ gs. Since Gs

is recursive and monotone increasing in x, gs is recursive and gs ≥ gs+1. This
proves (i).

Also g is unbounded because G is. Hence, (ii) is satisfied.

For (iii), let h be any order. The function H(x) = min{y: h(y) ≥ x} is
recursive because h is unbounded by hypothesis. Then, there is e such that
H = ϕe. By the construction of G, ∀x [x ≥ e ⇒ G(x) ≥ H(x)]. We will
prove that g(y) = max{x: G(x) ≤ y} ≤ h(y) for all y ≥ G(e) and g(y) ≥ e.
Fix y ≥ G(e) and suppose that x ≥ e and G(x) ≤ y. Since h is monotone,
h(G(x)) ≤ h(y) and since H is below G beyond e, h(H(x)) ≤ h(G(x)). By
the definition of H , h(H(x)) ≥ x, so finally we obtain x ≤ h(y). �

Theorem 3.4 There exist a promptly simple strongly jump-traceable set.

Proof. We construct a promptly simple set A in stages satisfying the require-
ments

Pe : |We| = ∞ ⇒ ∃s∃x [x ∈ We,s \ We,s−1 ∧ x ∈ As \ As−1].

During the construction, Pe may destroy JA(k) at stage s only if e < gs(k).

Construction of A. Let gs be the one defined in Lemma 3.3.

Stage 0: set A0 = ∅.

Stage s + 1: choose the least e ≤ s such that

• Pe yet not satisfied;

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 49

• There exists x such that x ∈ We,s+1 \ We,s, x > 2e and for all k such that
gs(k) ≤ e, if JA(k)[s] is defined then x is greater than the use of JA(k)[s].

If such e exists, put least such x for e into As+1. We say that Pe receives

attention at stage s + 1, and declare Pe satisfied. Otherwise, As+1 = As.
Finally, define A =

⋃
s As.

Verification. Clearly, Pe receives attention at most once. So we can use below
the fact that every requirement influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order h. We will
prove that there exists an r.e. trace T for JA as in Definition 1.1. Let h be any
order. By Lemma 3.3, there exists k0 such that for all k ≥ k0, g(k) ≤ h(k).
Define the recursive function f(k) = min{s: gs(k) ≤ h(k)} if k ≥ k0 and
f(k) = 0 otherwise. For k ≥ k0 and s ≥ f(k), gs(k) will be below h(k), so
JA(k) may change because Pe receives attention, for e < gs(k) ≤ h(k). Since
each Pe receives attention at most once, JA(k) can change at most h(k) times
after stage f(k). So

Tk =

{
{JA(k)[s]: JA(k)[s] ↓ ∧ s ≥ f(k)} if k ≥ k0;
{JA(k)} if JA(k) ↓ ∧ k < k0;
∅ otherwise.

is as required.

Fix e such that We is infinite and let us see that Pe is met. Let s such that
∀k [g(k) ≤ e ⇒ gs(k) = g(k)] and s′ > s such that no Pi receives attention
after stage s′ for any i < e. Then, by the construction, no computation JA(k),
g(k) ≤ e can be destroyed after stage s′. So there is t > s′ such that for all k
where gt(k) ≤ e, if JA(k) converges then the computation is stable from stage
t on. Choose t′ ≥ t such that there is x ∈ We,t′+1 \ We,t′, x > 2e and x is
greater than the use of all converging JA(k) for all k where gt′(k) ≤ e. Now
either Pe was already satisfied or Pe receives attention at stage t′+1. In either
case Pe is met. �

We investigate about the existence of a maximal bound for jump-traceability.
Given an order h, is it always possible to find a jump-traceable set A for
which h is too small to be a bound for any trace for the jump of A? The next
Theorem answers this question positively.

Theorem 3.5 For any order h there is an r.e. set A and an order h̃ such

that A is jump-traceable via h̃ but not via h.

Proof. We will define an auxiliary functional Ψ and we use α, the reduction
function for Ψ (i.e. ΨX(e) = JX(α(e)) for all X and e), in advance by the
Recursion Theorem. At the same time, we will define an r.e. set A and a trace

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5750

T̃ for JA. Finally, we will verify that there is an order h̃ as stated.

Let T (0), T (1), . . . be an enumeration of all the traces with bound h, so
that T (e) = {T (e)0, T (e)1, . . .}, the e-th such trace, is as in Definition 1.1.
Requirement Pe tries to show that JA is not traceable via the trace T (e) with
bound h, that is,

Pe : ∃x ΨA(x) /∈ T (e)α(x)

and requirement Ne tries to stabilize the jump when it becomes defined, i.e.

Ne : [∃∞s JA(e)[s] ↓] ⇒ JA(e) ↓ .

The strategy for a single procedure Pe consists of an initial action and a
possible later action.

Initial action at stage s + 1:

• Choose a new candidate xe = 〈e, n〉, where n is the number of times that
Pe has been initialized. Define ΨA(xe)[s + 1] = 0 with large use.

Action at stage s + 1:

• Let xe = 〈e, n〉 be the current candidate. Put y into As+1, where y is the
use of the defined ΨA(xe)[s]. Notice that this action will not affect JA(i)[s]
for i < e because of the choice of y;

• Define ΨA(xe)[s + 1] = ΨA(xe)[s] + 1 with use y′ > y and greater than the
use of all defined computations of JA(i)[s + 1] for i < e.

We say that Pe requires attention at stage s+1 if ΨA(xe)[s] ∈ T (e)α(xe)[s] and
we say that Ne requires attention at stage s + 1 if JA(e)[s] becomes defined
for the first time.

We define T̃ = {T̃0, T̃1, . . .} by stages. The s-th stage of T̃i will be denoted
by T̃i[s]. We start with A0 = ∅ and T̃i[0] = ∅ for all i. At stage s + 1 we
consider the procedures Nj for j ≤ s and Pj for j < s. We also initialize
the new Ps. We look at the least procedure requiring attention in the order
P0, N0, . . . , Ps, Ns. If there is no one, do nothing. Otherwise, suppose Pe is
the first one. We let Pe take action at s + 1, changing A below the use of
ΨA(xe)[s] and redefining ΨA(xe)[s + 1] without affecting Ni for i < e. We
keep the other computations of Pj with the new definition of A, for j �= i and
large use. If Ne is the least procedure requiring attention, there is y such that
JA(e)[s] ↓= y. We put y into T̃e[s + 1] and initialize Pj for e < j ≤ s. In this
case, we say that Ne acts.

Let us prove that Pe is met. Take s such that all JA(i) are stable for i < e.
Suppose xe is the actual candidate of Pe. Since Pe is not going to be initialized
again, xe is the last candidate it picks. Each time ΨA(xe)[t] ∈ T (e)α(xe)[t] for

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 51

t > s, Pe acts and changes the definition of ΨA(xe) to escape from T (e)α(xe).
Since |T (e)α(xe)| ≤ h(α(xe)), there is s′ > s such that T (e)α(xe)[s

′] = T (e)α(xe).
By construction, ΨA(xe)[s

′ + 1] /∈ T (e)α(xe) and ΨA(xe)[s
′ + 1] is stable.

We say that Ne is injured at stage s+1 if we put y into As+1 and y is ≤ the
use of JA(e)[s]. We define cP (k) as a bound for the number of initializations
of Pr, for r ≤ k; and define cN (k) as a bound for the number of injuries to
Nr, for r ≤ k. Since P0 is initialized just once and makes at most h(〈0, 0〉)
changes in A, cP (0) = 1 and cN (0) = h(〈0, 0〉). The number of times that Pk+1

is initialized is bounded by the number of times that Nr acts, for r ≤ k, so
cP (k + 1) = cP (k) + cN(k). Each time Nr is injured, for r ≤ k then Nk+1 may
also be injured; additionally, Nk+1 may be injured each time Pk+1 changes A.
The latter occurs at most h(〈k+1, i〉) for the i-th initialization of Pk+1. Hence
cN(k + 1) = 2cN(k) +

∑
i≤cP (k+1) h(〈k + 1, i〉).

Once Ne is not injured anymore, if JA(e) ↓ then JA(e) ∈ T̃e. Since the
number of changes of JA(k) is at most the number of injuries to Ne, we define
the function h̃(e) = cN(e) which is clearly an order and it constitutes a bound
for the trace (T̃i)i∈N. �

It is still open if there is no minimal bound for jump-traceability, i.e. it is
unknown if given an order h there is a set A and an order h̃ such that A is
jump-traceable via h but not via h̃.

4 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to
strongly jump-traceable.

Definition 4.1 A set A is well-approximable iff for each order b, A is ω-r.e.
via b.

Clearly, if A′ is well-approximable, then A is super low and it is not difficult
to see that well-approximability is closed downward under Turing reducibility.
We next prove that if A is r.e. then A is strongly jump-traceable iff A′ is
well-approximable. We first need the following lemmas.

Lemma 4.2 Let f and f̂ be orders such that f(x) ≤ f̂(x) for almost all x.

(i) If A is jump-traceable via f then A is jump traceable via f̂ ;

(ii) If A is well-approximable via f then A is well-approximable via f̂ .

Lemma 4.3 There exists a recursive γ such that for all r.e. A:

(i) If A is jump-traceable via an order h then A is super-low via the order

b(x) = 2h(γ(x)) + 2;

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5752

(ii) If A is super-low via an order b then A is jump-traceable via the order

h(x) = �1
2
b(γ(x))�.

Proof. Follow the proof of [9, Theorem 4.1], together with Lemma 4.3. �

Theorem 4.4 Let A be an r.e. set. Then the following are equivalent:

(i) A is strongly jump-traceable;

(ii) A′ is well-approximable.

Proof. (i)⇒(ii). Given an order b, let us prove that A is super-low via b. By
part i of Lemma 4.3, it suffices to define an order h such that 2h(γ(x)) + 2 ≤

b(x) for almost all x. If b(x) ≥ 4 then define h(γ(x)) = � b(x)−2
2

� and if
b(x) < 4, define h(γ(x)) = 1. Since γ can be taken strictly monotone, the
above definition is correct and we can complete it to make h an order.

(ii)⇒(i). Given an order h, we will prove that A is jump-traceable via h. By
part ii of Lemma 4.3, it suffices to define an order b such that �1

2
b(γ(x))� ≤ h(x)

for almost all x. The argument is similar to the previous case. �

Later, in Corollary 5.4, we will improve this result and we will see that, in
fact, the implication (ii)⇒(i) holds for any A.

We finish this section by proving that the prefixes A � n of a well-approx-
imable set A have low Kolmogorov complexity of order logarithmic in n. Hence
A is not Martin-Löf random and furthermore, the effective Hausdorff dimen-
sion is 0. The latter is just equivalent of saying that there is no c > 0 such
that cn is a linear lower bound for the prefix-free Kolmogorov complexity of
A � n for almost all n.

Theorem 4.5 If A is well-approximable then for almost all n, K(A � n) ≤
4|n|.

Proof. Suppose A(n) = lims→∞ g(n, s), where g is recursive and changes at
most n times. Given n, there is a unique s and some m < n such that
g(m, s) �= g(m + 1, s) but g(q, t) = g(q, t + 1) for all t > s and q < n. That is,
s is the time when g converges on below n and m is the place where the last
change takes place. The stage s can be computed from m and the number k
of stages with g(m, t + 1) �= g(m, t). So one can compute A � n from m, n, k.
Since k, m ≤ n, one can, for almost all n, code m, n, k in a prefix-free way in
4|n| many bits. This is done by using a prefix of the form 1q0 followed by 2q
bits representing n, 2q bits representing m and 2q bits representing k as binary
numbers; here q is just the smallest number such that 2q bits are enough. Since
k, m ≤ n and since 2q ≤ |n|+ c for some constant c and since the additionally
necessary coding needed to transform the above representation into a program
for U is bounded by a constant, we have that there is a constant d such that

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 53

∀n K(A � n) ≤ 3|n| + |n|/2 + d and then the relation K(A � n) ≤ 4|n| holds
for almost all n. In fact, using binary notation to store q instead of 1q0, it
would even give K(A � n) ≤ 3(|n| + log(|n|)) for almost all n. �

5 Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of plain Kol-
mogorov complexity and we show that if A′ is well-approximable then A is
strongly jump-traceable for any set A.

Theorem 5.1 If A′ is well-approximable then for every order h and almost

all x, C(x) ≤ CA(x) + h(CA(x)).

Proof. For any function f , let define f̂(y) = y+f(y) for all y. Let ΨA(m, n, q)
be a functional which does the following:

(i) Compute x = UA(q). If UA(q) ↑ then ΨA(m, n, q) ↑;

(ii) Find the first program p such that |p| = n and Ũ(p, q) = x. If there is no
such p then ΨA(m, n, q) ↑;

(iii) In case m /∈ [1, n] then ΨA(m, n, q) ↑. Otherwise, if the m-th bit of p is 1
then ΨA(m, n, q) ↓, else ΨA(m, n, q) ↑.

Let α be a reduction function such that JA(α(m, n, q)) = ΨA(m, n, q) and let
h0 be any order. Since h = �h0/2� is also an order, it is sufficient to show that
there is a constant c with C(x) ≤ ĥ(CA(x))+ c for almost all x, since this will
imply that C(x) ≤ ĥ0(C

A(x)) for almost all x. Choose an order b such that
b(α(n, n, q)) ≤ nh(|q|) for all n, q.

Let qx be a minimal A-program for x, that is, UA(qx) = x and |qx| = CA(x).
Let nx = C(x|qx). Then ΨA(m, nx, qx) ↓ iff the m-th bit of px is 1, where px

is the first program such that |px| = nx and Ũ(px, qx) = x.

Since A′ is ω-r.e. via b, px = A′(α(1, nx, qx)) . . . A′(α(nx, nx, qx)) changes
at most

nx max{b(α(m, nx, qx)): 1 ≤ m ≤ nx} ≤ nxb(α(nx, nx, qx)) ≤ n2
xh(|qx|)

many times. Since Ũ(px, qx) = x and we can describe px with nx, qx and the
number of changes of A′(α(1, nx, qx)) . . . A′(α(nx, nx, qx)), we have

nx = C(x|qx) ≤ 2|nx| + |n2
xh(|qx|)| + O(1) ≤ 4|nx| + |h(|qx|)| + O(1).(1)

To finish, let us prove that for almost all x, nx ≤ 2|h(|qx|)| + O(1). Since
C(x) ≤ |qx| + 2nx + O(1), this upper bound of nx will imply that

C(x) ≤ |qx| + h(|qx|) + O(1) = ĥ(CA(x)) + O(1),

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5754

for almost all x, as we wanted. Hence, let us see that nx ≤ 2|h(|qx|)| + O(1)
for almost all x. There is a constant N such that for all n ≥ N , 8|n| ≤ n.
We know that for almost all x, qx satisfies |h(|qx|)| ≥ N . Suppose x has this
property. Then either nx ≤ |h(|qx|)| or 4|nx| ≤ nx/2. In the second case
nx − 4|nx| ≥ nx/2 and by (1), nx/2 ≤ |h(|qx|)| + O(1). So, in both cases, we
have nx ≤ 2|h(|qx|)| + O(1). �

Lemma 5.2 For all x ∈ {0, 1}∗ and d ∈ N,

|{y : C(x, y) ≤ C(x) + d}| ≤ O(d42d).

Theorem 5.3 The following are equivalent:

(i) A is strongly jump-traceable;

(ii) For every order h and almost every x, C(x) ≤ CA(x) + h(CA(x)).

Proof. (ii)⇒(i). Since there are at most 2n − 1 programs of length < n,
∀n ∃x [|x| = n ∧ n ≤ C(x)]. Let c such that ∀x CA(x, JA(|x|)) ≤ |x| + c.
This last inequality holds because, given x, we can compute JA(|x|) relative
to A.

For any function f , let f̂(y) = y + f(y) for all y. Let h be any order and
let us prove that A is jump-traceable via h. Define the order g such that for
almost all e, 3g(e+c) ≤ h(e). By hypothesis, for almost all x, if JA(x) ↓ then
C(x, JA(|x|)) ≤ ĝ(CA(x, JA(|x|))) ≤ |x| + g(|x| + c) + c.

Define the trace Te = {y: ∀x [|x| = e ⇒ C(x, y) ≤ e + g(e + c) + c]}. It is
clear that for almost all e, if JA(e) ↓ then JA(e) ∈ Te, because given x such
that |x| = e, we have C(x, JA(e)) ≤ e + g(e+ c)+ c. To verify that for almost
all e, |Te| ≤ h(e), suppose y ∈ Te. Take x, |x| = e and C(x) ≥ e. Then

C(x, y) ≤ e + g(e + c) + c ≤ C(x) + g(e + c) + c.

By Lemma 5.2, for almost all e there are at most 3g(e+c) ≤ h(e) such y’s in Te.

(i)⇒(ii). Let h0 be a given order. As in the proof of Theorem 5.1, it
is sufficient to show that C(x) ≤ ĥ(CA(x)) + O(1) for almost all x, where
h = �h0/2�. Take α and T as in Proposition 6.2 (part ii) with bound g such
that g(α(x)) ≤ h(|str(x)|). Let m ∈ N be such that UA(str(m)) = y and
|str(m)| = CA(y). Since y ∈ Tα(m), we can code y with m and a number not
greater than g(α(m)) (representing the time in which y is enumerated into
Tα(m)), using at most |str(m)| + g(α(m)) ≤ CA(y) + h(CA(y)) bits. Then

∀y C(y) ≤ ĥ(CA(y)) + O(1). �

In [9], it was proven that there is a super-low which is not jump-traceable
(namely, a super-low Martin-Löf random set). In contrast, from Theorem 5.1

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 55

and Theorem 5.3 we can conclude that the strong version of super-lowness
implies strong jump-traceability.

Corollary 5.4 If A′ is well-approximable then A is strongly jump-traceable.

6 Variations on K -triviality

Throughout this section, let p : N → N be nondecreasing such that limn p(n)−
n = ∞. Recall that A is K-trivial iff ∃c ∀n K(A � n) ≤ K(n) + c. Nies [8]
showed that A is K-trivial if and only if A is low for K, i.e. ∃c ∀x K(x) ≤
KA(x) + c. In this section we weaken the notion of lowness for K:

Definition 6.1 A set A is p-low iff ∀y K(y) ≤ p(KA(y) + c0) + c1 for some
constants c0 and c1. Let M[p] denote the class of such sets.

Clearly, if A is K-trivial then A is p-low and for every p (which we consider in
this section). If A ∈ M[p] and B ≤T A, then B ∈ M[p]. Indeed, since B ≤T

A, there exists a constant c2 such that for each string y, KA(y) ≤ KB(y)+ c2.
Then K(y) ≤ p(KA(y) + c0) + c1 ≤ p(KB(y) + c0 + c2) + c1.

The following proposition states a relation between jump-traceability and
p-lowness. In Theorem 5.3 we proved a similar result, involving strong jump-
traceability and plain Kolmogorov complexity.

Proposition 6.2 (i) Suppose p is a recursive function. There is a constant

c such that if A ∈ M[p] via constants c0 and c1 then A is jump-traceable

via h(x) = 2p(2|x|+c0+c)+c1+1;

(ii) There is a reduction function α such that if A is jump-traceable via h
then A ∈ M[p] for p(z) = 3z + 2|h(α(2z+1))|.

Proof. For (i), we know that there is a constant c such that KA(JA(x)) ≤
2|x| + c because we can compute JA(x) from x and the oracle A. Define the
trace Tx = {U(σ): |σ| ≤ p(2|x|+ c0 + c) + c1}. Clearly |Tx| ≤ 2p(2|x|+c0+c)+c1+1.
Let y = JA(x). By hypothesis K(y) ≤ p(KA(y) + c0) + c1 and then K(y) ≤
p(2|x| + c + c0) + c1. Hence y ∈ Tx.

For (ii), let α be a reduction function such that JA(α(x)) = UA(str(x)).
Let T be a trace for JA with bound h and let us define the trace T̃n =⋃

x:|str(x)|=n Tα(x). Notice that |T̃n| ≤
∑

x:|str(x)|=n h(α(x)) ≤ 2nh(α(2n+1)),

since α is increasing. Let m ∈ N be such that UA(str(m)) = y and |str(m)| =
KA(y). Since y ∈ Tα(m), we know that y ∈ T̃|str(m)|, hence we describe y by

saying “y is the i-th element enumerated into T̃|str(m)|”. If we code |str(m)|
in unary and we code i with 2|i| ≤ 2|2|str(m)|h(α(2|str(m)|+1))| ≤ 2|str(m)| +
2|h(α(2|str(m)|+1))| many bits, we have K(y) ≤ p(KA(y)) + O(1), for p(z) =
3z + 2|h(α(2z+1))|. �

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–5756

Corollary 6.3 A is jump-traceable iff there exists a recursive function p (of
the type considered in this section) such that A ∈ M[p].

Acknowledgement

The authors acknowledge support from the Marsden fund, Royal Society of
New Zealand.

References

[1] K. Ambos-Spies, C. Jockusch and R. Shore, An algebraic decomposition of the recursively
enumerable degrees and classes equal to the promptly simple degrees, Transactions of the
American Mathematical Society 281:109–128, 1984.

[2] M. Bickford and F. Mills, Lowness properties of r.e. sets, Manuscript, UW Madison, 1982.

[3] C. Calude, P. Hertling, B. Khoussainov and Y. Wang, Recursively enumerable reals and
Chaitin’s Ω number, in STACS 1998, Lecture Notes in Computer Science 1373:596–606, 1998.

[4] G. Chaitin, A theory of program size formally identical to information theory, Journal of the
Association for Computing Machinery 22:329–340, 1975.

[5] R. Downey, D. Hirschfeldt, A. Nies and F. Stephan, Trivial reals, Proceedings of the 7th and
8th Asian Logic Conferences, World Scientific, River Edge, NJ, pages 103–131, 2003.

[6] B. Kjos-Hanssen, W. Merkle and F. Stephan, Kolmogorov complexity and the Recursion
theorem, Manuscript, 2005.

[7] J. Mohrherr, A refinement of low n and high n for the r.e. degrees, Z. Math. Logik Grundlag.
Math., 32(1):5-12, 1986.

[8] A. Nies, Lowness properties and randomness, to appear in Advances in Math.

[9] A. Nies, Reals which compute little, CDMTCS Research Report 202, Dec. 2002.

[10] P.G. Odifreddi, “Classical recursion theory” Volume 1, North-Holland, Amsterdam 1989,
Volume 2, Elsevier, Amsterdam 1999.

[11] R. Soare, Recursively enumerable sets and degrees, Springer, Heidelberg, 1987.

[12] S. Terwijn, D. Zambella, Algorithmic randomness and lowness, J. Symbolic Logic, 66:1199-
1205, 2001.

S. Figueira et al. / Electronic Notes in Theoretical Computer Science 143 (2006) 45–57 57

	Introduction
	Basic definitions
	Strong jump-traceability
	Well-approximability of the jump
	Traceability and plain Kolmogorov complexity
	Variations on K-triviality
	Acknowledgement
	References

