
BRKGA Algorithm for the Capacitated Arc
Routing Problem

C. Martinez a,1,2, I. Loiseaub,2, M.G.C. Resendec and
S. Rodrigueza,1

a Departamento de Informática, Facultad de Ciencias Exactas Universidad Nacional de Salta, Argentina

b Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, Argentina

c AT&T Labs Research, Florham Park - NJ, USA

Abstract

We propose a new algorithm for the Capacitated Arc Routing Problem (CARP). Our motivation to deal
with this problem is related to its application in several real world scenarios such as street sweeping, urban
waste collection and electric meter reading just to mention a few.
Based on BRKGA metaheuristic, our algorithm introduces a new random key encoding for CARP, mutation
to random keys strings, a restart phase to avoid stagnation and local search .
The algorithm was tested with several well-known instances from the literature. The results obtained were
competitive in terms of objective function value and required computational time.

Keywords: BRKGA, CARP, metaheuristics, vehicle routing

1 Introduction

The Capacitated Arc Routing Problem (CARP) consists of designing a minimum

cost set of vehicle routes to service a predetermined set of required streets or roads,

by means of an homogeneous fleet of vehicles. Each route starts and ends at the

depot, each required demand is serviced by one single vehicle and the total weight

of demands handled by any vehicle does not exceed vehicle capacity. Applications

of the CARP and its extensions arises in several contexts in public services as road

1 Partially supported by CIUNSA 1788-4.
2 Partially supported by PICT 2006-1600 and UBACyT X143
3 Email: cmartinez@unsa.edu.ar
4 Email: irene@dc.uba.ar
5 Email: mgcr@research.att.com
6 Email: sryan@unsa.edu.ar

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 281 (2011) 69–83

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.11.026
Open access under CC BY-NC-ND license.

mailto:cmartinez@unsa.edu.ar
mailto:irene@dc.uba.ar
mailto:mgcr@research.att.com
mailto:sryan@unsa.edu.ar
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.026
http://dx.doi.org/10.1016/j.entcs.2011.11.026
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

gritting ([8]), urban waste collection([6]), or street maintenance ([25], [30]). CARP

has been shown to be NP-Hard([12]). Several heuristics and exact algorithms have

been proposed for it. Heuristics were able to provide solutions at a low computa-

tional cost and the use of metaheuristics ([22]) techniques improved results obtained

by traditional heuristics.

We developed an algorithm for CARP based on the ideas of the Biased Random

Key Genetic Algorithms (BRKGA) proposed in ([9],[14]) and local search. BRKGA

include improvements to genetic algorithms that are intended to avoid some prob-

lems that happen with classical chromosome representation and the Parameterized

Uniform Crossover[28].

This paper is organized as follows: section 2 presents a mathematical model for

CARP and a review of the literature. At section 3 Biased Random Key Genetic

Algorithms (BRKGA) are described. Our BRKGA algorithm for CARP is pre-

sented at section 4. Computational experiments carried on in order to evaluate the

performance of the method are presented in section 5. Finally, section 6 is devoted

to concluding remarks and future work.

2 The Capacitated Arc Routing Problem

As we already mentioned, CARP offers interest because it is a difficult problem

and at the same time it has several real world applications as waste collection, road

maintenance, mail delivery, etc. Several organizations can benefit of having good

solutions for CARP.

CARP may have additional characteristics and constraints as: unhomogeneous

fleet of vehicles, time windows, mixed one way and two way streets, several de-

pots, etc.. In these cases the model and algorithms presented here can be modified

accordingly.

2.1 Mathematical Model

We describe here the mathematical model for CARP proposed by Maniezzo [24].

Let:

• G=(V,E) be a graph representing the roads network,

• V the set of vertex,

• E the set of arcs,

• R ⊆ E the set of required arcs,

• Vr ⊆ V the set of vertex incidents at arcs of R plus a node associated with the

depot,

• K={1,. . . , M} the fleet of vehicles, all of them with capacity Q,

• cij cost of arc (i,j) ∈ E,

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8370

• qij demand associated at arc (i,j) in R

qij =

⎧⎨
⎩

0 si (i,j) /∈ R

> 0 si (i,j) ∈ R

Variables are defined as:

xijk =

⎧⎨
⎩

1 if arc (i,j) is traversed by vehicle k

0 otherwise

CARP can be modeled as a zero-one integer linear problem as follows:

Minimize
∑

(i,j)∈E
cij

∑
k∈K

xijk(1)

∑
k∈K

xijk = 1 (i, j) ∈ R(2)

∑
j∈Vr−{0}

∑
k∈K

x0jk =| K |(3)

∑
(i,j)∈R

qijxijk ≤ Q k ∈ K(4)

∑
j∈Vr

xijk =
∑
j∈Vr

xjik i ∈ Vr, k ∈ K(5)

∑
i∈S

∑
j /∈S

xijk ≥
∑
j∈V

xhjk S ⊆ Vr − {0}, k ∈ K,h ∈ S(6)

xijk ∈ {0, 1} (i, j) ∈ R, k ∈ K(7)

The objective function (1) seeks to minimize the sum of the costs of traversed

arcs, subject to the following constraints:

• all required arcs must be visited by exactly one vehicle (2).

• the number of vehicles can not exceed the total number of available vehicles (3).

• total load of any vehicle can not exceed Q (4).

• flow conservation constraints (5).

• subtour elimination constraints (6).

2.2 Previous Work

Several heuristics have been proposed for the CARP. Among them we can mention

the Augment-Merge algorithm proposed by Golden and Wong [12], a Path Scanning

algorithm presented by Golden et al. [11], a tour splitting algorithm from Ulusoy

[29] and the Shorten-Switch-Add-Drop-Cut of Hertz and Mittaz. Also heuristics

originally developed for similar problems were adapted to CARP, as for example

2-Opt that was applied by Lacomme et al. [23] and Beullens et al. [4]. Maniezzo

[24] developed an heuristic based on 3-Opt and other improvement methods.

Several metaheuristics for CARP have been developed since 15 years ago. Eglese

[8] developed a Simulating Annealing approach for a gritting problem. Hertz et al.

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 71

[19] designed a Tabu Search algorithm, CARPET, based on the previously men-

tioned ADD and DROP algorithms, and an objective function with penalties. They

had obtained very good results on instances of the literature. Also Brandão and

Eglese [5] developed a Tabu Search method. Hertz and Mittaz present a Variable

Neighborhood Descent method [20]. A tour visiting all the required arcs is gener-

ated, and then it is divided and improved using algorithms Shorten, Cut and Switch.

Results on instances from DeArmon, Belenguer and other instances show that the

algorithm obtains better results and in less computational time than CARPET. On

their side, Beullens et al. presented in [4] a Guided Local Search. An initial solution

is improved using 2-opt and other interchange between routes operators . They also

report very good results.

In spite of CARP being NP-Hard, a few exact algorithms had been developed

for it, that provide solutions for small and medium instances. Hirabayashi et al.

[21] presented a branch-and-bound method. They obtained optimal solutions on

instances that have 15 to 50 arcs. Belenguer and Benavent [2] developed a cutting

plane algorithm that was tested on the instances of Benavent, Golden, Kiuchi y

Eglese. The gap with the best known solution on the first three sets of instances

with up to 50 nodes and 97 arcs, was less than 1%. On the instances of Eglese (up

to 140 nodes and 190 arcs) this gap was less than 3%.

3 Biased Random Key Genetic Algorithm

3.1 Genetic Algorithms

Genetic Algorithms, GA, ([10]) are based on simulating the evolution of a population

over a number of generations. They apply the concept of survival of the best fitted

individuals to find optimal or near-optimal solutions to combinatorial optimization

problems.

A population of solutions evolves over a number of iterations or generations in

order to explore the space of solutions and trying to avoid getting entrapped at

local optima. Probabilistic transition rules are used. A solution of the optimization

problem is called an individual or chromosome. Usually solutions are coded by

a finite chain of bits or integers called genes. Each gene can take a value called

an allele from a finite alphabet. This coding allows to represent the reproduction

between parents. The objective function of the combinatorial optimization problem

is used as fitness criteria to select good individuals.

At each iteration of a GA, that is at each generation, a new population is created

by combining elements of the current population. Three operators are applied:

reproduction, crossover, and mutation. That is, a small percentage of the best

individuals in terms of fitness is directly copied to the next population. Next,

crossover operators (deterministic or probabilistic) are applied to random selected

parents to produce offspring for the next generation. Then, random mutation of

some alleles is carried on in random selected individuals as a mean of escaping from

local optima.

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8372

Fig. 1. GA: Infeasible solution after crossover

3.2 Random Key Genetic Algorithms

Random-Key Genetic algorithms, RKGA, were introduced by Bean [1] for solving

sequencing problems. In RKGA chromosomes are represented as strings or vectors

of randomly generated real numbers in the interval [0,1]. A deterministic algorithm,

called a decoder, takes as input a vector of keys and associates it with a solution of

the combinatorial optimization problem.

RKGA is an improvement of Genetic Algorithms, that is intended to overcome

the difficulty appearing in GA when the offspring obtained by the crossover op-

erator is not feasible for the original problem. The random key representation of

solutions allows to define crossover and mutation operators that are independent of

the particular problem we are dealing with [27].

For example, assume that we have a TSP instance of 6 vertexes. If we assign

numbers 1 to 6 to cities, a solution can be represented by a permuntation of vector

(1,2,3,4,5,6) Lets consider the following tours:

Parent 1: 1→2→3→4→5→6

Parent 2: 6→1→5→4→3→2

Applying a one-point crossover operator to these chromosomes may produce an

infeasible offspring, as it is shown at Fig. 1.

To provide a RKGA representation of solutions for this problem, we generate

chains of randomly generated real numbers on the [0,1] interval. For example we

may have the following vectors:

RKV1: (0.15, 0.89, 0.42, 0.27, 0.63, 0.11)

RKV2: (0.48, 0.71, 0.83, 0.74, 0.35, 0.56)

To decode these chains as TSP solutions we sort them in an increasing order of

the keys. Mapping the i-position in the chain with the position of the key in the

ordered chain we get the corresponding TSP tour.

RKV1: (0.11, 0.15, 0.27, 0.42, 0.63, 0.89)

Parent1 : 6→1→4→3→5→2

RKV2: (0.35, 0.48, 0.56, 0.71, 0.74, 0.83)

Parent2: 5→1→6→2→4→3

After applying crossover and sorting the offspring, we get a new feasible solution

for the TSP, as it is shown in Fig. 2.

In order to design a RKGA algorithm for a combinatorial optimization problem

we need to randomly generate an initial population of random keys vectors. Then

operators similar to those of Genetic Algorithms are applied at each generation as

follows:

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 73

Fig. 2. RKGA: Feasible solution after crossover two random key vectors

Fig. 3. RKGA: Crossover operation using two random key vectors

• After the fitness of each individual is computed by the decoder, the population

is partitioned into two groups of individuals: a small group of pe Elite solutions

and the remaining set of (1−pe) Non-Elite individuals. The Elite individuals are

copied without change in the population of next generation.

• Parameterized Uniform Crossover[28]: two parents from the entire population are

ramdomly selected and crossed. Each allele of the offspring is randomly taken

from one parent with a probability (p) or from the other with probability (1− p).

Fig. 3 shows how the crossover operator with p=0.7 produces a new individual

which inherits more keys from the Elite parent than form the Non-Elite one.

• Mutation: RKGA implements mutation by introducing at each generation a small

number of mutants into the population. A mutant is an array of random keys

generated as it was done for the initial population.

This RKGA overall procedure is illustrated at Fig. 4.

3.3 BRKGA

Biased Random Key Genetic Algorithms were simultaneously proposed by

Gonçalves and Almeida [14] and by Ericsson et al. [9]. They differ from RKGA in

the way parents are selected for mating. In BRKGA each new individual is obtained

combining one element selected at random from the Elite partition in the current

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8374

Fig. 4. RKGA: Transition between generations

population and the other from the Non-Elite set of individuals. Repetition in the

selection of a mate is allowed. This way and also because the mechanism of imple-

ment mating is the Parameterized Uniform Crossover operator with pe >0.5, the

probability that an individual inherits the allele from the Elite parent is increased.

BRKGA has been successfully applied to several combinatorial optimization

problems as Packing [13], Scheduling, Resource Constrained Project Scheduling

[17], Assembly Line Balancing [14],Manufacturing Cell Formation [15] and the Ge-

neralized Traveling Salesman Problem ([27], [26]). A recent survey on BRKGA is

[16].

4 BRKGA algorithm for the CARP

Our algorithm is based on the framework proposed by Gonçalves [13] and Gonçalves

and Almeida [14], although it also includes new features such as mutation, a restart

phase and a new random key encoding for the CARP.

4.1 Encoding

Encoding for the CARP follows ideas presented in Samanlioglu et al. [26]. The

vectors of random keys get random integer values on the interval [MinU, MaxU].

The length of each vector is equal to number of required arcs of the instance. Route

delimiters (RD) are added to these vectors to allow rapid detection of each vehicle

route in the solution. In order to have a complete solution of the problem and to

evaluate the fitness of it, the minimum cost path between the incident nodes of the

successive required arcs at each of these routes has to be determined.

For example, lets assume that we have a CARP instance with 6 required arcs

with every demand=1, vehicle capacity = 4 and MinU=50 and MaxU=200. Given

the following random key vector:

RKV: 120 85 31 RD 367 55 107

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 75

Fig. 5. BRKGA: Random keys encoding and decoding for CARP

if we sort it in ascending order and fix the route delimiters positions, the solution

obtained is:

CARP solution (2 routes): 3→5→2,6→1→4

As shown in Fig. 5, this encoding is suitable for random keys crossover and

allows solution improvement of the decoded solution by means of local search.

4.2 Initial population

Each individual of the initial population is generated as follows:

(i) Random key vector generation: Alleles are randomly generated within the

range [MinU, MaxU]. Its size is equal to the number of required arcs.

(ii) Random key vector decoding: sorting the vector in increasing order or they

values and looking for the value positions, as it has been already explained

for the TSP, we obtain a tour where the capacity constraint is not taken into

account.

(iii) Feasible CARP solution: applying the heuristic Iterated Tour Partitioning

proposed by Haimovich and Kan[18], the tour obtained in the previous step

is partitioned in subtours and a feasible solution is obtained. This procedure

is applied several times starting at a diferent position each time. The best

solution is kept.

(iv) CARP solution improvement: local search operators are applied.

(v) CARP solution encoding: given the initial random key vector and the improved

CARP solution, a reverse mapping is made in order to obtain a random key

vector with route delimiters.

At step iii) the vehicle capacity is multiplied by a real number between 0 and

1, which is modified along the execution of the algorithm. This produces initial

solutions of diferent sizes and helps to have both inter and intra route local search

methods of step iv) be used with similar frequency.

4.3 GA operators

Before applying genetic operators, all random key vectors from the previous gen-

eration are sorted according to their fitness. Then, they are classified as Elite

individuals, Non-Elite individuals and random key vectors that will be mutated.

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8376

Fig. 6. BRKGA: Mutation over a random key vector

4.4 Crossover

Taking an Elite individual and a Non-Elite one, the Parameterized Uniform

Crossover [28] operator is applied. The new individual inherits alleles from the

first parent with probability pe and with (1 − pe) from the second one. The selec-

tion of parents is deterministic. Given that all individuals are previously classified,

a parent (from both types) is selected in a sequential way. Therefore, it is possible

that an Elite individual mates with several Non-Elite ones.

Each individual obtained this way is decoded and problem feasibility is checked.

If it is not feasible some tours are divided in order to fulfill capacity constraint.

The decoded solution is then improved using local search operators and finally it is

encoded again as a random key vector.

4.5 Mutation

BRKGA framework includes to generate new individuals (or mutants) in each gen-

eration ([14], [27], [26]). However, in our algorithm a classic GA mutation operator

is applied to some individuals previously selected from the actual population. This

operator is illustrated in Fig. 6 in a TSP example.

After having modified certain alleles (this quantity is variable) of an individual,

the decoded CARP solution is improved. Then, applying reverse mapping, a new

individual (random key vector) is obtained.

4.6 Local search

Given a new solution obtained as described above local search operators are applied.

We followed ideas on Beullens et al. [4]. In order to improve the solution quality

and to save computational time a mechanism of neighbor lists and arc marking was

implemented. For each required arc e we create a list neigh(e) of required neighbor

arcs. Then we search for an improved solution with the following procedure:

• Start: if the list of required arcs is empty then return “best solution”. Otherwise,

select the first arc e from the list and go to Next. All arcs in the list neigh(e) of

neighbors of e are labeled as unexamined.

• Next: select the first neighbor in the neighbor list neigh(e) of arc e. If all arcs

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 77

Table 1
BRKGA-Improvement: arc marking strategy

Position of e Position of
neighbor(e) Move Arc marking

i j 2-Opt(i, i+1, j, j+1) arc(i+1), arc(j), arc(j+1)

j+1 i+1 2-Opt(i, i+1, j, j+1) arc(i), arc(i+1), arc(j)

i j Relocate(i-1, i, i+1, j, j+1) arc(i-1), arc(i+1), arc(j), arc(j+1)

i j Relocate(i-1, i, i+1, j-1, j) arc(i-1), arc(i+1), arc(j-1), arc(j)

i j Relocate(i, i+1, j-1, j, j+1) arc(i+1), arc(j-1), arc(j), arc(j+1)

i j Relocate(i-1, i, j-1, j, j+1) arc(i-1), arc(j-1), arc(j), arc(j+1)

i j Cross(i,i+1, j-1, j) arc(i+1), arc(j-1), arc(j)

i j Cross(i-1, i, j,j+1) arc(i-1), arc(j), arc(j+1)

are examined, go to Unmark. Otherwise, determine if both arcs are on the same

route (in the current solution). If there are, go to Improvement-1R, else go to

Improvement-2R.

• Improvement-1R: determine if it is possible to improve current solution applying

some intra-route operator (see Table 1). If it is possible, apply the move, mark

arcs involved, save new solution and go to Start. Otherwise, the neighbor arc of

e is examined. Go to Next.

• Improvement-2R: determine if it is possible to improve current solution applying

inter-route operators following the steps mentioned in the previous step.

• Unmark: delete arc e from list and then go to Start.

This strategy is intended to intensify the search over arcs whose connections

allow getting better solutions. If the arc marked after an improvement is not actually

in the list, it is added (and its neighbors are labeled as unexamined).

In Table 1 moves analyzed in order to reach better solutions are detailed.

Unattractive moves are avoided this way. 2-OPT was used as intra-route opera-

tor and Relocate and Cross were used for Inter-route improvement. See [4] for more

details.

4.7 Restart

Generation of mutants in RKGA/BRKGA is a simple mechanism to reduce proba-

bility of getting trapped in local optima. We propose another alternative to do this.

At every generation, classic mutation operator over individuals previously selected

is applied. However, this action is not enough to skip poor solution regions.

So, if the best solution found is not improved during certain number of genera-

tions a new population is generated. Elite individuals are kept and new individuals

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8378

are generated to complete the new population. Keeping elite individuals attempts

to accelerate convergence to new locals optima.

5 Computational results

We report now the results obtained on a set of experiments conducted to evaluate

the performance of our BRKGA algorithm. The algorithm was implemented within

the Eclipse framework and the computational experiments were carried out on a

PC Core 2 4300, 1.80Ghz, 2Gb RAM and Windows Vista operating system. It has

been run over several instances from the literature. These were taken from Kiuchi

et al. [21], Golden et al. [11] and Benavent et al. [3]. Table 2 shows data of these

instances: number of vertexes, number of required arcs, demand, vehicle capacity,

and best known solution including number of vehicles on it and total traveling cost.

It also includes the maximum CPU time (in seconds) allowed for each run. Best

solutions obtained by Kiuchi et al. instances are known to be optimal.

Based on the experience reported at the literature ([14], [26], [27]) and on pre-

vious computational tests, the parameters used by our algorithm are:

• Population size: 30 individuals

• Number of elite individuals: 20% of the entire population

• Number of mutated individuals: 20% of the entire population

• Crossover probability pe: 70%

• Restart time: CPU time/4

For each instance, 50 runs were performed. In table 3, results obtained by our

BRKGA algorithm are listed. The table includes for each instance: name, average

total traveling cost, standard deviation, mode, minimum total cost, occurrence of

this value (%), maximum total cost and average CPU time (in seconds).

Some conclusions can be derived from the results:

• Optimal or near optimal total traveling cost matches the best known results in

most instances (21 of 25). With respect to the others, their gaps are less than

4% (Gdb22 2%, Val8A 0.2%, Val8B 3.5% and Val9A 4%).

• At 15 instances the best result is reached in more than 25% of the runs. In 5

of the instances (Kshs1, Kshs2, Kshs6, Gdb15 and Gdb17) 100% of effectiveness

was obtained.

• The average total traveling cost is less than 10.7% away from the best result. In

19 instances, this gap is less than 5%.

• The mode matches the best result in 15 out of 25 instances. In 5 of the remaining

ones (Gdb16, Gdb18, Gdb22, Val6A and Val8A) this gap is lower than 5%.

• The range between maximum and minimum total traveling cost obtained by dif-

ferent runs on the same instance is less than 5% of the best known value in 17 of

them. In 4 of the other instances this range is less than 10%.

• Computational times were less than 60% of the maximum allowed time in 22

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 79

Table 2
Instances information

Instance |V | |R| Demand Q Best Solution CPU Time(s.)

TD Veh.

Kshs1 8 15 535 150 14661 4 15

Kshs2 10 15 497 150 9863 4 15

Kshs3 6 15 565 150 9320 4 15

Kshs4 8 15 594 150 11498 4 15

Kshs5 8 15 443 150 10957 3 15

Kshs6 9 15 389 150 10197 3 20

Gdb1 12 22 22 5 316 5 30

Gdb3 12 22 22 5 275 5 20

Gdb10 12 25 37 10 275 4 20

Gdb14 7 21 89 21 100 5 20

Gdb15 7 21 112 37 58 4 20

Gdb16 8 28 116 24 127 5 45

Gdb17 8 28 168 41 91 5 25

Gdb18 9 36 153 37 164 5 90

Gdb20 11 22 107 27 121 4 20

Gdb21 11 33 154 27 156 6 30

Gdb22 11 44 205 27 200 8 60

Val1A 24 39 358 200 173 2 90

Val2A 24 34 310 180 227 2 120

Val3A 24 35 137 80 81 2 120

Val3B 24 35 137 50 87 3 90

Val6A 31 50 451 170 223 3 360

Val8A 30 63 566 200 386 3 600

Val8B 30 63 566 150 395 4 600

Val9A 50 92 654 235 323 3 1800

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8380

Table 3
Computational Results

Instance Results

¯TD DE MO Min.TD %Min.TD Max.TD ¯T ime

Kshs1 14661 0.0 14661 14661 100 14661 3.6

Kshs2 9863 0.0 9863 9863 100 9863 0.6

Kshs3 9323.48 17.22 9320 9320 96 9407 3.4

Kshs4 12310.7 818.49 11498 11498 18 15767 8.6

Kshs5 10994.04 99.15 10957 10957 86 11299 4.5

Kshs6 10197.00 0.0 10197 10197 100 10197 0.7

Gdb1 316.46 1.48 316 316 90 323 12.7

Gdb3 277.12 2.30 275 275 52 281 8.7

Gdb10 278.52 3.86 275 275 42 287 9.9

Gdb14 100.36 0.77 100 100 82 102 6.7

Gdb15 58 0.0 58 58 100 58 0.6

Gdb16 128.80 0.60 129 127 10 129 6.7

Gdb17 91.00 0.0 91 91 100 91 1.6

Gdb18 165.08 1.00 166 164 46 166 32.5

Gdb20 134.02 9.50 129 121 6 160 13.3

Gdb21 168.58 4.72 172 156 2 178 25.9

Gdb22 211.24 4.12 209 204 2 226 54.4

Val1A 173.14 0.60 173 173 92 177 35.5

Val2A 227.56 1.21 227 227 76 233 51.6

Val3A 81.58 0.67 81 81 52 83 43.5

Val3B 91.38 1.56 92 87 2 95 41.7

Val6A 229.46 2.91 229 223 2 237 190.9

Val8A 402.22 6.10 403 387 2 414 317.6

Val8B 428.34 6.06 430 409 2 440 259.5

Val9A 340.12 2.22 340 336 4 344 884.3

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 81

instances (exceptions were Gdb20, Gdb21 and Gdb22).

6 Conclusions and future work

This paper presents an algorithm for CARP based on BRKGA metaheuristic and

local search. Computational results on instances from the literature have shown

that this is an effective heuristic, competitive with the best algorithms reported so

far. Optimal or near optimal solutions were obtained in a robust way using low CPU

effort. This is due to several facts. The way the initial population was generated

allowed intensification of the searching in different regions. The Parameterized

Uniform Crossover operator employed to mate Elite with a NonElite individuals and

the improvement phase after crossover and mutation showed to be very effective.

The neighbor list and classical local search methods permitted intensification of the

search process in attractive regions.

Anyway there is still place to improve the algorithm. The initial population could

be generated using other heuristics to better explore the solution space. Fitness is

a simple way to measure quality of solutions. However, a mechanism to analyze

diversity of solutions could be considered. This would allow exploring different

solution regions in a systematic way.

References

[1] Bean, J., Genetic algorithms and random keys for sequencing and optimization, ORSA Journal on
Computing 6 (1994), 154–160.

[2] Belenguer, J., and E. Benavent, A Cutting Plane algorithm for the capacitated arc routing problem,
Computers and Operations Research 30 (2003), 705–720.

[3] Benavent, E., V. Campos, A. Corberán, and E. Mota, The capacitated arc routing problem: lower
bounds, Networks 22 (1992), 669–690.

[4] Beullens, P., L. Muyldermans, D. Cattrysse, and D. Van Oudheusden, A Guided Local Search
heuristic for the capacitated arc routing problem, European Journal of Operational Research-Discrete
Optimization 147 (2003), 629–643.

[5] Brandão, J., and R. Eglese, A Deterministic Tabu Search Algorithm for the Capacitated Arc Routing
Problem (CARP), Computers and Operations Research 35-4 (2008), 1112–1126.

[6] Del Pia, A., and C. Filippi, A Variable Neighborhood Descent algorithm for a real waste collection
problem with mobile depots, International transactions in Operational Research 13 (2006), 125–141.

[7] Dorigo, M., and T. Stützle, “Ant Colony Optimization” 1st Ed., MIT Press, Massachusetts, 2004.

[8] Eglese, R., Routing winter gritting vehicles, Discrete applied mathematics 48-3 (1994), 231–244.

[9] Ericsson, M., M. Resende, and P. Pardalos, A genetic algorithm for the weight setting problem in OSPF
routing, Journal of Combinatorial Optimization 6 (2002), 299–333.

[10] Goldberg, D., “Genetic algorithms in search, optimization and machine learning” 1st Ed., Addison-
Wesley, Massachusetts, 1989.

[11] Golden, B., J. DeArmon, and E. Baker, Computational experiments with algorithms for a class of
routing problems, Computers and Operations Research 10-1 (1983), 47–59.

[12] Golden, B., and R. Wong, Capacitated arc routing problems, Networks 11 (1981), 305–315.

[13] Gonçalves, J. F., A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing
problem, European Journal of Operational Research 183 (2007), 1212–1229.

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–8382

[14] Gonçalves, J. F., and J. Almeida, A hybrid genetic algorithm for assembly line balancing, Journal of
Heuristics 8 (2002), 629–642.

[15] Gonçalves, J. F. and M. G.C. Resende, An evolutionary algorithm for manufacturing cell formation ,
Computers and Industrial Engineering, 47(2004), 247–273.

[16] Gonçalves, J. F. and M. G.C. Resende, Biased random-key genetic algorithms for combinatorial
optimization, Journal of Heuristics 17 (2011), 487–525.

[17] Gonçalves, J. F., M. Resende, and J. Almeida, A biased random-key genetic algorithm with forward-
backward improvement for the resource constrained project scheduling problem, Journal of Heuristics
published Online (2010).

[18] Haimovich, M., and A. Kan, Bounds and heuristics for capacitated routing problems, Mathematics of
Operations Research 10 (1985), 527–542.

[19] Hertz, A., G. Laporte and M. Mittaz, A Tabu Search heuristic for the capacitated arc routing problem,
Operations Research 48 (2000), 129–135.

[20] Hertz, A., and M. Mittaz, A Variable Neighborhood Descent Algorithm for the Undirected Capacitated
Arc Routing Problem, Transportation Science 35-4 (2001), 425–434.

[21] Hirabayashi, R., Y. Saruwatari, and N. Nishida, Tour construction algorithm for the capacitated arc
routing problem, Asia-Pacific Journal of Operational Research 9 (1992), 155–175.

[22] Hoos, H., and T. Stützle “Stochastic Local Search Foundations and Applications,” 1st Ed., McGraw-
Hill, San Francisco, 2005.

[23] Lacomme, P., C. Prins, and A. Tanguy, First Competitive Ant Colony Scheme for the CARP, Lecture
Notes in Computer Science 3172 (2004), 426–427.

[24] Maniezzo, V., Algorithms for large directed CARP instances: urban solid waste collection operational
support, University of Bologna, Department of Computer Science, Technical Report UBLCS-2004-16.

[25] Muydelrmans, L., D. Cattrysse, D. Van Oudheusden, and T. Lotan, Districting for salt spreading
operations, European Journal of Operational Research 139 (2002), 521–532.

[26] Samanlioglu, F., W. Ferrell, and M. Kurz, A memetic random-key genetic algorithm for a symmetric
multi-objective salesman problem, Computers and Industrial Engineering 55 (2008), 439–449.

[27] Snyder, L., and M. Daskin, A random key genetic algorithm for the generalized traveling salesman
problem, European Journal of Operational Research 174 (2006), 38–53.

[28] Spears, W., and K. DeJong, On the Virtues of Parameterized Uniform Crossover, Proceedings of the
Fourth International Conference on Genetic Algorithms, San Diego-USA (1991), 230–236.

[29] Ulusoy, G., The fleet size and mixed problem for capacitated arc routing, European Journal of
Operational Research 22 (1985), 329–337.

[30] Zhu, Z., X. Li, Y. Yang, X. Deng, M. Xia, and Z. Xie, A hybrid genetic algorithm for the multiple depot
capacitated arc routing problem, Proceedings of the IEEE International Conference on Automation and
Logistics, Jinan-China (2007), 2252–2258.

C. Martinez et al. / Electronic Notes in Theoretical Computer Science 281 (2011) 69–83 83

	Introduction
	The Capacitated Arc Routing Problem
	Mathematical Model
	Previous Work

	Biased Random Key Genetic Algorithm
	Genetic Algorithms
	Random Key Genetic Algorithms
	BRKGA

	BRKGA algorithm for the CARP
	Encoding
	Initial population
	GA operators
	Crossover
	Mutation
	Local search
	Restart

	Computational results
	Conclusions and future work
	References

