
p ()
URL: http://www.elsevier.nl/locate/entcs/volume52.html 19 pages

Extending Timed Automata for Compositional
Modeling Healthy Timed Systems

V��ctor Braberman
1;2

Computer Science Department, FCEyN,

Universidad de Buenos Aires,

Buenos Aires, Argentina

Alfredo Olivero
3;4

Department of Information Technology, FIyCE,

Universidad Argentina de la Empresa,

Buenos Aires, Argentina

Abstract

We introduce the notion of Timed I/O Components as Timed Automata \�a la"

Alur & Dill where an \admissible" I/O interface is declared. That notion has, what

we consider, a key modeling property: non-zeno preservation under syntactically-

checkable \I/O compatibility" among interacting components. Also a reduced par-

allel composition is posssible based on the ability of statically detect in
uence of

behavior between components [8,10,11]. On the other hand, with some simple extra

conditions, modular assume-guarantee style of reasoning like [15,19] is valid in our

model.

1 Introduction: on Non-Zeno and Non-Blocking Models

Well-de�ned models of timed systems usually are required to be \non-zeno".

Roughly speaking, non-zenoness means that any �nite run can be extended to

a time-divergent in�nite run (i.e., no \black-alleys", time can always progress).

On the one hand, zenoness is usually a symptom of ill-modeling, on the other

hand non-zenoness is required to perform some veri�cation procedures when

semantics is restricted to divergent runs.

1 Research supported by UBACyT grant X156 and TW72
2 Email: vbraber@dc.uba.ar
3 Research supported by UADE grant ING6-01
4 Email: aolivero@uade.edu.ar

c
2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Braberman and Olivero

Unfortunately, non-zenoness is not preserved by parallel composition. Non-

Zeno systems may produce time-locks when connected.

I/O Timed Components (I/O TCs) are compositional models developed for

expressing non-zeno timed behavior built on top of Timed Automata (TAs) [8].

They impose a modeling discipline for guaranteeing that parallel composition

among \compatible" I/O TCs is a natural way to constrain the behavior of

individual components without introducing zeno behavior. Let us pinpoint

some interesting aspects of I/O TCs:

� I/O interfaces allow simple syntactic checks that ensure non-zeno preserva-

tion under parallel composition.

� By using I/O interfaces it is possible to calculate, in a quite precise way,

the in
uence of a component on the behavior of another component (see

[8,10,11]). As far as we know, this is a completely new goal for I/O inter-

faces.

� Since I/O TCs are built on top of a simple notion of TAs \�a la" Alur-

Dill -with a communication based on label sharing- they are immediately

supported by several checking tools like Kronos [13], Uppaal [6],etc.

� I/O TCs are de�ned without resorting to \receptiveness games" like in

live I/O Timed Automata [15], Reactive Modules [5], etc. Conditions for

checking good I/O label division are easy to automate.

� We believe that they are suitable to compactly model high-level non-blocking

abstractions (see discussion in [8] and Sect. 3).

� With some extra constraints on I/O TCs, it is possible to apply \assume-

guarantee"-style rules (e.g.,[19]) for re�nement checking. Like in [19] those

constraints are not based on more general but complicated receptiveness

games [15,5]). Those constraints are not basic properties for I/O TCs (which

are mainly inspired in non-zeno preservation). We think that this separation

has theoretical and practical interest.

� I/O notions are rather independent of the underlying timed (or untimed 5)

formalism used to describe the dynamics.

It is worth mentioning related work on preserving \reactivity and activ-

ity" of components. In [7], an algebraic framework based on the temporal

properties of synchronization operation is presented (they aim at getting high

level synchronization facilities). Our point of view is a functional classi�cation

of transitions. In that line of research, authors of [19] present non-blocking

Timed Processes to get a family of automata where they can apply an as-

sume/guarantee style of reasoning. Communication between components is

based on signal change instead of label sharing and it is suited to circuit mod-

5 We believe that this I/O model can be adapted to the untimed framework by chang-

ing timed divergence conditions with fairness constraints [12,15], an usual way to specify

progress in the untimed framework.

2

Braberman and Olivero

eling. Di�erently from our approach, output changes are constrained to be

non-transient and the update of inputs is independent from the update of out-

puts. Since that model is focused on breaking circularity of assume-guarantee

rules, the underlying notion of non-zenoness does not need to rule out black-

alleys; instead de�nitions rule out forcing in�nitely many transitions within a

�nite interval.

Liveness and I/O interfaces have been considered in a general setting for

simulation proof methods \�a la" Lynch-Vaandrager [15] geared towards the-

orem provers. In that work, Live Timed I/O automata using a notion of

\responsiveness" is de�ned based on games which embeds several proposals

for fair I/O timed systems [20,24], etc. A closer model are the Reactive Mod-

ules of [5]. Unlike our notions, it is based on receptiveness games to de�ne

non-blocking and I/O variables to communicate modules.

In next section we recall Timed Automata. In Sect. 3, we formally present

I/O Timed Components. Some applications are mentioned in Sect. 4. Con-

ditions to get assume-guarantee rule are discussed in Sect. 5. Finally, we

summarize the results and mention some future work.

2 Timed Automata

Timed Automata (TA) is one of the most widely used formalism to model

and analyze timed systems and is supported by several tools (e.g., [13,6,18],

etc.). This presentation partially follows [26]. Given a �nite set of clocks (non-

negative real variables) X = fx1; x2; : : : ; xng, a valuation is a total function

v : X
tot

! R�0 where v(xi) is the value associated with clock xi. We de�ne VX as

the set [X
tot

! R�0] of total functions mapping X to R�0 . 0 2 VX denotes the

function that evaluates to 0 all clocks. Given v 2 VX and t 2 R�0 , v+t denotes

the valuation that assigns to each clock x 2 X the value v(x)+t. Given a set of

clocks X, a subset � � X and a valuation v we de�ne Reset�(v) as a valuation

that assigns zero to clocks in � and keeps the same value than v for the

remaining clocks. Given a set of clocksX we de�ne the sets of clock constraints

	X according to the grammar: 	X 3 ::= x � cjx � x0 � cj ^ j _ ,
where x; x0 2 X;�2 f<;�;=;�; >g and c 2 N .

A valuation v 2 VX satis�es 2 	X (v j=) i� the expression evaluates

true when each clock is replaced with its current value speci�ed in v.

De�nition 2.1 [Timed Automata] A timed automaton (TA) is a tuple A =

hS;X;�; E; I; s0i where S is a �nite set of locations, X is a �nite set of clocks,

� is a set of labels, E is a �nite set of edges, (each edge e 2 E is a tuple

hs; a; ; �; s0i where: s 2 S is the source location, s0 2 S is the target location,

a 2 � is the label, 2 	X is the guard, � � X is the subset of clocks reset

at the edge), I : S
tot

! 	X is a total function associating with each location a

clock constraint called location's Invariant, and s0 2 S is the initial location.

3

Braberman and Olivero

Given a TA A = hS;X;�; E; I; s0i we de�ne Locs(A) = S, Clocks(A) =

X, Labels(A) = �, Edges(A) = E, Inv(A) = I, Init(A) = s0, and given an

edge e = hs; a; ; �; s0i 2 E we de�ne src(e) = s, Label(e) = a, Guard(e) = ,

Rst(e) = �, tgt(e) = s0. The State Space QA of a TA A is the set of states

(s; v) 2 S � VX for which v j= I(s) and q0 = (Init(A); 0) is its initial state.

Given a state q = (s; v) we denote: q+t = (s; v+t), q@ = s, and q(xi) = v(xi).

The semantics of a TA A can be given in terms of the Labeled Transition

System (LTS) of A, denoted GA = hQA; q0; 7!;�i. The relation 7! is the

set of (time or discrete) transitions between states. Let t 2 R�0 ; the state

(s; v) has a time transition to (s; v + t) denoted (s; v) 7!�

t
(s; v + t) if for all

t0 � t, v + t0 j= I(s), where � is a �ctitius label. Let �� denote � [f�g.
Let e 2 E be an edge; the state (src(e); v) has a discrete transition to the

state (tgt(e); v0) denoted (src(e); v) 7!
Label(e)
0 (tgt(e); v0) if v j= Guard(e) and

v0 = ResetRst(e)(v).

We write q 7!l

0 (the label l 2 � is enable at the state q 2 QA) if q 7!
l

0 q
0

for some q0 2 QA. Given a subset �0 � �, we write q 7!�0

0 (all labels l 2 �0

are enable at the state q 2 QA) if q 7!
l

0 for all l 2 �0.

A �nite run r of A starting at q is a �nite sequence q 7!a0

t0
q1 7!

a1

t1
::: 7!

an�1

tn�1

qn of states and transitions inGA. The time of occurrence of the kth (k � n�1)
transition is equal to

P
k�1

i=o ti and is denoted as �r(k). The time length of the

run (denoted as �r) is equal to �r(n). An in�nite run is just an in�nit sequence

of states and transitions in GA. The set of �nite and in�nite runs starting at

q is denoted as RA(q). We call Lab(r) the set of all labels in the run r.

A divergent run is an in�nite run such that
P

1

i=o ti = 1. The set of

divergent runs of a TA A starting at state q is denoted R1

A
(q). A TA is non-

zeno when any �nite run starting at the initial state can be extended to a

divergent run, that is, the set of �nite runs is equal to the set of �nite pre�xes

of divergent runs. We say that the state q is reachable if there is a �nite run

starting at the initial state which ends at q; we denote the set of all reachable

states in a TA A as Reach(A).

Given a run r = q 7!a0

t0
q1 7!

a1

t1
::: 7!

an�1

tn�1
qn ::: 2 RA(q), the exhibited

timed-event sequence of r, is a sequence r�� = (a0; �r(0)); (a1; �r(1)); (a2; �r(2));

...(an�1; �r(n� 1)); ::: of pairs (l; t) 2 (��)� R�0 .

Given a run r 2 RA(q) and a set of labels L � �, the exhibited timed-event

sequence over L, denoted as rL, is the maximum subsequence of r�� containing

pairs (l; t) such that l 2 L (the sequence rL shows the L-labeled transitions

and their time stamps). Given a timed-event sequence over L named rL, its

length is denoted as #rL, its k-th pair (with k < #rL) is denoted as rL[k] and

its pre�x up to the k-th pair (with k < #rL) is denoted as rL[0:::k]. Given a

pair p = (l; t) in rL, we de�ne lab(p) = l and time(p) = t.

Given two TAs A and A0 and a set of labels L � � \ �0, we say that

A �L A0 (A is a re�nement of A0 w.r.t L) i� for all �nite run r 2 RA(q0)

there exists a run r0 2 RA0(q00) such that �r = �r0 and rL = r0
L
.

4

Braberman and Olivero

The parallel composition of TAs is de�ned over classical synchronous prod-

uct of automata.

De�nition 2.2 [Parallel composition] Given two TA A1 = hS1; X1;�1; E1; I1; s01i,
and A2 = hS2; X2;�2; E2; I2; s02i where X1\X2 = ;. Let E 0 be the set of edges

de�ned over the S1 � S2 as follows:

h(s1; s2); a; ; �; (s
0

1; s
0

2)i 2 E
0 ()

hs1; a; ; �; s
0

1i 2 E1 ^ a =2 �jj ^ s2 = s02, or

hs2; a; ; �; s
0

2i 2 E2 ^ a =2 �jj ^ s1 = s01, or

hsi; a; i; �i; s
0

i
i 2 Ei ^ a 2 �jj ^ = (1 ^ 2) ^ � = �1 [�2

where �jj = �1 \ �2.

The parallel composition A1jjA2 is de�ned as: A = hS;X1 [X2;�1 [
�2; E; I; (s01; s02)i where S � S1�S2 is the set of locations reachable traversing
the edges of E 0 from the initial location (s01 ; s02), E � E 0 is the subset of edges

with source and target in S, and for all (s1; s2) 2 E, I((s1; s2)) = I(s1)^I(s2).

The k operator is commutative and associative. We will denote ki2I Ai the

parallel composition of an indexed set of TA. If q is a state of that parallel

composition �i(q) will denote the local state of TA Ai (location and local-

clocks values).

3 I/O Timed Components

In this section we de�ne I/O concepts formally.

Given a TA A, we will divide Labels(A) (its set of labels) into three sets:

InA (input-labels), OutA (output-labels) and �A (internal-labels), such that

fInA; OutA; �Ag 2 Part(Labels(A)), where Part(S) is the set of all partitions
of the set S. We de�ne the set ExpA of exported labels (or interface labels) of

A as ExpA = InA [OutA.

A set of input selections of A is a set IA = fIA1 ; I
A

2 ; : : : ; I
A

k
g 2 Part(InA),

a set of output selections of A is a set OA = fOA

1 ; O
A

2 ; : : : ; O
A

h
g 2 Part(OutA).

Note that IA [OA [f�Ag 2 Part(Labels(A)).

Let us de�ne what is a correct I/O (uncontrollable/controllable) interface

labels for a TA.

De�nition 3.1 [Admissible Input/Output interface for a TA] Given a non-

zeno TA A, and the sets IA; OA of input and output selections of A, the

pair (IA; OA) is an admissible input/output interface for A i� the following

conditions hold:

For any state q 2 Reach(A)

(i) for any input selection IA
n
2 IA there exists a label i 2 IA

n
such that

q 7!i

0. That is, given any input selection IA
n
2 IA, the TA can always

5

Braberman and Olivero

synchronize using some of the labels of IA
n
(there is always at least one

alternative of every input selection enabled at each state).

(ii) there exists a run r 2 R1

A
(q) such that Lab(r) \ InA = ;. Input is not

mandatory and thus non-zenoness must be guaranteed without them 6 .

(iii) for any output selection OA

m
2 OA, if there exists a label o 2 OA

m
such that

q 7!o

0 then q 7!
O
A

m

0 . All labels of an output selection are simultaneously

enabled or disabled.

(iv) for any run r 2 RA(q), if a label o 2 OutA appears an in�nite number of

times in r, then necessarily r 2 R1

A
(q) (non-transientness of outputs 7).

In the Appendix A.1 we show how to check I/O admissibility.

De�nition 3.2 [I/O TCs] An I/O Timed Component (or I/O TC) is a tuple

(A; (IA; OA)) where A is a non-zeno TA and (IA; OA) is an admissible I/O

interface for A.

An output selection of size greater than one models alternative behaviors

of the component according to the state of the component exporting those

labels as input selection (similar to an external non-deterministic choice in

Process Algebra-like notations, see example 3.4).

Given an I/O TC C = (A; (IA; OA)), C may also denote the underlying

TA A when it can be deduced from the context. Thus, operations performed

on I/O TCs should be understood as operations on its underlying TAs.

De�nition 3.3 [Compatible Components] Given two I/O TCs C1 = (A1,

(IA1, OA1)) and C2 = (A2; (I
A2; OA2)), they are compatible components if and

only if:

(i) Labels(A1) \ Labels(A2) � ExpA1
\ ExpA2

(i.e., all common labels are

exported by both A1 and A2),

(ii) for all IA1

n
2 IA1 and IA2

m
2 IA2 if #IA1

n
> 1 and #IA2

m
> 1 then IA1

n
\IA2

m
=

; (intersection of input selections of size greater than one must be empty).

(iii) OutA1
\ OutA2

= ; (the components don't share output labels).

(iv) for all I 2 IA1 [IA2 and O 2 OA1 [OA2 then either I \O = ; or I � O

(output selection covers all input alternatives).

We refer to a set of pair-wise compatible components as a compatible set

of components. I/O compatibility means that underlying TAs can not block

each other and moreover, we will show that the composition of compatible

components is itself a component and therefore a non-zeno automata.

6 Note that this property is stronger than non-zenoness since it also requires time divergence

avoiding input-labeled transitions. It is similar to progressiveness in [22] and feasibility in

[24].
7 This requirement together with the previous divergence property (item (ii) of Def. 3.1)

and non-zenoness of the underlying TA are closely related to the notion of Strong I/O

Feasibility of [24].

6

Braberman and Olivero

Example 3.4 CSMA/CD (Carrier Sense, Multiple Access with Collision De-

tection) is widely used protocol on LANs on the MAC sublayer. It solves the

problem of sharing a single channel in a broadcast network (a multi-access

channel). When a station has data to send it �rst listens to the channel to

check whether it is idle or busy. If the bus seems idle it begins sending the

message, else it waits a random amount of time and then repeats the sensing

operation. When a collision occurs, the transmission is aborted simultaneously

in all the stations that were transmitting and they wait a random time to start

all over again. We formally model the timing aspects of the protocol using I/O

timed components (see Fig.1) based on the model presented in [21]. Sender

components share a bus component. We suppose that the bus is a 10Mbps

Ethernet with worst case propagation delay � of 26 ms. Messages have a �xed

length of 1024 bytes, and so the time � to send a complete messages, includ-

ing the propagation delay, is 808 ms. The bus is error-free, no bu�ering of

incoming messages is allowed. Note that fSendOKi; SendBusyig is an output
selection of sender i and the selection depend on the input actually enabled

in the bus state. In fact, SendBusyi is enabled when the head of a message

has already propagated. It takes at most � to propagate the collision signal

to all the senders. The sender stays at most Æ in the transmission location.

Note also that the sender non-deterministically makes a new attempt to send

before 2� elapsed since the last attempt. In models like Timed Process [19], it

would be necessary for the sender component to issue a signal standing for the

sensing of the bus state, and then wait for the status answer of the bus com-

ponent (which can not arrive at zero time due to a \non-immediate response"

constraint in that model). That two phase modeling idiom, common in soft-

ware models, can be reduced in our modeling framework using appropriate

Input and Output selections.

In [8], the reader can found how several examples taken from the literature

are modeled as I/O TCs.

3.1 I/O Components: Composition and Non-Zenoness

Let us state some results that help to prove that a TA-model is non-zeno.

Firstly, we will see how an admissible interface can be derived for the parallel

composition of two compatible I/O TCs. This is a rather strong result which

implies the following fact: given two compatible I/O TCs C1 and C2 then the

composition, which turns out to be non-zeno, is also a I/O TC (i.e., A1 k A2 is

non-zeno and moreover it can be given an admissible I/O interface). Brie
y,

the new input interface is constituted by the original input selections that

do not loose \selectivity property" of item (i) of Def. 3.1. That property

is preserved for any input selection whenever there is no matching output

selection and it is not properly included into another input selection.

Something similar can be done to build the new output interface. Since

output selections that intersect with input selections of size greater than one

7

Braberman and Olivero

wait

send1ok

{y}

end1 I={{send1ok,send1busy},{end1},{end2}, { send2ok,send2busy}}}
O={{collision}}

end2

send2ok
{y}

send1ok

send2ok

end2
end1

wait trans

retry
x1<52

collision

send1busy

collision

collision

{x1}

{x1}

{x1}

send1ok

{x1}

end1
x1=808

sendbusy1
{x1}

I={{collision}}
O={{send1ok,send1busy}, {end1}}

x1<=808

collision

y<26

y<26

y<26
send1ok

send2ok

send1busy
send2busy
y>=26

y>=26

SENDER 1

BUS

end2
end1

x1>=1

{x1}
send1ok
x1>=1

y>1

Fig. 1. I/O Components of the CSMA/CD Protocol

may loose the simultaneous availability property (item (iii) of Def. 3.1), they

are not part of the new output selections. However, all the labels of those

\lost" output selections can be safely added as output selections of size 1

(singletons trivially satisfy item (iii) of Def. 3.1). Thus, all exported labels of

the components are exported in the composition. This fact is important to

prove that this construction can be generalized to the parallel composition of

n components:

Theorem 3.5 Given an indexed set S = f(Ai; (I
Ai; OAi)g1�i�n of n I/O TCs

such that they are pair-wise compatible, we de�ne the sets IA =
S

1�i�n I
Ai,

IA>1 =
S

1�i�nfI 2 I
Ai=#I > 1g, OA =

S
1�i�nO

Ai.

(A; (IA; OA)) is a component where:

A =k1�i�n Ai

IA = fI 2 IA= 8I
0 2 IA : I 6� I 0 ^ 8O0 2 OA : I \ O0 = ;g and,

OA = fO 2 OA= 8I
0 2 IA>1 : I

0\O = ;g[ffog=o 2 O 2 OA^9I
0 2 IA>1 :

I 0 \O 6= ;g

Proof. See Appendix A. The basic idea is that, from the point of view of

a component, its partners do not block its outputs: they just select them

8

Braberman and Olivero

(items (i) and (iii) of Def. 3.1), also it does not require inputs to allow time

elapse (item (ii) of Def. 3.1). On the other hand, a subset of I/O TCs can not

engage themselves in an in�nite activity in a �nite interval of time since this

is ruled out by item (iv) of Def. 3.1. 2

In the example 3.4 the resulting interface of the parallel compositionA =def

SENDER1 k BUS is IA = ffSend2ok; Send2Busyg; fend2gg,OA = ffend1g,
fSend1okg, fSend1Busyg, fcollisiongg. Note that since simultaneous avail-
ability of output selection fSend1ok; Send1Busyg is lost, they became single-

ton output-selections.

4 Applications of I/O TCs

Non Zeno Models:

Compatibility is a syntactical condition that ensures non-zenoness of the

resulting parallel composition. As was already said, non-zenoness is a property

required to perform some veri�cation procedures. In [8,9] we model Real-Time

System execution architectures by means of I/O TCs. We use I/O compati-

bility to ensure that I/O TCs modeling the connectors and the environment

do not block the rest of the system (the tasks). As was already explained,

I/O selections may be an useful mechanism to model in a single transition

action/result on software entities.

Reduction:

Safety requirements are commonly modeled by means of virtual compo-

nents (Observers) which are composed in parallel with the system under ana-

lysis (SUA) (e.g., [1,9]). In [8,10,11] we present a technique that, given the

SUA and an observer, builds a smaller parallel composition equivalent to the

original one up to the branching structure of the LTS. In a few words, we

develop a technique that calculates the components that may be forgotten at

each observer location since their future behavior do not in
uence the future

evolution of the SUA up to the observer. Under some reasonable assumptions

on the topology of the observers, those remaining sets (the relevant compo-

nents) are proper subsets of the set of all components. The time needed for

veri�cation is drastically reduced in some cases. The core of that technique

is a notion of potential \direct in
uence" of an automaton behavior over an-

other automaton behavior. A naive solution would say that an automaton A

potentially in
uences another automaton B i� they share a label. Unfortu-

nately, this would lead to a rather large symmetrical overestimation. Then,

by using the I/O interface attached to TAs, we are able to de�ne an asymmet-

rical condition of behavioral in
uence that could be statically checked. That

is, we provide a better overestimation of potential in
uence than simple label

sharing. It is worth mentioning that the technique presented in [16] is based

on a simpler notion of I/O interface than the one presented in this article.

9

Braberman and Olivero

The details of that \relevance calculus" using the de�nitions of this paper can

be found in [8,10,11].

5 On Breaking Circularity in Assume-Guarantee Rules

The authors of [19] present a simple modularity principle for abstraction rela-

tions in Timed Processes. Assume-guarantee rule has an apparent circularity:

to prove that A k B is a re�nement of A0 k B0 it suÆces to prove that (1) A is

a re�nement of A0 assuming that the environment behaves like B0, and (2) B

is a re�nement of B0 assuming that the environment behaves like A0. For this

rule to be true in our setting, we have to add a couple of conditions. Firstly,

let us de�ne when an state is non urgent from the point of view of outputs.

De�nition 5.1 [Non-Urgent state] Given a I/O TC C = (A; (IA; OA)), a

state q is not output urgent (denoted asNU(q)) i� there exists a run r 2 RA(q)

such that 0 < �r and Lab(r) � �A.

De�nition 5.2 [Non-Blocking Extra Conditions] We say that an I/O TC

satis�es the Non-Blocking Extra Conditions if and only if:

(i) Guards and Invariants are closed predicates (i.e., its binary relations are

only �, = or �).

(ii) Inputs do not disable nor enable urgent outputs: given a state q 2
Reach(A) and a label i 2 InA, if q 7!

i

0 q
0 then NU(q) i� NU(q0) 8 .

It is easy to see that those properties are preserved by parallel composition

A =kj2J Aj. Firstly note that guards and invariants of A are inherited from

the components Aj. For the item (ii) of Def. 5.2, if q 7!i

0 q
0 then i is an

unmatched input of one component, namely k, and thus q and q0 just di�er

in the local state of k. Also, NU(q) if and only if for all j 2 J NU(�j(q))

(since the set of internal labels of the composition A is the union of internal

labels of components Aj). Therefore, NU(q) i� NU(q0) since NU(�k(q)) i�

NU(�k(q
0)) and the rest of the components remain the same.

Theorem 5.3 (Assume/Guarantee) Given the I/O TCs A;B;A0; B0
sat-

isfying the non-blocking extra conditions such that A and B are I/O com-

patible, and A0
and B0

have the same I/O interface that A and B resp. If

(A k B0) �ExpA
A0

and (A0 k B) �ExpB
B0

imply that (A k B) �ExpA[ExpB

(A0 k B0).

Proof. See appendix. 2

8 This property can be checked, for instance, using the veri�cation engine of Kronos

tool [13].

10

Braberman and Olivero

6 Conclusions and Future Work

We present I/O Timed Components, a simple compositional notion that ex-

tends Timed Automata \�a la" Alur-Dill to get live non-zeno models [8], also

providing some important methodological advantages like in
uence detection

[10]. Assume-guarantee modular reasoning like [19] is obtained by adding a

couple of constraints to I/O TCs without resorting to games. In our opin-

ion, keeping non-zeno preservation conditions apart from the ones that break

circularity in assume guarantee has practical and theoretical value.

We believe that admissible interfaces of a TA could be ordered according

to the information it provides about availability of labels. That is, (I1; O1) �
(I2; O2) i� the admissibility of the interface (I1; O1) for a TA A implies the

admisibility of (I2; O2) for A. We would like to study if this relationship

between interfaces could be a declarative way to de�ne the I/O interface of

the composition.

We would like to study how to express and generalize our idea in term of

Interface Theories [14] framework.

Conditions for assume-guarantee could be weakened, for instance: it is

suÆcient for A and B to satisfy that inputs do not enable urgent outputs, and

for A0 and B0 to satisfy that inputs do not disable urgent outputs.

References

[1] Alpern, B., and F. Schneider, Verifying Temporal Properties without Temporal

Logic, ACM Trans. Programming Languages and Systems, 11 (1) (1989), 147{

167.

[2] Alur, R., \Techniques for Automatic Veri�cation of Real-Time Systems," Ph.D.

thesis, Stanford University, 1991.

[3] Alur, R., C. Courcoubetis, and D. Dill, Model-Checking for Real-Time Systems

In Proceedings of Logic in Computer Science, IEEE Computer Society, Los

Alamitos, Calif, 414-425, 1990. Also in Information and Computation, 104 (1)

(1993) 2{34.

[4] Alur, R. and D. Dill, A Theory of Timed Automata, Theoretical Computer

Science, 126 (1994) 183{235.

[5] Alur, R., and T. Henzinger, Modularity for Timed and Hybrid Systems, In

Proceedings of CONCUR'97, LNCS 1243, 1997.

[6] Bengtsson, J., K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi, UPPAAL- A

Tool Suite for the Automatic Veri�cation of Real-Time Systems, In Proceedings

of Hybrid Systems III, LNCS 1066, Springer Verlag, 1996, 232{243.

[7] Bornot, S., and J. Sifakis. An Algebraic Framework for Urgency To appear in

Information and Computation, Academic Press.

11

Braberman and Olivero

[8] Braberman, V. \Modeling and Checking Real-Time System Designs," Ph.D

Thesis, Universidad de Buenos Aires, 2000. [Thesis]

[9] Braberman, V., and M. Felder, Veri�cation of Real-Time Designs: Combining

Scheduling Theory with Automatic Formal Veri�cation, In Proceedings of 7th

European Conf. on Software Eng./ 7th ACM SIGSOFT Symposium on the

Foundations of Software Eng., (ESEC/FSE 99), LNCS 1687, Springer Verlag,

Sept. 1999, 494{510.

[10] Braberman, V., D. Garbervetski, and A. Olivero, Improving the Veri�cation of

Timed Systems using In
uence Information Submitted to TACAS 2002.

[11] Braberman, V., D. Garbervetski, and A. Olivero, \In
uence Information to

Improve the Veri�cation of Timed Systems," Tech. Report DC-UBA 2001-003.

[12] Clarke, E., O. Grumberg and D. Peled, \Model Checking", MIT Press, January

(2000), 330pp..

[13] Daws, C., A. Olivero, S. Tripakis, and S. Yovine, The Tool KRONOS, In

Proceedings of Hybrid Systems III, LNCS 1066, Springer Verlag, 1996, 208{

219.

[14] de Alfaro, L., and T.A. Henzinger Interface Theories for Component-based

Design, In Proceedings of EMSOFT 01: Embedded Software, LNCS 2211,

Springer Verlag, 148-165, 2001.

[15] Gawlick, R., R. Segala, J. Sogaard-Andersen, N. Lynch Liveness in Timed

and Untimed Systems, In Proceedings of ICALP , LNCS 820, Springer Verlag,

166-177, 1994. Also in Information and Computation (1998).

[16] Garbervetsky, G. \Un M�etodo de Reducci�on para la Composici�on de Sistemas

Temporizados" Master Thesis, Universidad de Buenos Aires, 2000.

[17] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine, Symbolic model checking

for real-time systems. Information and Computation, 111(2) (1994), 193{244.

[18] Larsen, K.G., F. Laroussinie, CMC: A Tool for Compositional Model-Checking

of Real-Time Systems, In Proceedings of. FORTE-PSTV'98, 439-456, Kluwer

Academic Publishers, 1998.

[19] Kurshan, R. P., S. Tasiran, R. Alur, and R. K. Brayton, Verifying Abstractions

of Timed Systems, In Proceedings CONCUR 96, LNCS 1119, Springer Verlag,

1996.

[20] Merritt, M., F. Modugno, and M. Tuttle, Time Constrained Automata, In

Proceedings of CONCUR'91, LNCS 527, Springer Verlag, 1991.

[21] Nicollin, X., J. Sifakis, and S. Yovine, Compiling Real-Time Speci�cation into

Extended Automata, IEEE Trans. on Soft. Eng.,Vol. 18 (9) (1992), 794{804.

[22] Springintveld, J., F. Vaandrager, P. D'Argenio , Testing Timed Automata, To

appear in Theoretical Computer Science, 254 (1-2) (2001), 225{257.

12

Braberman and Olivero

[23] Tripakis, S. \L'Analyse Formelle des System�es Temporis�es en Practique", Phd.

Thesis, Univesit�e Joseph Fourier, December 1998.

[24] Vaandrager, F., N. Lynch, Action Transducers and Timed Automata, In

Proceedings of CONCUR'92, LNCS 630, 436-455, 1992.

[25] Yi, Wang, Real-Time Behavior of Asynchronous Agents, In Proceedings of

CONCUR'90, LNCS 458, Springer Verlag, 1990.

[26] Yovine, S., Model-Checking Timed Automata, Embedded Systems,

G. Rozemberg and F. Vaandrager eds., LNCS 1494, Springer Verlag, 1998.

Appendix

A On I/O Timed Components

Lemma A.1 Given two I/O-compatible components C1 = (A1; (I
A1; OA1))

and C2 = (A2; (I
A2; OA2)), we de�ne the sets IA = IA1 [IA2, IA>1 = fI 2

IA=#I > 1g, OA = OA1 [OA2.

C = (A; (IA; OA)) is a component where:

A = A1 k A2

IA = fI 2 IA= 8I
0 2 IA : I 6� I 0 ^ 8O0 2 OA : I \ O0 = ;g and,

OA = fO 2 OA= 8I
0 2 IA>1 : I

0\O = ;g[ffog=o 2 O 2 OA^9I
0 2 IA>1 :

I 0 \O 6= ;g

Proof. The most diÆcult point is the proof that A1 k A2 is indeed non-zeno

regardless input transitions (item (ii), Def. 3.1). We will see that any state

reachable by a �nite run is not a timelock. Moreover, time can elapse avoiding

input transitions. Let q be a reachable state by a �nite run of A1 k A2 then

q1 = �A1
(q) and q2 = �A2

(q) are reachable states (by �nite runs) of A1 and

A2 resp. Let k 2 R�0 be a constant. From the de�nition of component, there

must be runs r1 and r2 starting in q1 and q2 resp. of time length equal to k

such that r1 does not contain any transition with label in InA1
and r2 does

not contain any transition with label in InA2
(thus they do not contain any

label in IA). Now, we show a procedure to obtain a run r of A1 k A2 from

r1 and r2. To obtain such a run, we would need to merge r1 and r2. If the

discrete transitions of r1 and r2 are sorted according to the time of occurrence,

it is easy to combine them obtaining r till the �rst output-labeled transition

which shared by the other automaton is found. To outline the merge, lets

r1 = q1 7!l1

t1
q11 7!

l2

t2
:::q1

n
, and r2 = q2 7!

l
0

1

t
0

1

q21 7!
l
0

2

t
0

2

:::q2
n0
. Now, suppose that

t1 � t01 (the other case is symmetrical) and l1 is not shared by A2 (or it is �).

Then - thanks to the parallel composition interleaving semantics - the resulting

run r can be build as follows: r = q 7!l1

t1
(q11 ; q

2 + t1) concatenated with the

run obtained using the same procedure from (q11; q
2 + t1) with r1 = q11 7!

l2

t2
:::,

13

Braberman and Olivero

and r2 = q2 + t1 7!
l
0

1

t
0

1
�t1

q21 7!
l
0

2

t
0

2

:::q0
n0
. Clearly this procedure can be iterated

�nitely till we reach the end of both runs (the variant is sum of the number

of transitions of both runs), thus obtaining a run of A of time length k, or till

a shared label is found. 9

Without loss of generality, let us suppose that the earliest still non syn-

chronized shared output-transition qj 7!
o

0 qj+1 belongs to r1 and o 2 O 2 OA1.

Let I 2 IA2 , I � O be the corresponding matching input selection (i.e., o 2 I)
by compatibility (item (iv), Def. 3.3). By de�nition of input selection, there

is a transition labeled i0 2 I enabled in A2 at the time of occurrence of that

jth transition. By de�nition of output selection, at qj there must be also a

discrete transition qj 7!
i
0

0 s. By applying this procedure, we can �x up both

runs to get a �nite run starting at q such that either it has time length k or

it ends with an output transition into an intermediate state q0. Therefore,

since both TA are non-transient for output labeled transitions (item (iv) of

I/O interface admissibility), by repeating the whole procedure from those in-

termediate states (i.e., obtaining new r1, r2, etc.), a run of time length k is

eventually built (if not, either the projection of that in�nite run on A1 or A2

would show an in�nite number of output-labeled transitions, and since there is

a �nite number of labels at least one output label would be repeated in�nitely

often thus violating item (iv) of I/O interface admissibility). The rest of the

items of I/O interface are proven as follows:

� the new input and output labels are disjoint (input selections intersecting

with an output selections are not part of the new interface).

� Input Selection Property (item (i)): given an state q of A and an input

selection I of IA, we know that I belongs either to IA1 or to IA2. Without

loose of generality, lets suppose that it belongs to IA1. Then, there exists

i 2 I such that �A1
(q) 7!i

0 r. We also know that if i 2 Labels(A2) then

fig 2 IA2 (input selection of size 1) and thus there exists s such that

�A2
(q) 7!i

0 s and then q 7!i

0 (r; s).

� Output Selection Property (item (iii)): Similar to the previous one.

� �nally, a run containing an in�nite number of internal or output-labeled

transitions is necessarily time-divergent (item (iv)). Indeed, since any run

of A can projected into a run of A1 and a run of A2 and one of those

runs must exhibit an in�nite number of outputs or internal transitions and

therefore diverge.

2

9 Note that if one of the runs is empty then it just remains a set of discrete (0 time)

transitions in the other run (both have originally the same time length) and therefore we

can omit that suÆx since we have already built a run of time length k.

14

Braberman and Olivero

Theorem 3.5

Given an indexed set S = f(Ai; (I
Ai; OAi)g1�i�N of N I/O TCs such that

they are pair-wise compatible, we de�ne the sets IA
n =

S
1�i�n I

Ai, IA>1
n =S

1�i�nfI 2 I
Ai=#I > 1g, OA

n =
S

1�i�nO
Ai.

C = (A; (IA; OA)) is a component where:

A = k1�i�N Ai

IA = fI 2 IA
N= 8I 0 2 IA

N : I 6� I 0 ^ 8O0 2 OA

N : I \ O0 = ;g and,

OA = fO 2 OA

N= 8I 0 2 IA>1
N : I 0 \ O = ;g [ffog=o 2 O 2 OA

N ^ 9I 0 2
IA>1

N : I 0 \ O 6= ;g

Proof. By induction. Base case is solved by the last lemma. Case n+1. By

inductive hypothesis we know that

Cn = (An; (In; On)) is a component where:

An =k1�i�n Ai

In = fI 2 IA
n= 8I 0 2 IA

n : I 6� I 0 ^ 8O0 2 OA

n : I \O0 = ;g and,

On = fO 2 OA

n= 8I 0 2 IA>1
n : I 0 \ O = ;g [ffog=o 2 O 2 OA

n ^ 9I 0 2
IA>1

n : I 0 \O 6= ;g

We know that Cn+1 = (An+1; (I
An+1; OAn+1) (An+1; (In+1; On+1)) is com-

patible with all Ci = (Ai; (I
Ai; OAi)) for 1 � i � n. Let us show that is

compatible with the interface for the n components but �rstly let pinpoint

some facts about the interface (In; On) of Cn.

(i) An exported label of Ci (1 � i � n) is also exported by Cn. This comes

from the following facts: (a) Input labels remain as input labels in the

biggest input selection containing it except in the case that the input

selection matches with an output selection (in that case, I � O), and (b)

Output labels remain in the interface.

(ii) Input selections of In are input selections of some of its constituent com-

ponents (i.e., if I 2 In then there exists k 2 N : 1 � k � n such that

I 2 IAk)

(iii) IfO is an output selection ofOn, if there exist k 2 N : 1 � k � n such that

O 2 OAk and no Input selection of size greater than one intersects it or

there exists O0 2 OAk and O = fag � O0, and there exists m : 1 � m � n

such that I 0 2 IAm and I 0 � O0.

Therefore, suppose that An+1 has a common label with k1�i�n Ai then, for

instance, that label belongs to a kth automata and therefore belongs to the

interface of the components Ck and Cn+1. If that label is an output label of

the Cn+1 component, that label is exported by Cn due to the �rst observation.

The compatibility (item (ii) of Def. 3.3) I \ I 0 6= ; then either #I = 1 or

#I 0 = 1 is trivially true due to the observation that input selections of Cn

are input selections of the original components and the pairwise compatibility.

Similarly, if an output selection O ofOAn+1 intersects with some input selection

15

Braberman and Olivero

I of In then that input selection must be an input selection of some component

and therefore that input selection must be included in the output selection

(i.e., I � O). If an input selection I of IAn+1 intersects with some output

selection of On namely O, then either it is an input selection of size one and it

is trivially included in O, or, by the last observation, we know that there exists

k such that O 2 OAk and thus I � O (that is, due to pairwise compatibility,

I must be the only input selection of size greater than 1 intersecting with O

and then by the last observation O must belong to On).

Therefore, Cn and Cn+1 are compatible components and by Lemma A.1

the pair (I 0n+1; O0n+1) is a compatible interface, where:

I 0n+1 = fI 2 In [IAn+1= 8I 0 2 In [IAn+1 : I 6� I 0 ^ 8O0 2 On [OAn+1 :

I \O0 = ;g and,
O0n+1 = fO 2 On [OAn+1= 8I 0 2 In [IAn+1 ^#I > 1 : I 0 \O = ;g [
ffog=o 2 O 2 On [OAn+1 ^ 9I 0 2 In [IAn+1 ^#I > 1 : I 0 \O 6= ;g

It is not diÆcult to see that this interface is equivalent to (In+1; On+1)

where

In+1 = fI 2 IA
n+1= 8I 0 2 IA

n+1 : I 6� I 0 ^ 8O0 2 OA

n+1 : I \O0 = ;g and,
On+1 = fO 2 OA

n+1= 8I 0 2 IA>1
n+1 : I 0 \O = ;g [

ffog=o 2 O 2 OA

n+1 ^ 9I 0 2 IA>1
n+1 : I 0 \ O 6= ;g

In fact, if we write In+1 in terms of In we need to add the input selections

of IAn+1 which are not strictly included in an Input Selection of other IAk

and do not match with an output selection. On the other hand, we have to

eliminate from In the input selections strictly included in an input selection

of IAn+1 and the ones that match with an Output Selection of OAn+1. That is,

In+1 = (In�fI 2 IA
n= 9I 0 2 IAn+1 : I � I 0_9O 2 OAn+1 : I \O 6= ;g[fI 0 2

IAn+1= 8I 2 IA
n : I 0 6� I ^ 8O 2 OA

n : I 0 \O = ;g

Let us show that the de�nition of I 0n+1 speci�es that manipulation: note

that, though In may contain less Input Selections than the union of them

(
S

1�i�n I
Ai), it is easy to see that (a) If an input selection of the union is

not present in In then, either it is included on another input selection of In,

or it intersects an output selection of On, and (b) 9O 2 On : I \ O 6= ; i�

9k � n;O 2 OAk : I \ O 6= ; (all output label remains). Therefore, the set

fI 0 2 IAn+1= 8I 2 IA
n : I 0 6� I ^ 8O 2 On

A
: I 0 \ O = ;g is equivalent to

fI 0 2 IAn+1= 8I 2 In : I 0 6� I ^ 8O 2 On : I 0 \ O = ;g. This proves that

in I 0n+1, the same input selections of IAn+1 �ltered by the In+1 are present.

Finally, In � fI 2 IA
n= 9I 0 2 IAn+1 : I � I 0 _ 9O 2 OAn+1 : I \ O 6= ;g is

equivalent to fI 2 In= 8I 0 2 IAn+1 : I 6� I 0 ^ 8O 2 OAn+1 : I \O = ;g and we

can conclude that I 0n+1 = In+1.

On the other hand, to write On+1 in terms of On, the output selections

of OAn+1 that do not match with input selections of size greater than one

must be added as well as the singletons for the ones that match. Besides, the

output selections of On must be checked against the input selections of In+1
to eliminate and convert into singleton output selections the ones that match

16

Braberman and Olivero

NO INPUT

I1 . . . In

0 1

2

1I . . . In

Fig. A.1. Observer for Checking Non-Zeno Regardless Input

with input selections of size greater than one. Again, this is speci�ed by the

de�nition of O0n+1. 2

A.1 Guaranteeing I/O Admissibility

For the sake of self containment we provide suÆcient syntactic constraints and

checking-algorithms to guarantee that (A; (IA; OA)) is indeed a component.

For example, to satisfy the property of input being non-blocking, we can

resort to the following syntactic property: 8I 0 2 IA : 8l 2 Locs(A) : Inv(l) =W
fe:Label(e)2I0^src(e)=lgGuard(e). That is, while the invariant is valid at least

one I'-labeled transition is enable.

To check that any output selection is simultaneously enabled one of the

possible syntactic property is the following: 8l 2 Locs(A); 8o; o0 2 O 2 OA :

_

fe2Edges(A):src(e)=l^Label(e)=og

Guard(e) =
_

fe02Edges(A):src(e0)=l^Label(e0)=o0g

Guard(e0)

To check non-zenoness we use an observer automaton with three locations:

location 1 is entered non-deterministically from initial location 0 and it is

left to go to a trap location 2 whenever input occurs. Then, we ask whether

A k Observer satis�es the following TCTL [17] formula : 82(@ = 1 !
9 ��1 @ = 1), i.e., whether time can elapse without traversing an input edge

(See Fig. A.1).

For non-transientness of outputs, it suÆces to require that no pair of out-

puts or internal events can occur closer than one time unit. This can be done

by resorting to an observer TA or, alternatively, adding and checking some

syntactic constraints on output edges, for instance, having a minimum delay

guard on a clock reset in the potential previous events. Another alternative is

checking strong non-zenoness [23] for sequences containing an in�nite number

of output labels.

17

Braberman and Olivero

B Assume Guarantee

Lemma B.1 (Extending event sequences) Given a TA A with closed pred-

icates (item (i), Def. 5.2) and a set L of labels, if r 2 RA(q0) then there exists

r0 2 RA(q0) such that,

(i) rL = r0
L
,

(ii) �r � �r0, and

(iii) 9k : 0 � k < #rL : �r0 � time(r0
L
[k]) 2 N .

Proof. This can be done by following a procedure on r that, step by step,

shifts forward not visible transitions (i.e., not L-labeled transitions) to be at

integer distance of a visible transition. 2

Theorem 5.3

Given the I/O TCs A;B;A0; B0 satisfying the non-blocking extra conditions

such that A and B are I/O compatible, and A0 and B0 have the same I/O

interface that A and B resp. If (A k B0) �ExpA
A0 and (A0 k B) �ExpB

B0

imply that (A k B) �ExpA[ExpB
(A0 k B0).

Proof. This is the sketch of the proof. Let L = ExpA [ExpB. Let r 2
RAkB(q0) be a �nite run such that there is no run in A0 k B0 of the same time

length exhibiting the sequence of timed events rL. First note there exists a

maximum k < #rL such that there exits r0 2 RA0kB0(q00) with rL[0:::k] = r0
L
.

There are two cases:

(i) There exists r0 2 RA0kB0(q00) such that rL[0:::k] = r0
L
, and time(r0

L
[k+1]) �

time(rL[k + 1]).

(ii) For all r0 2 RA0kB0(q00), �r0 � time(rL[k + 1]) and rL[0:::k] = r0
L
implies

time(r0
L
[k+1]) < time(rL[k+1]) (something urgent must happen before).

Before treating the cases, let r be a run in A k B, and r0 a run in A0 k B0

such that rL[0:::k] = r0
L
. It is easy to see that we can project the run r into

a run of A and a run of B. On the other hand, run r0 can be projected into

a run of A0 and a run of B0. Due to the hypothesis on exported labels and

labeling, we can safely recombine those runs to get a run rAB0 of A k B0 and a

run rA0B of A0 k B with the same time length of r0. Let qA be the last state of

rAB0 projected into A, qB the last state of rA0B projected into B, qA0 the last

state of rA0B projected into A0, and qB0 the last state of rAB0 projected into

B0.

Case i:

Suppose that lab(rL[k+1]) = o 2 OA

m
(the other case is analogous). Then,

at the last state of rAB0 it is possible to execute some o0 2 OA

m
(at qA A can

perform any output in OA

m
and B0 is receptive to at least one of them). From

18

Braberman and Olivero

the fact that (A k B0) �ExpA
A0, we can show the existence of a run rA0 of

A0 such that rA0
Exp

A
0
is equal to r0

L
[0:::k + 1] projected into ExpA0 (= ExpA).

Due to the fact that OA

m
= OA

0

s
is simultaneously enabled, there is a run r0

A0

of A0 exhibiting rL[0:::k + 1] projected into ExpA0 . On the other hand, r

shows that o is enabled at qB. We can replace the original projection of rA0B

on A0 by the run r0
A0. Then, from the fact that (A0 k B) �ExpB

B0 we can

conclude that there is a run rB0 in B0 exhibiting rL[0:::k + 1] projected into

ExpB0 . Combining the new runs r0
A0 and rB0 for A0 and B0 resp., we conclude

that there is a run r� in RA0kB0(q00) such that its exhibited sequence over L

r�
L
[0:::k + 1] is equal to rL[0:::k + 1], a contradiction.

Case ii:

Let r0 2 RA0kB0(q00) such that �r0 � time(rL[k+1]) and r0
L
[0:::k] = rL[0:::k],

let r00 be the pre�x run of r0 such that r00
L
= rL[0:::k]. By the previous lemma

and the assumptions of this case, there exists another run � in A0 k B0 such

that �L = r00
L
= rL[0:::k], �r00 � �� < time(rL[k + 1]), and 9s : 0 � s �

k : �� � time(rL[s]) 2 N . This means that, when runs show that in A0 k B0

something urgent must happen before time time(rL[k + 1]), there must exist

a maximum value for its ocurrence. As shown, this follows from the fact

that, for any r00 such that r00
L
= rL[0:::k] there exists a longer � such that

�L = r00
L
= rL[0:::k] and there are a �nite number of those � (� ends at integer

time distance of some event and before time(rL[k + 1])). We will show that

any such � ends at a state where time can ellapse arriving to an absurd.

We know that NU(qA) and NU(qB). From the fact that q 7!i p implies

NU(q)) NU(p) (item (ii), Def. 5.2), A can wait, and any �nite number

of inputs of A (outputs of B0) can not change this fact (an in�nite number

of outputs of B0 would also imply time-divergence). Then, there exists w 2
RAkB0((qA; qB0)) such that �w > 0 and Lab(w)\OutA = ;. Since �0 = rAB0 Æw
(rAB0 prolonged with w) is a run of A k B0 there exists a run rA0 of A0 such

that �r
A
0
= ��0 and rA0

Exp
A
0
= �0

Exp
A
0
. Thus, rA0 can be split as r0

A0 Æ r00A0

such that �r00
A
0

= �w and r00
A0
Exp

A
0

= wExp
A
0
. Then from the last state of r0

A0

(denoted q0
A0) there exists a non-transient run (r00

A0) such that it exhibits no

Output label. Then, there exists a state s in the run r00
A0 such that NU(s).

Using Def. 5.1 and item (ii) of Def. 5.2 (q 7!i p implies NU(p)) NU(q)) we

can conclude NU(q0
A0). Analogously, NU(q0B0). Therefore, the combination of

those runs shows the possibility of A0 k B0 to exhibit �0 plus a positive time

increment (the minimum possible increment between A0 and B0). Thus, we

arrive to an absurd. 2

19

