
Electronic Notes in Theoretical Computer Science 65 No. 6 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 8 pages

On Improving Backwards Verification of Timed
Automata (Extended Abstract)

V. Braberman a,1,4, C. López Pombo a,2,5, A. Olivero b,3,6

a Computer Science Department, FCEyN,
Universidad de Buenos Aires, Buenos Aires, Argentina

b Department of Information Technology, FIyCE,
Universidad Argentina de la Empresa, Buenos Aires, Argentina

Abstract

Verification techniques for Timed Automata [2] built in tools like Kronos [7] are
based on the fixpoint calculus of an appropriate operator. In this work, we present
different alternatives to calculate that fixpoint, which have direct impact in the
number of iterations needed to converge.

1 Introduction

Verification techniques for Timed Automata [2] built in tools like Kronos [7]
are based on the fixpoint calculus of an appropriate operator. For instance,
to verify logics like TCTL [1] over Timed Automata, it is usually required to
obtain the set of states from which the system can evolve and reach a set of
states satisfying a formula φ (the characteristic set of true ∃U φ). That set
can be characterized as a fixpoint. It is well known that the chaotic iteration
results of Cousot [6] suggest the existence of many algorithmic alternatives
to do such a calculus. In this work we explore different iterative methods to
solve the question “Does the initial state belong to the characteristic set of
φ1 ∃UI φ2?”, where φ1 and φ2 are TCTL formulas, and I bounds the time
elapsed to reach φ2. On the one hand, we present a method that tries to reduce
the number of iterations needed to converge. This is achieved by making use
of intermediate results obtained in the same iteration instead the intermediate

1 Research supported by UBACyT grants X156 and TW72.
2 Research supported by FOMEC 376 Schoolarship.
3 Research supported by UADE grant ING6-01.
4 Email: vbraber@dc.uba.ar
5 Email: clpombo@dc.uba.ar
6 Email: aolivero@uade.edu.ar

c©2002 Published by Elsevier Science B. V.

60

Open access under CC BY-NC-ND license.

mailto:vbraber@dc.uba.ar
mailto:clpombo@dc.uba.ar
mailto:aolivero@uade.edu.ar
http://creativecommons.org/licenses/by-nc-nd/3.0/

Braberman, López Pombo and Olivero

results of previous iteration like the traditional iterative algorithm in Kronos.
On the other hand, we present a local convergence method that -like in [11]-
calculates fixpoints over graph components thus avoiding the propagation of
results till they are locally stabilized. We have implemented a prototype for
both strategies based on Kronos tool and we have obtained some prelimi-
nary experimental data. Finally, we compare both alternatives and suggest
combinations that could outperform previous implementations.

2 Timed Automata

Timed Automata (TA) [2] has become one of the most widely used formalism
to model and analyze timed systems and it is supported by several tools (e.g.,
Kronos [7], Uppaal [3], HyTech [10], Red [17], Treat [12], etc.). They have
been successfully applied to automatically check communication protocols,
real-time systems and circuits.

TAs are finite automata where time is incorporated by means of clocks. As
finite automata, a TA G = 〈S = {s1, . . . , sn}, X,E, I〉 is composed by a finite
set of nodes S (called locations in TA literature) and a set of edges E. There
is no notion of final locations since executions are infinite. Edges model event
occurrences while clocks declared in the set X measure time elapsed. Each
edge has associated a timing condition –a guard– and a set of clocks indicating
which ones are reset when the edge is traversed. A guard is a constraint on
clock values of the form x ∼ n where ∼∈ {≤, <,=, >,≥} and n ∈ N. An
edge can be traversed whenever its associated guard is true. Time elapses
at locations, and edge traversal is instantaneous and the associated clocks are
reset. Also, timing conditions are associated with each location by means of I.
These conditions are called invariants, and determine the valid clock values for
locations. Hence, it is possible to use an invariant to express that the control
can not remain in the location more than a certain amount of time (i.e. a
deadline). Semantics is given by means of a labeled transition system, where
a state is composed by a control location and the values of clocks (positive
real numbers), for more details, see for instance [19]. There are two kinds of
transitions between states: temporal (associated with the progress of time)
and discrete (related with the crossing of an edge in the automata). Set of
states are usually decribed by means of certain timed predicates called regions
(in Kronos literature), that we generic denote as φ. Given a predicate ϕ on
the states, we denote the set of states satisfying it as [[ϕ]] (the characteristic
set of ϕ). The set of states that have a temporal transition to a state in ϕ is
denoted as predt(ϕ), and the set of states that reach a state of ϕ by traversing
a discrete transition associated with an edge e is denoted as prede(ϕ). Both
operators are closed over regions.

61

Braberman, López Pombo and Olivero

3 Classical Backwards Verification for ∃✸φ

We are interested in calculating TCTL formulas of the form φ1∃UIφ2 where
φ1, φ2 are TCTL formulas. A state belongs to [[φ1∃UIφ2]] whenever the au-
tomata can evolve through a path of φ1-states of time-length in I and reach
a φ2-state. In what follows, for the sake of simplicity we restrict ourself to the

formulas ∃✸φ
def
= true∃Uφ. In [18], it is shown that the region equivalent to

∃✸φ set can be calculated as the least fix point: µX .(φ ∨ true � X) where
true � X is pred t(pred e(X) ∨ X), that is the set of states that are temporal
predecessors of a state in the union of X and its discrete predecessors (i.e.
predecessors by a discrete transition). In the following proposition, we show
the abstract functional description of the computation of the fixpoint as it is
done in Kronos.

Proposition 3.1 (K) Given G = 〈S = {s1, . . . , sn}, X,E, I〉 a timed au-
tomata and φ =

∨
i∈{1,...,n}@ = si ∧ φi a predicate that characterizes simboli-

cally a set of states, then µX .(φ ∨ true � X) can be computed iterativelly as
follows:

{Xij}(1≤i≤n),(0≤j)

Xi0 = predt(φi)
Xij = Xij−1 ∨

∨
e∈Eik

pred t(pred e(Xkj−1)); for 1 ≤ j.

where Xij is the value of the component i of X at iteration number j, and Eik

is the set of edges from si to sk.

✷

4 A Method for Reducing the Number of Iterations
(K†)

The first idea is based on a simple observation: to calculate Xi,j is not always
necessary to make use of the region calculated for location k during the last
iteration (i.e., Xk,j−1). We can expect an speed up if the method resorts to
the region of location k which has been calculated in the current iteration if
location k has been already treated (i.e., Xk,j). In [13] it is proven that this
computation method is correct using Cousot’s results. That is:

Proposition 4.1 (K†) Given G = 〈S = {s1, . . . , sn}, X,E, I〉 a timed au-
tomata and φ =

∨
i∈{1,...,n}@ = si ∧ φi a predicate that characterizes simboli-

cally a set of states, then µX .(φ ∨ true � X) can be computed as follows:

{Xij}(1≤i≤n),(0≤j)

Xi0 = predt(φi)
Xij = Xij−1 ∨

∨
e∈Eik

pred t(pred e(Xkj−φσ(i,k))); for 1 ≤ j.

62

Braberman, López Pombo and Olivero

where φσ : {1, . . . , n} × {1, . . . , n} −→ {0, 1} is defined as:

φσ(i, j) =

0 ; if σ(i) > σ(j)

1 ; if σ(i) ≤ σ(j)

such that σ ∈ Sn (i.e. σ is a permutation that models the order in which
locations are traversed. That is, the method is insensitive to the ordering),
and Eik is the set of edges from si to sk.

✷

In many applications, it is not necessary to calculate the entire character-
istic set of a formula like ∃✸φ. This is particularly true when we are only
interested in knowing whether or not the system can evolve from the initial
state to a φ-state (i.e., init ⇒ true∃Uφ). Then, we introduce a simple mech-
anism that stops fixpoint calculation as soon as the initial state belongs to
an intermediate set 7 . In fact we introduce that mechanism to the original
Kronos implementation (K −RI columns in tables) and our modified version
(K†).

We have run in a AMD K7 1333Mhz 256Mbytes LINUX 7.2 platform sev-
eral case studies: the communication protocol CSMA-CD [15], rail crossing
system (RCS) [12] for 5 trains, a freshness problem [5] for a version of the
Active Structural Control System [9], a bounded response property on a Mine
Drainage design [4] and the FDDI protocol [16] for 9 stations. Experimen-
tal data show that in all cases the number of iterations is reduced but that
reduction is not always translated into a speed up, specially when φ is not
reachable (K† columns in Table 3). Our conjecture is the following: data
structures to represent symbolic states (essentially a set of difference bound
matrices, DBM [8] or zones) tend to “mature” rapidly in our version and thus
iterations are heavier than classical ones, compensating the reduction achieved
in the number of iterations. Table 1 shows for the RCS example, the number
of zones needed to represent the calculated symbolic region after each iteration
of K and K†.

Experiments suggests that our algorithm is better suited to early detection
(K† columns). This may also be explained using the same conjecture about
maturation of regions.

5 Local Convergence (Kpart)

Topology of graphs could provide useful information when a fixpoint is calcu-
lated over them. In [11] SCCs (strongly connected components) are calculated
to perform a two level iterative fixpoint method for untimed systems. Local

7 the operator � is monotonous (see for instance [19]).

63

Braberman, López Pombo and Olivero

Iteration number 1 2 3 4 5 6 7 8 9

Zones for K 165 166 2137 3946 5026 6034 6450 6514 6514

Zones for K† 930 2099 5744 7427 7711 7711 - - -

Table 1
Comparison of number of zones per iteration over RCS example

convergence of SCCs are invoked from a main iteration that seeks for global
stabilization. The idea behind this strategy is to avoid propagation of inter-
mediate results till the results are locally stabilized. We also show in [13]
that theoretical results of Cousot’s thesis guarantee that no matter how the
graph is partitioned, nesting local iterations into a global one leads to the
same result.

Proposition 5.1 (Kpart) Given G = 〈S = {s1, . . . , sn}, X,E, I〉 a timed au-
tomata

• C = {c1, . . . , ct} is a partition of the set S.

• {ci : ci ∈ C}0≤i an infinite sequence of elements of C such that
(∀i)(1 ≤ i ≤ t ⇒ (∀j)(j ∈ N ⇒ (∃k)(j ≤ k ∧ ci = ck)))

and φ =
∨

i∈{1,...,n}@ = si ∧ φi a predicate that characterizes simbolically a

set of states, then µX .(φ ∨ true � X) can be computed as:

{Xij}(1≤i≤n),(0≤j)

Xi0 = φi

Xij =

Xij−1 ; if si /∈ cj.

predt(Xij−1) ∨
∨

e∈Eik
predt(prede(Xkj−1)) ; if si ∈ cj.

where Eik is the set of edges from si to sk.

✷

It remains the problem of efficiently obtaining a reasonable partition of
the set of nodes C. One alternative is to calculate SCCs as in [11]. However,
the following observation that led us to a simpler and in many cases practical
solution. Safety and liveness requirements are commonly modeled by means
of virtual components (Observers) which are composed in parallel with the
system under analysis (SUA). Thus, if we divide the set of nodes of the par-
allel composition according to the local position of the observer, we would
get a reasonable partition conformed by sets of maximal SCCs. Moreover,
since in many cases observers can be acyclic [4], if components are topologi-
cally ordered, then just one global iteration is really necessary. Preliminary
experiments show that, in case the set characterized by φ is not reachable, the
strategy may lead to important improvements in the verification times (Kpart

64

Braberman, López Pombo and Olivero

REACHABILITY: True

Method → K K − RI K† − RI Kpart

Example ↓ sec. iter sec. iter sec. iter sec. iter

BOUNDED 195.30 25 18.20 10 17.10 3 86.60 67

RCS ⊥ - 0.91 10 0.21 1 ⊥ -

CSMA/CD 215.72 85 0.17 3 0.19 1 218.20 100

FRESH ⊥ - 1,644 16 39.68 3 ⊥ -

FDDI 26.69 28 27.39 28 2.61 2 171.76 70

Table 2
Comparison of verification time and number of iterations of the different methods

REACHABILITY: False

Method → K K − RI K† − RI Kpart

Example ↓ sec. iter sec. iter sec. iter sec. iter

BOUNDED 91.13 22 89.58 22 91.52 9 29.70 65

RCS 3.10 9 3.00 9 23.30 6 1.33 19

CSMA/CD 0.37 8 0.36 8 0.35 5 0.37 18

FRESH 11,880 22 11,918 22 ⊥ - 1,490 43

FDDI ⊥ - 8.72 21 2.59 1 ⊥ -

Table 3
Comparison of verification time and number of iterations of the different methods

columns). Note that the number of iterations is increased but these iterations
do not involve all locations. There is ongoing work to use a tool for graph
partitioning like MeTiS [14] to calculate suitable partitions.

6 Future Work

We are currently working on a promissing combination of both iterative meth-
ods to treat TCTL formulas like init ⇒ φ1∃UIφ2 (examples of that fragment
are non-zeno formulas [19]). Local convergence is applied to calculate the sets
φ1 and φ2 using some partition of the control-graph generated by MeTiS tool.
Then, the early detection algorithm explained in Sect. 4 is applied to discover
as soon as possible if the initial state is in [[φ1∃UIφ2]]. We hope to get some
speed ups and gain more insight on how data structures affects the abstract
improvements on the fixpoint calculation.

65

Braberman, López Pombo and Olivero

References

[1] Alur, R., C. Courcoubetis, and D. Dill, Model-Checking for Real-Time Systems,
Information and Computation, vol. 104, no. 1, 2-34, 1993.

[2] Alur, R., and D. Dill, A Theory of Timed Automata, Theoretical Computer
Science, vol. 126, 1994, 183-235.

[3] Bengtsson, J., K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi, UPPAAL- A
Tool Suite for the Automatic Verification of Real-Time Systems, Proc. Hybrid
Systems III, Lecture Notes on Computer Science 1066, Springer Verlag, 1996,
232-243.

[4] Braberman, V., “Modeling and Checking Real-Time System Designs”, Ph.D.
Thesis, Departamento de Computación, Universidad de Buenos Aires, 2000.

[5] Braberman, V., D. Garbervetsky, and A. Olivero, Improving the Verification
of Timed Systems using Influence Information. To appear in TACAS 2002.
Also available as Technical Report TR2001-003. CS Department, FCEyN,
Universidad de Buenos Aires.
URL: http://www.dc.uba.ar/people/exclusivos/vbraber/tr01-003.ps.

[6] Cousot, P., “Methodes Iteratives de Construction et D’Aproximation de
Points Fixes D’Operateurs Monotones sur un Treillis, Analyse Semantique des
Programmes”. Ph.D. Thesis Université Scientifique es Médicale de Grenoble,
Institut National Polytechnique de Grenoble, 1978.

[7] Daws, C., A. Olivero, S. Tripakis and S. Yovine, The Tool KRONOS, In Proc.
of Hybrid Systems III, LNCS 1066, Springer Verlag, 208-219, 1996.

[8] Dill, D., Timing Assumptions and Verification of Finite-State Concurrent
Systems, In Proceedings of the Workshop on Automatic Verification Methods
for Finite-State Systems, Lecture Notes in Computer Science 407, Springer
Verlag, 197-212, 1989.

[9] Elseaidy, W., R. Cleaveland, and J. Baugh Jr., Modeling and Verifying Active
Structural Control Systems, Science of Computer Programming, 29(1-2):99-122,
July 1997.

[10] Henzinger, T. A., P-H. Ho, and H. Wong-Toi. HyTech: a model checker for
hybrid systems, Software Tools for Technology Transfer 1:110-122, 1997.

[11] Kerbrat, A., Reachable State Space Analysis of Lotos Programs, In 7th
international Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, Bern, Switzerland, October 1994.

[12] Kang, I., I. Lee, and Y.S. Kim, An Efficient Space Generation for the Analysis
of Real-Time Systems, In Proceedings of the International Symposium on
Software Testing and Analysis, 1996. Also in Trans. on Software Engineering,
1999.

66

http://www.dc.uba.ar/people/exclusivos/vbraber/tr01-003.ps

Braberman, López Pombo and Olivero

[13] López Pombo, C. G., “Mejoras a un algoritmo de model checking simbólico,
basadas en la topoloǵıa de los sistemas de tiempo real”. Bachelor in Computer
Science Thesis. Departamento de Computación, Facultad de ciencias exactas y
naturales, Universidad de Buenos Aires, 2001.

[14] Karypis, G., and V. Kumar Multilevel Algorithms for Multi-Constraint Graph
Partitioning Proceedings of 10th Supercomputing Conference, 1998.

[15] Nicollin, X., J. Sifakis, and S. Yovine, Compiling Real-Time Specification into
Extended Automata, IEEE Trans. on Soft. Eng., Special Issue on Real-Time
Systems, Vol. 18, 9, pp. 794-804, September 1992.

[16] S. Tripakis “L’Analyse Formelle des Systemès Temporisés en Practique”, Phd.
Thesis, Univesité Joseph Fourier, December 1998.

[17] Wang, F., RED: Model-Checker for Timed Automata with Clock-Restriction
Diagram, 2nd Workshop on Models for Timed Critical Systems 2001. To be
published in Electronic Notes in Theoretical Computer Science.

[18] Yovine, S., “Méthodes et Outils pour la Vérification Symbolique de Systemès
Temporisés,” Ph.D Thesis, Institut National Polytechnique de Grenoble, 1993.

[19] Yovine, S., Model-Checking Timed Automata, Embedded Systems,
G. Rozemberg and F. Vaandrager eds., Lecture Notes in Computer Science,
Springer Verlag, Vol. 1494, October 1998.

67

