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Abstract. We introduce a predictor-corrector algorithm to estimate parameters in a nonlinear
hyperbolic problem. It can be used to estimate the oil-fractional flow function from the Buckley-
Leverett equation. The forward model is non-linear: the sought- for parameter is a function of
the solution of the equation. Traditionally, the estimation of functions requires the selection of
a fitting parametric model. The algorithm that we develop does not require a predetermined
parameter model. Therefore, the estimation problem is carried out over a set of parameters
which are functions. The algorithm is based on the linearization of the parameter-to-output
mapping. This technique is new in the field of nonlinear estimation. It has the advantage of
laying aside parametric models. The algorithm is iterative and is of predictor-corrector type.
We present theoretical results on the inverse problem. We use synthetic data to test the new
algorithm.

1. Introduction

The mathematical simulation of fluid flow through porous media is of vital importance to the
management of underground resources, such as aquifers and petroleum reservoirs.

The motivation for the present work arises from a reservoir engineering problem: the
estimation of the oil-water relative permeability curves. These curves are essential to perform
predictions of oil recovery during a waterflooding process. In practice the estimation of such
curves is carried out from measurements of saturations, flow rates or pressures taken during a
laboratory displacement test.

The relative permeability curves, denoted by kro and krw, appear as coefficients of the system
of equations that rule the two phase flow through porous media. The general model consists of a
coupled system of non-linear equations: an elliptic equation and a parabolic one, with boundary
and initial conditions [12].

In models for mechanisms of water displacing oil, the equations have strong transport
terms. In this case, capillarity forces can be disregarded and, therefore, the parabolic equation
degenerates into a hyperbolic one [12]. We are left with the following hyperbolic-elliptic system
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on the unknowns S (oil saturation) and P (oil pressure):

Φ
∂S(x, t)

∂t
+
∂f(S(x, t))

∂x
= 0, x ∈ [0, L], t ∈ (0, T ], (1)

∂

∂x

(
λT

(
S(x, t)

)∂P (x, t)

∂x

)
= 0, x ∈ (0, L), t ∈ [0, T ]. (2)

System (1)-(2) is completed with an initial condition for the hyperbolic equation and boundary
conditions for the elliptic one. We recall that the oil saturation is not greater than one [1]. To
solve the above system we first obtain the saturation S from (1), then we use it to obtain P
from (2).

In the equations, Φ is the porosity of the media, f the oil fractional flow and λT the total
mobility. The functions f and λT depend on kro and krw, which are functions of the oil saturation
S. It is possible to solve for kro and krw from f and λT [12].

The purpose of this paper is to deal with the inverse problem whose forward model is
equation (1), known as the Buckley-Leverett equation, with initial condition

S(x, 0) = g(x), x ∈ [0, L]. (3)

The forward model is non-linear because f is a function of the solution of the system of
equations.

The parameter to be estimated is the oil-fractional flow function f . Observe in equation (1)
that the support of function f is the image of the solution S(x, t). The curve f must be inferred
from measurements of saturation at different spatial points as a function of time taken during a
displacement test of oil by water performed on a rock sample in the laboratory.

Traditionally, the estimation of functions requires the selection of a fitting model depending
on few constant parameters and thus the optimum curve depends on that selection [3],[4],[10].
This approach has the drawback of imposing an a priori parametric model. The use of such
models is currently the common practice among field engineers, different models yield different
results and there is no objective criterion to choose among them. Another approach consists on
discretizing the differential equations and using least squares on the discrete problem [9],[15].

The novelty of this work is to apply an alternative methodology based on the formulation
of the inverse problem in functional spaces. We develop an algorithm that does not require
a parametric model and thus provides a more objective fit. We prove the convergence of
the algorithm. The estimation procedure is carried out linearizing the solution of the direct
model with respect to the parameter in functional spaces. Up to now, this approach has been
successfully applied to problems where the forward model is based on a linear partial differential
equation [5],[7],[8],[14].

The estimation of the function f is carried out iteratively. Since we do not know neither
the shape nor the support of f , we need a predictor-corrector like algorithm. Briefly, at each
iteration k, the new estimation is first predicted over the support of the previous one. Then,
the correction step is perfomed in order to obtain the estimated function and its actual support
at step k + 1.

The main contribution of this work is the formulation and application of the algorithm
described above to estimate parameters in non-linear systems. The estimation is performed in
functional spaces without the imposition of a priori parametric models. We present theoretical
results on the inverse problem which are necessary to build the algorithm and prove its
convergence under suitable hypothesis. The resulting method behaves very well in numerical
tests. Because of its general theoretical formulation the method has the potential to be extended
to solve more complex problems.
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The paper is organized as follows: in section 2 we introduce the mathematical forward model;
in section 3 we deal with the inverse problem, defining the set of admissible parameters and the
parameter-to-output mapping. In section 4 we build the continuous estimation algorithm, we
prove its convergence and we describe the discrete predictor-corrector algorithm. In section 5
the numerical tests are shown and finally, the conclusions are drawn in section 6.

2. The mathematical forward model

As we state in the introduction, our forward model is a simplified model for the displacement of
oil by water in petroleum reservoirs. Under reasonable smoothness conditions on the function
f , problem (1),(3) can be written as

Φ
∂S(x, t)

∂t
+H(S(x, t))

∂S(x, t)

∂x
= 0, x ∈ [0, L], t ∈ (0, T ]; S(x, 0) = g(x), x ∈ [0, L], (4)

where H(S) = f ′(S).

Assuming the following: H ∈ C∞
(
[0, 1]

)
; g ∈ C1

(
[0, L]

)
; 0 ≤ g(x) ≤ S+ < 1, x ∈ [0, L],

the forward model is well-posed as the next proposition establishes (proposition 2.1.1 in the
book by Serre [13]).

Proposition 1. We define T ∗ = +∞ if H◦g is increasing, and T ∗ = −
(
inf

(
d(H◦g)/dx

))
−1

otherwise. Then the initial value problem (4) possesses one and only one solution of class C1 in
the band [0, L]×[0, T ∗) and does not possess any solutions in any greater band than [0, L]×[0, T ∗).

From now on, we assume that the initial condition function g in (3) satisfies the assumption
above.

We consider the case of smooth solutions of the inverse problem. In order to avoid shocks for
an initial period of time we define the set of admissible parameters as,

P = {H ∈ C∞
(
[0, 1]

)
: H ◦ g is increasing }. (5)

3. The inverse problem

Our objective is to estimate the oil fractional flow f given measurements of the saturation
at a recording point xrec, Sobs(t), during a period of time [0, T ] ⊂ [0, T ∗). To highlight the
dependency of S on the parameter H we will denote S by S(H).

We precise the estimation problem: Find H ∈ C∞
(
[0, 1]

)
such that

S(H)(xrec, t) = Sobs(t). (6)

The above correspondence between the parameter H and the observations Sobs(t) is the
parameter-to-output mapping.

We analyze problem (6) assuming that there is no noise in the observations. The algorithm
that we propose is based on the linearization of the parameter-to-output mapping S(H)(xrec, ·)
as a function of H, about a particular function H̃:

S(H) = S(H̃) + S′

H(H̃)δH, (7)

where S′

H is the derivative of S with respect to H and δH = H − H̃.
Notice that we are differentiating with respect to the parameter H, which is a function.

Therefore S′

H is a functional derivative, the Fréchet derivative. We prove in [6] that the
parameter-to-output mapping, S(H)(xrec, t), is Fréchet differentiable, as given by the following
results.
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3.1. Properties of the parameter-to-output mapping
We state the basic properties of the parameter-to-output mapping, which address practical
questions related to the estimation problem (Chapter III of [2]). All the proofs can be found in
[6].

Identifiability. Problem (6) is identifiable with respect to P.

Continuity. The parameter-to-output mapping satisfies:
∥∥∥
(
S(H) − S(H̃)

)
(xrec, ·)

∥∥∥
C1([0,T ])

≤ K ‖H − H̃‖C1([0,1]), (8)

where K is a constant which depends on the initial function g.

Differentiability. The mapping S(H)(xrec, ·) is Fréchet differentiable. Its differential at

H ∈ C∞
(
[0, 1]

)
applied to δH ∈ C∞

(
[0, 1]

)
is given by

(
S′

H(H)δH
)
(xrec, t) = w(xrec, t)

(
δH ◦ S

)
(xrec, t), (9)

where w(x, t) is the solution of

wt +H(S)wx +H ′(S)Sx w = −Sx, w(x, 0) = 0, (10)

and S is the solution of (4).

4. The estimation algorithm

The iterative algorithm, based on a linear equation that approximates (6), consists of:

(i) Give an approximation H̃ of H,

(ii) Calculate an increment δH solving the linearized S (see equation (7)), that is,

(
S′

H(H̃) δH
)
(xrec, t) = Sobs(t) − S(H̃)(xrec, t). (11)

(iii) Update H as Hnew = H̃ + δH.

The Fréchet derivative in (11) is computed using equation (9).

4.1. Convergence of the estimation algorithm

Theorem 1. If H ∈ P there is a neighbourhood N(H, δ) of H in P such that if the initial guess
H0 belongs to N(H, δ) the algorithm is convergent.

Proof. Let H be the solution of the estimation problem. We recall that the Fréchet derivative
of S with respect to H can be identified with the function w of equation (10). It is easy to see
that, when H ∈ P, S′

H(H) : δH → w(xrec, t)
(
δH ◦ S

)
(xrec, t) has an inverse since w(xrec, t) 6= 0

for every t > 0 [6].
The algorithm can be regarded as a one step stationary iteration of the form

Hk+1 = G(Hk) (12)

where
G(H̃) = H̃ +

(
S′

H(H̃))−1
(
S(H) − S(H̃)

)
(13)

We will prove that G is a contraction in a neighbourhood of H. To do so we use that G has a
continuous Fréchet derivative G′. The existence of the derivative of G follows from the fact that

6th International Conference on Inverse Problems in Engineering: Theory and Practice IOP Publishing
Journal of Physics: Conference Series 135 (2008) 012091 doi:10.1088/1742-6596/135/1/012091

4



S has a continuous second Fréchet derivative which is equal to −wxt [6]. Therefore the Fréchet
derivative of G can be computed as

G′(H̃) =
(S(H) − S(H̃))(−wxt)

w2
. (14)

From (14), G′(H) = 0. Then, given a constant α < 1, there is a ball B(H, δ) with center H and
radius δ such that

∥∥G′(H̃)
∥∥ < α for every H̃ ∈ B(H, δ). Therefore

∥∥G(H) −G(H̃)
∥∥ < α

∥∥H − H̃
∥∥, for every H̃ ∈ B(H, δ). (15)

4.2. Numerical Implementation. The predictor-corrector algorithm
The estimation of the function H is carried out iteratively. Notice that we do not know neither
the shape of H nor the support of H. To estimate the function H including the support, we use
a predictor-corrector like algorithm. We denote the support of H by supp(H).

The discretization is carried out by expanding H at each iteration in a basis of first order
splines. Since we do not know the domain of H, we choose a partition of the domain that
depends on the previous iteration. Therefore the nodes of the basis change at each iteration.

Predictor-corrector Algorithm

(i) Initial Step
Given the observations Sobs

j at poins tj ∈ [0, T ], j = 1, . . . ,M ; and an initial guess H0, we

solve the initial value problem (4) with H = H0 thus obtaining S0(x, t).
Next we select the nodes for the first order spline expansion as z0

j = S0(xrec, tl(j)), where

l(j) = M − j + 1. We expand the already known H0 in the chosen basis ψ0
j :

H0(z) =

M∑

j=1

γ0
jψ

0
j (z), z ∈ [S0(xrec, tM ), S0(xrec, t1)].

(ii) Procedure at Step k
We assume that we have Hk expressed in its spline basis ψk

j and also Sk(xrec, tj).

• Predictor Step to obtain Hk+1:
First we compute wk solving (10) with H = Hk and S = Sk. Then δHk is computed
as [11]

δHk
(
S(xrec, tj)

)
=
Sobs

j − Sk(xrec, tj)

wk(xrec, tj)
= δγk

j (16)

Therefore Hk+1 expressed in the basis ψk
j is

(
Hk+1/supp(Hk)

)
(z) =

M∑

j=1

(
γk

j + δγk
j

)
ψk

j (z), z ∈
[
Sk(xrec, tM ), Sk(xrec, t1)

]
.

• Corrector Step to obtain Hk+1:
With Hk+1 expressed in the basis ψk

j we solve the initial value problem (4) obtaining

Sk+1(x, t). In order to obtain the new basis ψk+1
j (z) we define the new nodes as

zk+1
j = Sk+1(xrec, tl(j)). Therefore we express Hk+1 in the new basis ψk+1

j as

(
Hk+1/supp(Hk+1)

)
(z) =

M∑

j=1

γk+1
j ψk+1

j (z), z ∈
[
Sk+1(xrec, tM ), Sk+1(xrec, t1)

]
.
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Figure 1: Convergence of Hk

(iii) Compute the residual
∥∥Sobs(·) − Sk+1(xrec, ·)

∥∥

(iv) If residual< TOL, then Hk+1 is the solution. STOP

(v) If not, k = k + 1, GO TO (ii).

5. Numerical tests

We illustrate the performance of the algorithm with two examples. The purpose of the first
example is to analyze the behavior of the predictor-corrector algorithm. The purpose of the
second example is to show the ability of the algorithm to recover the ’true’ shape of a typical
fractional flow function.

5.1. First example
In this case, L = 1, T = 0.1, the exact function is H(z) = ez; the initial condition is g(x) = x3;
the observations Sobs

j are the evaluation of the exact solution at x = 0.44 and times tj = j∗0.001,

j = 1, . . . , 100; and the accuracy required for convergence is TOL = 10−7.
Figure 1 illustrates the behavior of the predictor-corrector procedure. We plot the predictor

and corrector steps for iterations one to three. That is, the figure depicts Hk spanned in the
’old’ basis ψk

j (dotted line) and in the new one ψk+1
j (solid line). Notice how the domains are

modified in each iteration.
The functions Hk are in the space spanned by the first order splines ψk

j which have a

discontinuous derivative at the nodes. That is, the discontinuities of
(
Hk

)
′

affect wk (solution

of (10)) and those of wk reflect on δHk (16). That explains the discontinuities observed in the
plot.

Figure 2 shows the convergence of the predictor-corrector procedure. Convergence was
achieved in 20 iterations. We plot the ’true’ parameter H, some iterations of the algorithm
and the final estimate H20. An almost exact match to the ’true’ function is obtained.

5.2. Second example
In this case the fractional flow curve f(S) has a typical shape because we apply the well
known potential model for oil and water relative permeabilities kro and krw[4],[10]. Selecting
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Figure 2: Convergence of Hk

Figure 3: Convergence of Hk

kro(S) = S2, krw(S) = 0.2 (1 − S)2, f(S) results

f(S) =
S2

0.2 (1 − S)2 + S2
(17)

In Figure 4 we plot the exact solution H, the initial guess H0, the first iteration H1 and the
optimum estimated H9.

For the numerical tests L = 1, T = 1, the observations Sobs(tj) are the evaluation of the
exact solution at x = 0.98 and times tj = j ∗ 0.05, j = 1, . . . , 20. The accuracy required for
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convergence is TOL = 10−7. Convergence was achieved in 9 iterations. We observe that the
optimum estimated H9 is an excellent approximation of the ’true’ function H. The fractional
flow is obtained numerically, integrating the estimated function H(S).

6. Conclusions

We have developed a discrete predictor-corrector algorithm to estimate a parameter that appears
as a coefficient of a nonlinear hyperbolic equation. The sought-for parameter is the oil fractional
flow function in oil - water systems. The problem is non linear, the parameter is a function of
the solution of the forward model. The iterative algorithm is based on the linearization of the
parameter-to-output mapping. This technique is new in the field of non-linear estimation. It
has the advantage of laying aside parametric models. The algorithm estimates the function as
well as its domain. We proved its convergence. We presented two numerical experiments that
validate the method. The algorithm was tested with data based on the potential model for the
relative permeabilities. It was successful recovering that model. The highlight is that we did
not prescribe any particular model of the function parameter. That makes us believe that the
algorithm has the ability to recover the true shape of the sought-for function.
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