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Abstract

Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors
that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like
tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease
dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches
provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial
or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease
spreading. This information can subsequently be used to validate mathematical models of the dissemination process from
which the underlying mechanisms that are responsible for this spreading could be inferred.

Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a
Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly
geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of
the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading.
Consequently, the method also allowed for the identification of socio-economic factors that influence the process.

Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution
and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this
novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
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Introduction

Despite the implementation of various control and surveillance

strategies, infectious diseases remain among the leading causes of

worldwide morbidity and mortality [1,2]. For certain diseases,

such as tuberculosis (TB), the number of newly infected people is

rising steadily in certain areas [3]. According to the World Health

Organization, WHO [3], there are approximately 9 million new

reported cases of TB and 1.7 million TB-related deaths each year.

Of the total number of TB cases worldwide, 80% are concentrated

in 22 nations, including Brazil, known as high-burden countries

[3]. It is of the utmost importance for countries such as Brazil to

develop novel strategies to tackle the problem. In order to achieve

the objectives of the WHO-Stop TB Program [3], these strategies

should include not only a reliable system of information and an

efficient method for localizing sources of infection, but also an

enhanced understanding of the dynamics of disease spreading

[2,4]. Technologies such as remote sensing and Geographical

Information Systems (GIS) have improved the reliability of spatial

data related to infectious diseases, but these require new means of

analysis, which have the capacity to yield information on the

disease’s dissemination dynamics [4,5].

To date, most statistical approaches have estimated spatial or

temporal trends using stationary probability density functions [6–

9] and spatial models [10], which provide insights into the cause-

effect relationships favouring disease transmission. However,

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e14140



analyses that do not take into account the dynamics of these

processes have had limited influence on the design of strategies for

controlling disease transmission and conducting surveillance

[4,10–12]. The novel approach presented in this study does not

rely on stationary assumptions, but aims to use currently available

data more effectively in order to design efficient control and

surveillance strategies. Using information on disease dynamics the

method pinpoints the sources of infection by signalling out regions

that persistently report new TB cases; it can be of help to model

the disease spreading and, in this way, gets an insight on the

mechanisms underlying the process and ultimately it allows

identifying the social factors involved in the endemic process.

The results that emerge from this analysis will make it possible to

develop new strategies for reducing local TB incidence and

mortality in high-burden places. Finally, this method can be

successfully transposed to the control and surveillance of a variety

of other diseases and social processes as well.

Results

We used this method to analyze the dynamics of the

dissemination of TB in Olinda, a town of 370,000 inhabitants in

the northeast of Brazil, where the incidence and mortality rates are

higher than the Brazilian average [13]. These high rates reflect,

among other factors like poverty and low schooling, the difficulties

of the inhabitants to access the public health system where TB

cases are diagnosed and treated. The data [14] recorded in Olinda

constitute a five-year (1996–2000) data set of cases of pulmonary

TB reported monthly, which are annually geo-referenced to the

299 local census tracts (CTs, see methods) from the 2000 Brazilian

Census [15]. The TB cases are geo-referenced to the CTs

according to the patient household and its geographical centre

represents each CT. In Figure 1A, we show the distribution of

CTs, together with the numbers of newly reported TB cases in

1996. Similar patterns of distribution per CT were observed for all

years. The geographical centres of the CTs are shown in Figure 1B.

The spatial resolution of these raw data was then determined by

CT size, which is fixed based on the number of inhabitants or

households in each region (Figure 1B).

We based our tracing of the annual path of the etiologic agent

on the annual distribution of cases (Figure 2A–E) by connecting all

neighbouring CTs that presented at least one case of TB. The

cases were basically distributed along one of two routes (South to

Northwest, or South to Northeast), which correspond to the most

heavily populated areas of the town. Although the distributions

were not fully connected for all years in both directions, the

dissemination of the disease continued to follow these paths despite

these episodic discontinuities. Inspired by the concepts of

percolation theory and dynamic propagation of information

[16], we sought to identify a CT structure within the annual path

sequences (Figure 2) that could guarantee the reproduction of

similar connectivity distributions across the years analysed.

Considering that the average time required for disease outcome

(cure or fatality) is five years for complicated cases [17], we

identified this structure by collecting the CTs that presented at

least one new case of pulmonary TB in each of the five consecutive

years. Actually the five-year estimate is based on a relatively

universal old assessment and it would be useful to collect new data

to reassess this estimate considering its possible variation with

space and time.

We considered these high-burden CTs to be centres of activity

of the disease. Thus, by identifying these foci in terms of a clinical

criterion (time required for fatality or cure), we eliminated the

need to adopt arbitrary criteria related to the social and

environmental constraints implicit in the CT divisions. Among

the 299 CTs in Olinda, we found 53 high-burden CTs (Figures 2,

3, 4) that should be kept under close surveillance and strict control,

each one exhibiting on average more than 10 cases accumulated

during the period.

Other criteria for selecting potential sources of infection are

often adopted in the literature. In a previous work employing

stationary methods [18], 77 CTs were considered to be high-

burden CTs. In this work [18], the authors looked for CTs with a

relatively high rate of transmission by cohabitants (e.g., more than

one case per family) and/or CTs with re-treatment cases, which

reflect treatment abandonment or drug resistance. Of the 53 focal

CTs identified by our method only 31 were common to the 77

CTs previously reported [18]. In the same work, the authors

classified 30 CTs whose mean incidence was above the 90th

percentile of the mean incidence distribution as high risk [18]. Our

method revealed that only 21 of those 30 CTs were among the 53

high-burden CTs involved in the endemic process. Therefore,

using this new, dynamic approach, based on the time correlations

of raw data, an additional 32 previously undetected high-risk CTs

were identified. Finally, we observed that 48 out of the 53 focal

Figure 1. Olinda CT division and its geometrical centres. (A) Distribution of accumulated TB cases per census tract (CT) during the year 1996.
The numbers associated with the coloured boxes represent the number of cases per CT. The map shows the polygons representing the census tracts
(CT) into which the city of Olinda is divided. Each CT is an administrative district encompassing an average number of 300 households, or 1200
people. (B) Dots represent the geometrical centres of the polygons of the CT division (299 units) in the 2000 Census, in which we base our analysis of
the annual distributions of TB cases for the 1996–2000 period.
doi:10.1371/journal.pone.0014140.g001
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CTs have an accumulated number of cases that is equal to or

greater than 1% of the average population of the CT and implies a

relative risk equal to or greater than 2 (see Table S1). In other

words, the 53 high-burden CTs identified by this novel

methodology not only combined different conditions usually

considered separately by stationary methods but also reflected

the effects of the dynamics that maintained the infection during

the CT’s evaluated period.

A close inspection of socio-economic variables from the 2000

Census [15] showed that 90% of the 53 high-burden CTs

identified were located in areas inhabited by individuals reporting

the lowest levels of income and education (not shown). In addition,

in the focal CTs, the number of households headed by women

with less than one year of schooling and women who earned less

than a minimum wage was on average 70–80% higher than the

average in the low-burden CTs (Table 1).

From Figure 2, it is clear that annual paths maintained the

connections among the sources, which led us to inquire which CTs

are responsible for sustaining the repeated infections in the foci

CTs. In order to answer this question, we also took into account

the characteristics of the clinical evolution of TB. Among infected

individuals, only 10% develop the disease, and, among those, the

disease appears within one year in 50%, within three years in 30%,

and at some later point during their lifetime in the remaining 20%

Figure 2. The annual path of the disease and foci CTs. In (A) 1996, (B) 1997, (C) 1998, (D) 1999, (E) and 2000 was obtained from the annual
distribution of connectivities. The high-burden CTs and the links among them are highlighted in red and belong to all of the annual paths. (F) The
epidemiological network (generated by the accumulation of the annual paths) within which disease dissemination takes place. From the
mathematical point of view [16], this network can be studied with respect to its distribution of connectivities among the nodes (CT geometrical
centres) and with respect to its ability to generate clustering and other effects that may influence the dynamics of disease spreading.
doi:10.1371/journal.pone.0014140.g002
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of cases [19–21]. Therefore, we considered the 50% of infected

persons who develop the disease within one year to be those who

play a key role in the local dynamics of rapid transmission of TB.

In Figure 3, we show the connectivity distribution between the

neighbouring CTs presenting newly reported cases for two

consecutive years, which we believe are responsible for the rapid

disease transmission and the maintenance of the high-burden CTs.

In Figure 3E, we show the superposition of the paths that connect

these CTs along the five years analysed. For each CT within this

network of rapid transmission, the accumulated number of cases

during the period (.5 cases) was greater than the average number

of accumulated cases (3.4) for all 299 CTs. In other words, the

method indicates another set of CTs that should be kept under

close surveillance in addition to the 53 high-burden CTs. The

additional information gained from the study of the dynamics of

TB spreading would allow intervention in the persistence of the

infection at the foci. Moreover, since many portions of this

network are embedded in regions that have households with the

highest reported densities of inhabitants (see Figure 4), the two-

year correlations among new cases indicate that high household

densities, in which there is close and prolonged contact, favour the

rapid local transmission of TB. These results confirm that the

household density is very important in determining the spread of

infectious diseases, as noted in recent studies [10].

Finally, we used our data to analyse the dynamic aspects of TB

spreading in Olinda. Towards that end, we traced the movement

of the disease by identifying in a given year the CTs reporting new

cases that were the nearest neighbours of CTs that presented new

Figure 3. Identifying the CTs that maintain the foci. The sequence of maps shows, in black, the annual connections among the centres of the
census tracts reporting infected patients for two consecutive years: (A) 1996–1997, (B) 1997–1998, (C) 1998–1999, and (D) 1999–2000. The 53 high-
burden CTs that are sources of infections and the connectivities among them are highlighted in red.
doi:10.1371/journal.pone.0014140.g003
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cases in the previous year. Movie S1 clearly shows that these CTs

are fully connected along the five years analysed, as a result of the

movement of new TB cases between sources. The details of this

movement are shown in snapshots of (Figure 5). We observed that,

initially, most new cases were located around the sources

(Figure 5A). This initial pattern then evolves into subsequent

patterns, which fully connect the high-burden CTs, and the final

stage is reached by alternating between configurations that are all

variations of the same kind of pattern. The overall movement

looks like a wave that oscillates between the identified sources of

infection reflecting a mechanism that feeds back upon them. This

shows that the sources that our approach identifies constitute the

backbone of the disease transmission, supporting the main

assumptions of our method and showing its relevance. As Movie

S2 demonstrates, another mechanism can be observed that shows

the continuous presence of the disease around the 53 focal

neighbourhoods. In order to arrest the proliferation of the disease,

this maintenance in focal CTs must be interrupted. By cross-

referencing these data with those related to the network of rapid

transmission of the disease, it is possible to accurately target

surveillance and control in the key CTs, in order to prevent the

occurrence of new TB incidents. This strategy will help reduce the

rates of local TB incidence and mortality in this town. Based on

the data that is currently available we can only relate regions of

high TB incidence with household density. It would be interesting

to have additional information, particularly, on work, leisure and

how these people move in town, to be able to connect our findings

to other places where people repeatedly spend time and

transmission could occur.

In fact the data we had access to was composed of two sets of

five consecutive years of annually geo-referenced data. One

corresponds to the period of 1991–1995 that was geo-referenced to

243 census tracts of Olinda from the 1990 Brazilian Census and

the other corresponds to the period 1996–2000 that was geo-

referenced to 299 census tracts from the 2000 Brazilian Census.

Because of the different number of census tracts, the data

corresponding to both periods could not be pooled together.

Here we describe in detail only the analysis of the later period

since the results for both periods are rather similar. However we

have also applied the same methodology to analyse the data

corresponding to the period from 1991 to 1995. For this period the

method pointed out 37 CT s as sources of infection. Since the 243

CTs of the 1990 Census were redefined into new 299 CTs in 2000

Census, in Figure 6 we superpose the two maps and show in red

the 37 sources of infection during the period 1991–1995 and in

blue the 53 from the period of 1996–2000. Since the correspon-

dence between the different CTs division can not be recovered, the

fact that the total number of CTs have increased 20% from one

period to another justify the apparent increase in the number of

foci. The important feature to be pointed out is that the CTs foci

remain in the same region in both periods and the results from the

analysis of the two periods are similar as it should be expected in

order to validate the approach.

Discussion

The method we have presented here is easily implemented and

provides relevant information concerning the spatio-temporal

propagation of TB using GIS data. In comparison to more

traditional methods, our approach is novel for the following

reasons. 1) Instead of showing high-risk regions, it precisely

locates the main sources of infection in the high risk regions

determined by the usual statistical approaches. 2) Different from

the usual statistical approaches that filter and transform the raw

data to generate risk or probability density functions, it allows to

extract relevant information directly from the raw data, as for

instance the movement of the etiological agent. Because of this,

the technique presented here, unlike stationary ones [6,7], is not

sensitive to the irregular distribution of CTs. 3) Since this method

is based on the study of individual settings (a town or state) it

avoids generalizations that might overlook the specificities of TB

transmission in different communities and regions. 4) Finally, our

method is not only descriptive but is also useful for evaluation

purposes because the analysis of the case distribution after the

implementation of any control strategy would provide informa-

tion on the strategy’s efficiency. The changes could be evaluated

by comparing a series of quantities, among them, the number of

foci, the size (both in terms of the number of links and of the

spatial area) of the largest connected cluster of neighbour CT’s

with at least one new case per year, etc. In all cases, changes in

these quantities should be compared during several years in order

to discard fluctuations.

By taking into account only local interactions, the method is

able to identify the backbone of the disease transmission showing

that household density is a key factor which suggests that a

continuous and prolonged exposure to other infected people is

necessary to become infected.

In addition, our results show that programs of surveillance and

control need to be based on the study of the dynamics of the

spatial distribution of cases [4,5,22] so that they might best identify

the sources as well as the feedback mechanisms that sustain the

infectious process. Furthermore, the results depicted in Table 1

indicate that poverty, limited schooling, and poor hygiene habits

apparently reduced the quality of life of the families with the

largest incidence rates in ways that favoured the transmission of

Figure 4. The role of high density household on the endemic
process. The superposition of the household density distribution [13]
obtained from the Census of 2000 and the network shown in Figure 3E.
It becomes clear that the high density household favour the rapid
transmission and manifestation of the disease, facilitating the
communication between foci and their feeding.
doi:10.1371/journal.pone.0014140.g004
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TB, as well as many other diseases [19]. These results indicate that

in order to target these sources efficiently, the disease control

strategy should involve not only the Directly Observed Treatment,

Short-course Program (DOTS) [20], and specific territorial

control, but also specific educational programs that improve the

quality of life for those families, thereby decreasing the rates of

treatment abandonment and reducing the numbers of cases within

individual households.

The simplicity of the method presented here, and the

advantages of its results compared to stationary methodologies,

provide indications for how to interrupt disease transmission in

ways never considered before. By identifying the truly important

CTs that should be kept under surveillance, this method would

also help to scale up the DOTS program, guide budget

appropriations, and efficiently allocate skilled human and

diagnostic resources, thereby facilitating the rapid identification

of new cases and vaccination schedules. This approach would be

also very useful to implement the DOTS Plus Programs [23] for

the control of multi-drug resistance-TB cases (MDR-TB). The rise

of MDR-TB calls for rapid adoption of new public health

strategies that aim at reducing drastically the (currently increasing)

rate of new incidences. Using the approach introduced here to

understand the MDR-TB spatio-temporal dynamics and its role

on the overall TB spreading will help the design of such strategies.

Essential information for disease control can be obtained by

applying this method to long-term contemporary cohort studies

that include data from sputum smear microscopy for identification

of the bacterial strain by acid-fast bacilli culture, and from family-

based association analysis, together with a linkage study that

involves relatives. For example, this method can provide insight

into the dynamics of the appearance of new bacterial strains or

into the number of secondary cases generated by one infected

individual. Finally, this method can be applied to the epidemiology

of other infectious diseases, as well as chronic diseases, as long as

the specifics of the disease in question are taken into account in

each case. An application of this approach to the study of vector-

borne diseases would have to include the spatio-temporal

correlations in the concentrations of vectors and infected

individuals. This method can also be successfully applied to a

dynamic analysis of other social issues, such as increased violence

or variations in socio-economic factors.

Methods

Data acquisition
The data analysed here correspond to the new pulmonary TB

cases reported annually to the National Disease Notification

System of the Ministry of Health (Sistema de Informação de

Table 1. Average of some social, economic and environmental indices computed for regular and foci CTs.

Indices
Average of
people/foci CT

Average of people/
regular CT

Increase in foci CTs/
regular CTs (%)

Total average
of people/CT

Number of
CTs with data
recorded*

Females head of family with more than K

and less than 1 minimum wage of income
57.3 32.1 78.5 36.6 299

Females head of family with income les or
equal to K minimum wage

5.9 3.3 78.8 3.9 208(44)

Females head of family with one year
schooling

9.8 5.8 70.7 6.5 268(52)

Females head of family with one year or
less of schooling (including illiterates)

26.3 15.0 75.3 17.1 284

Females head of family illiterate
(no schooling)

31.7 17.6 80.1 20.2 282

Head of family (male and female) without
or with less than one year of schooling

49.8 30.2 64.9 33.8 290

Females head of family without schooling 22.2 15.1 47 16.4 288 (52)

% of cohabitants without instruction 14.2 9.6 48 10.4 299

% of cohabitants with income less or
equal to one minimum wage

32.7 24.7 32.4 23.9 299

Females head of family 134 109 22.9 114 299

Average population size per CT 1429 1188 20 1230 299

Females head of family without income 222 198 12 202 299

Average number of cohabitants per
household

3.94 3.77 4.5 3.80 299

The indices are presented in the same way (% or not) as they were collected during the 2000 Census. From the available information, no differences were observed
between regular and high-burden CTs with respect to the presence or absence of piped water, toilets, and designated places for bulk disposure. However, the average
population size per CT and women head of family is 20% greater in the foci than in the regular CTs.
*The total number of CTs was 299; however, the total average is taken from the total number of CTs for which the information was collected; that is indicated on the last
column. We indicate in parentheses the number of foci for which there was information available, i.e. the total number of foci considered on the calculus of the average
when it was different than 53.
We compared the following information for the 20 CTs that did not present any case during the period to the 279 that did present cases: percentage of heads of family
with less than one year or no schooling, households with heads of family with salary less than or equal to one minimum wage, demographic density per Km2, average
number of people per household at the CT, and average population size per CT. The Mann-Whitney test used to compare the differences between the two groups
indicate that the percentage of head of family with less than one year or no schooling (p = 0.037), average number of people per household (p,0.001) and average
population size per CT ( p = 0.002) are higher in the CTs that presented cases than in those that did not.
doi:10.1371/journal.pone.0014140.t001
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Agravos de Notificação, SINAN). The data do not distinguish

between contact transmission and latent TB reactivation. Recent

results suggest that latent TB reactivation comprises a small

proportion of the cases [24], therefore, in our approach all cases

are considered as if they were generated by recent contact

transmission. The approval of an ethics committee was not needed

because the project was developed using secondary data from the

public health care system provided by the local health authority,

with the author’s commitment to ensure data privacy. Each TB

case was geo-referenced with respect to the 299 census tracts (CTs)

into which the town of Olinda was divided by the Brazilian Census

of 2000 (Instituto Brasileiro de Geografia e Estatı́stica, IBGE) [15].

The CT localization of each case is chosen based on the home

address of the infected person. The geo-referenced data corre-

spond to 85% of the reported cases. The Census of 2000 also

provides detailed information about social, economic and health

indices, which were used to analyse our results.

Pre-processing of the data and main definitions
Using the information provided by the 2000 Census we are able

to reproduce the distribution of geographic centres (GC)

computationally. We define as neighbour CTs those that share a

common polygon side. Other definitions like setting as neighbour

CTs those belonging to a circular area of 300m radius were also

considered but proved to generate equivalent results. The 300 m

radius was chosen based on the facts that temperature in Olinda is

usually high (annual average ,29 C) and the city is built on an

irregular terrain with many uphill roads which favour people to do

business and stay close to their own homes. Once the spatial

distribution of GC and its neighbourhood is defined, for each year

Figure 5. The disease moving among the neighbouring CTs. The sequence of maps corresponds to snapshots of Supplementary Movie S1,
which shows the movement of the disease between the main regions that concentrate a large number of foci CTs. The black circles in each map
correspond to the CTs with newly infected individuals that were neighbours of the CTs that had new cases in the previous year.
doi:10.1371/journal.pone.0014140.g005
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(t = 1996, 2000) we associate the number of accumulated new TB

cases of a given CTi, Ni(t) (i = 1,299), to the point that represents

its GC. These distributions describe the raw geo-referenced data

we had access to and would be subjected to a detailed analysis.

In order to determine the annual aetiological agent path, we

connect with segments the centres of neighbouring census tracts

that given a year present at least one infected patient. In other

words for each year (t = 1996, 2000) we connect the neighbouring

sites i and j if Cij(t)=0 where Cij(t)~Ni(t)Nj(t). We refer to these

segments as links and to the collection of links for each year as the

annual distribution of connectivities. In Figure 2 we show these

distributions for the five years as well as the network composed by

its superposition showing the crosslink between them that favour

the spread of disease. Observing the five year paths we realize that

the disease has percolated in the town.

Motivation for the analysis and major assumptions
Percolation theory [25] was first used to describe the

polymerization process that may lead to gelation: how small

branching molecules form large macromolecules that ultimately

would form a network spanning the whole system. The sequence

of paths shows that the information (in this case TB) has spanned

Olinda during the entire period. Therefore the key point in this

study is to find out the common structure of CTs in those 5 paths

that guarantees that the percolation will be maintained during the

five years. Mathematically, this structure would be determined by

removing the dangling bonds (i.e. ‘‘loose ends’’) along each path

and choosing the common structure that would be present in all

five annual paths. This percolation patterns emerge, however,

from social processes and by removing the dangling bonds we

would mask and interfere on the information to be extracted from

this analysis. Hence, we have used the characteristic times related

to the evolution of the disease to search for the CT or structure of

CTs that are sources of infection and the CTs that are responsible

to maintain (or feed) these sources. The characteristic times were

obtained from the estimates that only 10% of infected people

develop the disease: 5% in one year, 3% in three years and 2%

during their lifetime; and that for the complicated cases after 5

years either the patient is cured or diseased.

In order to define the nodes and the links of the network that we

use in our method we have assumed that all CT’s have the same

properties even though they span different geographical areas.

Consequently, we do not distinguish among them a priori according

to population density. If there is any distinction, it comes from the

subsequent analysis. We do not consider any other possible

heterogeneity, particularly, in people behaviour. As mentioned

before, we assume that people tend to stay within a restricted area

for most of their daily activities. For this reason, we assume that

the disease propagates through local interactions.

Data analysis
Since five years is the average time necessary for reaching an

outcome (death or cure) in complicated cases of TB [15,19], we

define any CTi (i~1,299) that presents new cases during five

consecutive years as a focus or source of infection. Therefore, a

focus is a CTi for which the product of Wi~ P
2000

t~1996
Ni(t) is

different from zero, being Ni(t) the number of the yearly new

reported cases during the year t.

Once we have located the high burden CTs (Wi=0) which

continuously produce new cases, we search for those CTs that

sustain the infection on these sources, looking for the cases that

evolve rapidly to the disease. Hence, we looked for those

that develop the disease in one year, searching for the CTis

that have had at least one case during two consecutive years,

or Vi(t,tz1)=0, where Vi(t,tz1)~N(t)N(tz1) and

t = 1996, 1999. The distribution of connectivities for each pair

of years (Figure 3, showing in red the 53 high burden CTs)

is built between the neighbouring CTs i and j for which

Kij(t,tz1)~Vi(t,tz1)Vj(t,tz1) is different from zero. The small

sub network generated by these CTs is embedded in the high

density household region, showing that these regions actually are

responsible for the maintenance of the high burden CTs (Figure 4).

In order to study the movement of the disease (Figure 5 and

Supplementary Movie S1), we identified all CTs presenting at least

one new case during the current year (Ni(t)=0,t~1996,2000) and

having at least one neighbour presenting one or more new cases

during the previous year (t21). In other words, we select for each

year all CTis for which the quantity Mi(t)~
P

j

Ni(t)Nj(t{1) is

different from zero, with the sum over j taking into account all the j

neighbours of the CT i.

The movements of the disease shown in Movie S2 is obtained

by identifying for each year the CTs that are nearest neighbours of

the 53 high-burden CTs and have at least one new case. In other

words we show the dynamics of new cases in the neighbourhood of

the sources of infection.

Supporting Information

Table S1 Average annual TB incidence rate in the city of Olinda,

Brazil. The number of cases and the population is presented

annually for the entire period of 1996–2000. The average incidence

rate per 100,000 inhabitants of each year is also shown and the

average incidence rate during a five-year period is also calculated.

Found at: doi:10.1371/journal.pone.0014140.s001 (0.03 MB

DOC)

Movie S1 The dynamics of TB spread in Olinda. The

movement of TB between the foci (red squares) was traced by

identifying in a given year the CTs with new cases (black circles)

Figure 6. Comparison of the position of the high burden CTs in
two different periods. Using the GC distribution map for the period
of 1996–2000 the 53 foci were marked in blue, while in red was
indicated the position of the 37 foci from 1991–1995. Therefore in this
figure the red foci do not correspond to the GCs of the 1996–2000
period.
doi:10.1371/journal.pone.0014140.g006
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that are nearest-neighbours of the CTs that had new cases in the

previous year. The movie shows that the annual movement of the

new TB cases keep the high-burden CTs fully connected along the

five years analysed. Initially, most of the new cases are located

around the sources. This first pattern evolves into subsequent ones

that fully connect the foci CTs. This movement reflects a feedback

mechanism for the high-burden CTs in the period analysed.

Found at: doi:10.1371/journal.pone.0014140.s002 (0.16 MB

MPG)

Movie S2 Movement of new TB cases around the 53 high-

burden CTs. These movement was obtained identifying the CTs

(black dots) with new TB cases that were neighbors of the foci CTs

(red squares) for each year.

Found at: doi:10.1371/journal.pone.0014140.s003 (0.14 MB AVI)
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