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Abstract

We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible
electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH
fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might
give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation
(IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is
used to follow the space-time evolution of these pH fronts. It is found that they scale in time as t1=2, characteristic of a
predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment
applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger
in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are
suggested.
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Introduction

During the last decade, pulsed electric fields were explored in

local tumor treatment based upon electroporation, a technique in

which pulsed electric fields are employed to disturb cell membrane

integrity creating pores across it. Among them, electrochemother-

apy (ECT), irreversible electroporation (IRE) and electrogenether-

apy (EGT). ECT combines a reversible electroporation (cell-

membrane permeabilizing electric pulses below the irreversible

threshold) with non-permeant or poorly-permeant anticancer

drugs to potentiate their entry to the cell thus their intrinsic

citotoxicity [1,2]. Since its beginnings in the late 1980s, ECT has

evolved into a clinically verified palliative or cytoreductive

treatment for cutaneous and subcutaneous tumor nodules of

different malignancies in Europe and the United States. Typical

ECT treatment in humans consists in a train of 8 square pulses of

high electric field (around 1000V=cm) and very short duration

(around 100ms) delivered at 1Hz [3].

A recent derivation of ECT is EGT (introduction of plasmids or

oligonucleotides to the cell by electropermeabilization [4]). This

new technique is being intensely studied due to its potential as a

nonviral gene-delivery system. EGT has even found to be effective

in neoplastic clearance and complete protection against mammary

carcinoma development in transgenic mice [5]. This opens the

possibility that a combination of ECT and EGT achieve both local

and systemic control of heretofore incurable cancers [6].

Another recent derivation of ECT is IRE, introduced in [7], an

irreversible electroporation (electric pulses above the irreversible

threshold), without thermal effects, that leaves intact main tissue

structures [8]. An important difference of IRE relative to ECT is

that the killing of cells is induced by permanent membrane

disruption without any drug or DNA delivery. Whether ECT,

EGT or IRE, al these techniques have some undesired side effects

(loss of cell viability, uncontrolled necrosis, plasmid damage) that is

necessary to minimize. An excellent recent review of electropo-

ration techniques in biology and medicine can be found in [9].

Previous ECT modeling approaches in the literature include

[10,11] that compute electric field distributions based on 2D

models and show that the applied voltage, configuration of the

electrodes and electrode position need to be chosen specifically

for each individual case. [12] calculates transmembrane potential

(TMP) and electroporation density across membrane of spheroi-

dal cells subject to ultrashort, high-intensity pulses, showing that

the TMP induced by pulsed external voltages can be substan-

tially higher in oblate spheroidal as compared to spherical or

prolate spheroidal cells. [13] introduces a model describing the

creation and resealing of pores at a single whole cell. [14]

simulates the effects of external electric fields on clusters of

excitable cells, showing that the stimulation of a given cell

depends in part on the arrangement of cells within the field and

not simply the location within the field. [15] computes the

electric field distribution in deep-seated tumors taking into

account that tissue conductivity changes during the delivery of

electric pulses. [16] caculates the mass transfer into cells during

ECT introducing a multiscale model that couples an external

electrical field model at tissue level, an electroporation-driven

mass transfer model at a single cell level, and a macroscopic

mass transfer diffusion model in tissue. Typical IRE applications
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in models consists in electric fields around 500V=cm, using

around 70ms delivered at 4Hz.

In this paper we look into the electroporation process from a

new angle apparently overseen in the literature, the role of pH in

ECT modeling based on ion transport and associated pH changes

that take place during the treatment. This analysis is developed

through in vitro gel measurements and theoretical modeling

drawing from previous experience in the electrochemical treat-

ment of tumors (EChT), another electrochemical-based antitu-

moral treatment that applies direct currents with the aim of

eliminating tumors mainly by necrosis (see [17–22]) and in

electrochemical deposition in thin layer cells [23]. It is well known

that, during EChT, two opposing pH fronts emerge from both

electrodes (acid from anode and basic from cathode) until collision

somewhere between them. These pH alterations can be used to

predict the extent of the tumor necrotic area [24] which may be, in

part, attributed to electrocoagulation [22].

While in EChT tumor necrosis is the main goal of the

treatment, and in IRE it may contribute to tumor destruction, in

ECT and EGT it is usually avoided because of its collateral effects.

A common problem of ECT and EGT is their low cell viability

and, in relation to EGT, its low transfection efficiency compared

with other transfection methods [25]. It has been suggested that

these effects may be strongly dependent on the change of pH

induced by electrolysis during the process. Significant pH

alterations of the medium during EGT may have deleterious

effects over the plasmids used for the delivery, as DNA

denaturation is prominently affected by pH [26,27].

The plan of the paper follows: the second section, materials and

methods, presents a description of the experimental procedures and

of the in silico modeling, and the third section describes main results

and a discussion of them , and finally, some general conclusions.

Figure 1. Experimental setup. a) The electroporator is conected to the electrodes placed in the gel. Images of the process during the ECT are
collected through an optic system by a videocamera and then analyzed by specific software. b) Detail of the electrodes placed in the gel revealing the
existence of acid and basic pH fronts.
doi:10.1371/journal.pone.0017303.g001

Table 1. Input parameters of the mathematical model.

Parameter Value Ref Parameter Value Ref

C0
Hz 1:10{7 mol/dm3 C0

OH{ 1:10{7 mol/dm3

C0
Naz 0.16 mol/dm3 [30] C0

Cl{ 0.16 mol/dm3 [30]

C0
H2O 55.5 mol/dm3 T 298 K

DHz 7:75:10{5 cm2/s DOH{ 4:38:10{5 cm2/s

DNaz 1:10:10{5 cm2/s DCl{ 1:39:10{5 cm2/s

I
eq
1 1:10{10 A/cm2 [34] I

eq
2 1:10{3 A/cm2 [35]

E
eq
1

0.816 V [31] E
eq
2

1.407 V [31]

kw,f 2:7:10{5 s{1 [36] kw,b 1:5:1011 dm3/(mol s) [36]

doi:10.1371/journal.pone.0017303.t001

Figure 2. Evolution of the anodic acid (pink) and cathodic basic
(red) pH fronts. Space-time measurement of pH variation in an in
vitro gel under ECT (8 pulses, 400 V, 300 ms, 1 Hz).
doi:10.1371/journal.pone.0017303.g002

pH Fronts in Reversible Electroporation
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Materials and Methods

Experimental in vitro modeling is based in the application of

ECT at different pulse amplitudes and duration to a thin film gel

system. The experimental setup is shown in figure 1A. It consists in

a thin 4|2mm2 film, 1mm thick, 1% agar-agar gel with NaCl at

physiological concentration (0:16mol=dm3), 1% methyl red

(C15H15N3O2, point transition pH 6.2), 1% phenolphtalein

(C20H14O4, point transition pH 8.3) and pH 7. Two platinum

rod electrodes 1mm in diameter were placed at the ends of the gel,

4mm from each other. Figure 1B shows the electrode and gel

configuration with anodic and cathodic pH fronts in pink and red

colors, respectively. Eight electric pulses of 100V , 400V or 600V
(corresponding to 250V=cm, 1000V=cm and 1500V=cm) and

100ms, 300ms or 1000ms were delivered at 1Hz by an square wave

electroporator (ECM 830, BTX-Harvard Apparatus, USA). Visual

front tracking of pH indicator color changes emerging from both

electrodes was obtained using magnifying lenses. Video camera

images (Powershot SX20 IS) were captured at 30 fps with a

resolution of 312 pixels/cm, processed and analyzed at 10 fps with

the ImageJ graphic package [28]. All experiments were conducted

at room temperature with no significant changes observed during

the process.

In silico modelling is based in the description of the ECT

process by a 1D system of partial differential equations governing

ion transport and the electric field in a four component electrolyte

and its numerical solution by deterministic finite difference

methods. Assuming that ion transport is governed by diffusion

and migration and electroneutrality holds true, the in silico ECT

1D model can be approximated by a new split model describing

ion transport in a two-step procedure. During the ON-time step,

electric current is present and transport is governed by migration

and diffusion, during the OFF-time step electric current is absent

and transport is solely governed by diffusion. This splitting model

allows a multitime step in which the ON time step is several orders

of magnitude smaller than the OFF time step.

During the ON-time step, the in silico ECT model is described

by the Nernst-Planck equations for the concentration of ions in a

four component electrolyte under potentiostatic conditions. The

model includes five unknown variables: proton, hydroxide, sodium

and chloride concentrations, and the electric field. The equations

are written as:

Figure 3. pH front tracking during an ECT, measured (symbols) and predicted (lines), in semi-log scale. a) Anodic front, pulse length of
100ms, 8 pulses, 1Hz and pulse amplitudes of 100V , 400V and 600V . b) Cathodic front, same parameters as in a). c) Anodic front, pulse amplitude of
400V , 8 pulses, 1Hz and pulse lengths of 100ms, 300ms and 1000ms. d) Cathodic front, same parameters as in c).
doi:10.1371/journal.pone.0017303.g003

pH Fronts in Reversible Electroporation
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LCi

Lt
~{+NizRi ð1Þ

Here, the molar flux is: Ni~{Di+Ciz
zi

jzij
uiCi+w. where Ci,

Di, zi and ui are the concentration, diffusion coefficient, charge

number and mobility of the species i, respectively (i~Hz,OH{

and Cl{). zi are signed quantities, being positive for cations and

negative for anions. Ri represents the production of the species i
through chemical reactions in the electrolyte. t is the time and w is

the electric field. Details about boundary conditions and the way

the system of partial differential equations is solved can be found in

[21].

During the OFF-time step, the in silico ECT model is similar to

the one corresponding to the ON-time step but now the molar flux

becomes:

Ni~{Di+Ci ð2Þ

Regarding boundary conditions, mass transport of species i
across both electrode surfaces is assumed non-existent. Then, for

i~Hz,OH{,Cl{ and Naz:

{Di(+Ci
:n)~0 ð3Þ

The split system of partial differential equations is solved,

successively in time, in a two-step procedure (ON-time and OFF-

time steps), in a fixed domain on a two-dimensional space-time

uniform grid using strongly implicit finite differences (details can

be found in [29]). During the ON-time step, the time step is

diminished several orders of magnitude to account for the

microsecond migration time scale, yielding a remarkable robust

numerical algorithm. The computational model was written in the

C++ language and implemented on a Intel(R) Core(TM) i5 class

computer under Ubuntu Linux OS. The nonlinear equation

resulting from the approximation of the boundary conditions is

solved by the Newton’s method, using Multidimensional Root-

Finding routines from the GNU Scientific Library (GSL).

Simulation starts with the ON-time step system. At t~0, there

are no concentration gradients throughout the electrolyte. Table 1

presents the input parameters for the computational model. Initial

salt concentration is set to be 0:16mol=dm3, which is close to that

found in plasma and interstitial fluids [30]. Initial pH is set to be 7

(neutral). Published diffusion coefficients of ions in liquid medium

[31] were adequately reduced to describe diffusion in a gel

medium. These new values are in the range of published

experimental data for sodium chloride diffusion in gels [32].

During the OFF-time step the system is solved using as initial

conditions the solution obtained from the ON-time step.

Results and Discussion

Figure 2 presents the space-time representation of an ECT gel

experiment showing the evolution of the acid and basic pH

distribution. Acid and basic pH fronts are represented by pink and

red pixels, respectively. This figure is constructed from a stack of pH

spatial distributions for different times, and unveils the existence of

significant pH gradients during a typical ECT. It is readily seen the

larger extension of the anodic pH front relative to the cathodic one,

though both pH indicators change color at the same distance from

neutrality (6.2 and 8.3 for acid and basic indicators respectively).

During the final writing of this paper we learned that in [25], a

significant pH alteration of the medium due to ECT was observed

too, though with a different experimental model.

Figure 4. Evolution of the anodic acid (pink) and cathodic basic (red) pH fronts. Space-time prediction of pH variation under ECT (anodic
and cathodic contour lines at pH 6 and 8, respectively), at 8 pulses, 400V , 300ms, 1Hz.
doi:10.1371/journal.pone.0017303.g004

pH Fronts in Reversible Electroporation
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Figure 5. Predicted ionic concentration and pH variation during ECT. Ionic concentrations (mmol=dm3) and pH distribution in space (cm), (8
pulses of 400V and 100ms at 1Hz) at different times (0–8 s). Anode at left and cathode at right: a) Sodium, b) Chlorine, c) Protons, d) Hydroxides, and
e) pH distribution.
doi:10.1371/journal.pone.0017303.g005
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Figure 3 shows experimental results (symbols) and theoretical

predictions (lines) of pH front tracking, in semi-log scale, during

ECT for different pulse lengths and amplitudes. Figures 3A and 3B

presents anodic and cathodic fronts, respectively, for a pulse length

of 100ms (8 pulses, 1Hz) and pulse amplitudes of 100V , 400V and

600V . Figures 3C and 3D presents anodic and cathodic fronts,

respectively, for a pulse amplitude of 400V (8 pulses, 1Hz) and

pulse lengths of 100ms, 300ms and 1000ms. A comparison of

theoretical predictions of pH front tracking with experimental

measurements shows a good agreement. Increasing pulse length or

amplitude results in a higher pH front speed, hence, the possibility

of a larger necrotic area. Here too, acid pH fronts are faster than

basic ones, as previously mentioned. This probably is due to the

larger diffusion and migration coefficients of protons. Nevertheless,

in all cases, curve slopes are about 0:5 (calculation not shown)

which means that pH fronts scale in time as t1=2, characteristic of a

predominantly diffusion-controlled process. This is because the

total ON-time during the whole process is much shorter (several

orders of magnitude) than the OFF-time.

Figure 4 presents the predicted space and time representation of

an ECT, for the same conditions as in the experiment of figure 2,

showing the evolution of the acid and basic pH fronts, represented

by pink and red pixels, respectively. The figure again reveals the

existence of significant pH gradients during a typical ECT. A

comparison with the experimental measurements in figure 2 shows

a remarkable agreement. In both, it is observed the larger

extension of the anodic pH front relative to the cathodic one.

Figure 5 shows theoretical predictions of the spatial concentra-

tion of the four ionic species and the pH distribution for an ECT

treatment (train of 8 pulses at 400V , 100ms and 1Hz). It can be

observed an increase in chlorine and a decrease in sodium

concentrations at the anode while the opposite occurs at the

cathode (figures 5A and 5B). The extreme anodic acidification and

cathodic basification induced during ECT can be traced to proton

and hydroxide increments at anode and cathode, respectively

(figures 5C and 5D). Here again, it is observed the large anodic

acid and cathodic basic fronts expanding in time towards each

other (figure 5E).

Figure 6 shows the predicted spatial distribution of pH during

ECT and EChT in black and red lines, respectively, for the same

electric current dosage. Comparing both fronts, a striking result is

observed: anodic acidification is larger in ECT than in EChT,

suggesting that tissue necrosis could also be greater.

The previous theoretical result was experimentally corroborated

by a pH indicator strip (Merk, range 0,5–5) placed on the

electrodes and wetted with a NaCl solution at physiological

concentration. Upon ECT pulse delivery (135C=m2, 8 pulses,

400V , 100ms, 1Hz), the strip zone located at the anode changed

color (from blue, basal state, to yellow) corresponding to a pH

value of around 2 according to the color table. The same

procedure, but now applying EChT at the same dosage

(135C=m2, 17A=m2, 8s), turned the strip zone into orange,

corresponding to a pH value of around 4. For a better assessment

of pH values, images were taken with a Casio FH-25 High Speed

Camera and analyzed using Image J. Histograms of the color of

the strips and of the color table were made, revealing that the ECT

strip turned into pH 2.5 while the EChT strip turned into pH 4

(results not shown).

Note that current applied, for the pulse length tested, is four

orders of magnitude higher for ECT than for EChT. This implies

larger electrochemical reactions and, locally and instantaneously,

larger ECT anodic proton generation. This could be the main

reason of the greater acidity achieved by ECT. This may be

relevant for ECT treatment optimization, where it is desired to

apply an effective dosage while minimizing pH effects that can

lead to necrosis and plasmid damage. One way to achieve this

could be by minimizing voltages and pulse number while

maximizing pulse lengths as far as possible. In fact, this new

low-current, low-voltage and long-duration pulse procedure, has

been proved recently to be safer and more efficient in DNA

electrodelivery [4,33].

In summary, in this work we studied the electroporation process

from a new angle apparently overseen in the literature, the role of

ion transport and associated pH changes in ECT modeling. This

analysis was developed through in vitro gel measurements and

theoretical modeling. We presented experimental evidence that

ion transport in in vitro gels during reversible electroporation, for

conditions typical to many clinical studies found in the literature,

unveil the presence of pH fronts emerging from both electrodes.

These pH fronts are immediate and substantial. Using a tracking

technique to follow the space-time evolution of this fronts, we

found that they scale in time as t1=2, characteristic of a

predominantly diffusive process. This information is extremely

useful for predicting tissue treatment extent. Moreover, we

introduced a new splitting theoretical model describing ion

transport in ECT in a two-step procedure, the first step or ON-

Figure 6. Predicted pH variation during ECT (black) and EChT(red), with same electric current dosage. Anode at left and cathode at
right: a) 34C=m2 , ECT: 8 pulses of 100V and 100ms at 1Hz, 4:2:104A=m2 and 8s total, EChT: 4:2A=m2, 8s; b) 135C=m2, ECT (8 pulses of 400V and 100ms
at 1Hz, 1:7:104A=m2 and 8s total), EChT (17A=m2 , 8s); c) 204C=m2 , ECT (8 pulses of 600V and 100ms at 1Hz, 2:5:104A=m2 and 8s total), EChT
(25:4A=m2 , 8s).
doi:10.1371/journal.pone.0017303.g006
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time step describing ion transport governed by migration and

diffusion, and the second step or OFF-time step describing ion

transport governed solely by diffusion. This splitting allows a

multitime step in which the ON-time step is several orders of

magnitude smaller than the OFF time step, yielding a remarkable

robust numerical algorithm. Theoretical pH front tracking has an

excellent correlation with experimental measurements. Moreover,

its predictions of the comparison of ECT pH fronts with those

arising in EChT revealed a striking result that was experimentally

corroborated: anodic acidification is larger in ECT than in EChT,

suggesting that tissue necrosis could also be greater. The

quantification of pH extension and evolution is relevant for

optimizing ECT treatment, where it is desired to apply an effective

dosage while minimizing pH alterations leading to necrosis and

plasmid damage. One way to achieve this could be designing

protocols minimizing voltage and pulse number while maximizing

pulse lengths as far as possible. It is expected that the results of this

work might help in optimizing electroporation-based tumor

therapies through minimizationof pH adverse effects.
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2. Serša G, Miklavčič D, Čemažar M, Rudolf Z, Pucihar G, et al. (2008)

Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34: 232–240.
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