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Abstract

The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely
determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by
fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous
study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a
standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics.
Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a
wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel’s
fluorescence intensity in a pair of images to the overall Pearsons correlation and Manders’ overlap coefficients. The accuracy
and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range
of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse
confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously
described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work
provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images.
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Introduction

The specific localization of biomolecules in the subcellular

compartments is extremely important as a variety of functions may

be derived. This is usually studied by fluorescence microscopy and

posterior evaluation of the colocalization of the molecule of

interest in a definite region in the cell. Most frequently, image

processing for colocalization is visual-based and therefore highly

prone to bias. In the last years, a variety of methods have been

described to analyze colocalization quantitatively in different

biological systems, based on statistic analysis of pixel intensity

distributions and/or object recognition [1–6] and have been

integrated in different software, some of which are freely

accessible. However, these methods are often applicable only in

images with certain characteristics [3–6] or relay further on visual

estimation [2,7]. Indeed, in the last year two improved methods

have been developed. Fletcher and coworkers [5] established a

new method based on Monte Carlo randomization that works

with voxel-based, intensity-based, object-based, and nearest-

neighbour metrics to measure the statistical significance of

colocalization. Seemingly, Ramı́rez and co-workers [6] introduced

a confined displacement algorithm based on image correlation

spectroscopy in combination with Manders colocalization coeffi-

cients to quantify true and random colocalization of a given

florescence pattern. However, these two methods assume that the

image can be divided into isolated ‘dots’ or ‘blobs’ and therefore

that each object can be isolated from the other, which depends on

the data being punctate in nature. This is characteristic of high

frequency data such as the immunofluorescence of membrane

proteins, but not of low frequency data such as calcium

concentration measurements, or of molecules that are widely

dispersed throughout the cytosol [5]. Indeed, a major challenge in
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quantitative colocalization has been to specifically determine the

localization of widely distributed proteins for example in

mitochondria or Golgi, due to the small size of these organelles.

In a different approach, Costes and coworkers [3] proposed an

automated method for segmentation, the calculation of modified

Manders coefficients and a statistical validation of colocalization

by a combination of block scrambling and probability density

functions [3]. Unfortunately, this method is suitable only for

scenarios with very low and symmetric signal densities, which is

usually not the case in biological samples [6,8]. Here, we

introduce a new algorithm to automatically detect the true

colocalization in a pair of images that overcomes the limitations

of previous methods. The algorithm contemplates the individual

fluorescence intensity contribution of every pixel in a pair of

images to the Pearson’s correlation and Manders’ overlap

coefficient. The accuracy and reliability of the algorithm was

corroborated in a variety of simulated and real images that

contemplated the characteristics of real biological data. The use

of this algorithm together with the construction of the more

informative maps derived from the colocalization coefficients

allowed us to directly observe in which parts inside the cell the

colocalization was particularly relevant.

An additional task to overcome in the analysis of colocalization

is the limit in the resolution imposed by the optical system. Image

deconvolution is a useful tool to more unequivocally address the

localization of a molecule in a small compartment as this

procedure eliminates the contribution of optical diffraction and

therefore restores the ‘‘real’’ image from the acquired samples [9].

We combined the use of the algorithm with image restoration by

deconvolution and time-lapse confocal microscopy to gain insights

into the localization and trafficking of MEK into the mitochondria

of different cellular models. The MEKs (ERK1/2 kinases) function

within signaling cascades that regulate a variety of cellular

processes including proliferation, differentiation and development,

among others [10]. The MEKs constitute an evolutionary

conserved group of dual specificity protein kinases that includes

three highly homologous mammalian isoforms: MEK1a (44 kDa),

MEK1b (41 kDa) and MEK2 (45 kDa) [11–12]. MEKs phos-

phorylate with high specificity both regulatory Thr and Tyr

residues of ERKs [13]. Specificity is achieved by conserved

docking domains present in both kinases [14]. MEKs were initially

reported to localize primarily in the cytosol, while subsequent

evidence suggested that MEK1 was able to shuttle into the

nucleus, but was rapidly exported by a nuclear export signal [15–

17]. Recent evidence suggests the mitochondria as an intermediate

regulatory station between cytosol and nuclei [18–22]. Indeed, we

observed that ERK translocation into or out of the organelle was

regulated by oxidative stimuli or serum, and that the formation of

MEK-ERK complexes in these organelles was regulated by the

oxidation of a redox sensitive cysteine in ERK2 and the impeded

binding to MEK caused ERK2 retention in the organelle in

detriment of its shuttle into the nuclei [19]. In a similar approach,

Antico-Arciuch and co-workers confirmed the presence of Akt1 in

mitochondria of NIH cells and that mitochondrial redox status

regulated Akt1 progression to the nuclei [22]. Indeed, mitochon-

dria regulate Akt1 traffic through posttranslational modifications;

phosphorylation of Akt Thr308 occurs in the organelle and

mitochondrial derived H2O2 affects Akt-PDK interaction by the

selective oxidation of Akt1 Cys310 to sulfenic or cysteic acid [22].

Although we showed that the traffic of ERK to mitochondria is

regulated, i.e., by serum or H2O2 [19–20], little is known about

the biological relevance of the localization of its activator MEK to

mitochondria or the regulation of MEK translocation into and out

of the organelle. Combining the use of the new colocalization

algorithm with image restoration and time-lapse confocal

microscopy, we demonstrate the presence of MEK in mitochon-

dria of HeLa and MEF cells and that MEK localization in the

organelle is favored in proliferative conditions.

Together, the present work provides a novel statistical approach

to precisely and consistently ascertain the colocalization in a series

of biological images. The algorithm, written in Matlab code, was

integrated in a graphical users interface for easy accessibility and is

freely available as a source (www.mathworks.com/matlabcentral/

fileexchange/30665-villalta-et-al-s-colocalization-algorithm).

Materials and Methods

Cell culture
Human cervical carcinoma HeLa cells were maintained in

Dulbecco’s modified Eagle’s medium (D-MEM) nutrient mixture

F-12 HAM with 10% fetal calf serum (FCS) and 80 mg/ml

gentamycin at 37uC in 5% CO2. NIH/3T3 cells were grown in

DMEM F-12 with 10% calf serum plus gentamycin as above.

Mouse embryonic fibroblast (MEF) erk12/2 cells (kind gift of Dr.

Jacques Pouyssegur to Dr. Thomas Jovin lab) were cultured in D-

MEM plus GlutaMAXTM-1 (Gibco) with 10% FCS, streptomycin

and penicillin, supplemented with MEM non-essential amino acids

(Gibco) as above. The medium was replaced twice per week.

Passages were made by trypsinization of confluent monolayers.

PC12 cells were cultured and differentiated as described elsewhere

Table 1. Colocalization coefficients.

Correlation
Coefficient Formula Equation

Pearsons correlation coefficient (r)
r~

P
(S1i{S1mean)|(S2i{S2mean)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(S1i{S1mean)2|(S2i{S2mean)2

q Eq. 1

Manders Overlap Coefficient (R)
R~

P
S1i|S2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(S1i)2|
P

(S2i)2
q Eq. 2

m1 and m2
m1~

P
S1i,colocP

S1i
; m2~

P
S2i,colocP

S2i

Eq. 3; Eq. 4

k1 and k2
k1~

P
(S1i|S2i)P

(S1i)2
; k2~

P
(S1i|S2i)P

(S2i)2

Eq. 5; Eq. 6

S1i represents signal intensity of pixels in the channel 1 and S2i represents signal intensity of pixels in the channel 2; S1mean and S2mean reflect the average intensities
of these respective channels. S1i,coloc and S2i,coloc are those pixels that also display non-random fluorescence in the other channel.
doi:10.1371/journal.pone.0019031.t001
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[23]. Mitochondria were purified from cell lines as previously

described [20].

Plasmids
hERK1-GFP was a gift of Diane Lidke [24]. DsRed-MEK was the

kind gift of Phillippe Stork [25]. The cloning of Akt1-GFP and its

phosphorylation mutants and hERK1-Dronpa was described

elsewhere [20,22]. p75-YFP was the kind gift of Francisca Bronfman

(Facultad de Ciencias Biológicas Pontifica Universidad Católica de

Chile). The cloning of TrkA-CFP is described elsewhere (Iacaruso et

al., in preparation). Mito-RFP and mito-YFP were from Clontech.

Fluorescence labeling
Cells were grown on Lab-Tek Chambered Borosilicate Cover-

glass System (Nunc) for in vivo experiments or on coverslides when

cells were further fixed and immuno-stained. Cell transfection was

accomplished using Lipofectamine 2000 (Invitrogen) according to

manufacturer’s instructions. When appropriate, cells were stained

with specific mitochondrial markers, MitoTracker Green, Mito-

Tracker RED CMXRos or MitoTracker DeepRed (Invitrogen,

100 nM, 45 min at 37uC). For fixation and labelling cells were

incubated in 4% paraformaldehyde 10 min at room temperature,

blocked and permeabilized in PBS, 0.05% Triton X-100, 0.1%

BSA, and labelled with Phalloidin-FITC and Phalloidin-Roda-

mine in the same buffer 1 h at room temperature.

Confocal microscopy
Images were acquired in an Olympus FV1000 spectral confocal

microscope (Olympus, Latin America) with a 6061.35 NA oil

immersion objective. Excitation and filters were as follows: CFP,

458 nm excitation, emission 470–510 nm; GFP, YFP-mito and

FITC, 488 nm excitation, emission BP 500–530 nm; p75-YFP,

515 nm excitation, emission 530–630 nm; RFP, MitoTracker

RED CMXRos and Rodhamine, 543 nm excitation, emission BP

555–655 nm; MitoTracker DeepRed, 635 nm excitation, emission

650–750 nm. Images were acquired in a sequential mode. Bleed-

through was checked by imaging of samples labeled with a single

fluorophore and acquiring dual channel images with the same

setup used for the co-labeled system. We detected and corrected

channel cross-talk between YFP and DsRed. There was no

registration shift between images.

For time-lapse imaging, cells were stimulated with 10% FCS or

50 mm H2O2 and imaged every 1–2 min over a period of 20 min at

37uC. Three-8 equidistant (0.5 mm) planes were evaluated for each cell

(field). Images were scanned as 1376137 or 1096109 nm per pixel.

For image deconvolution stacks of 30–40 equidistant (0.1 mm)

planes were evaluated. Images were scanned as 66666 or 556
55 nm per pixel.

Image analysis
The image and statistical analysis of colocalization and

translocation kinetics was performed with Matlab (MathWorks,

Natick, MA) and DIPimage (image processing toolbox for Matlab,

Delft University of Technology, The Netherlands). Background

levels were obtained by measuring the mean intensity of each

signal outside the cells and were subtracted; negative pixel values

were clipped to zero. Colocalization indexes m1 and m2, Manders

Overlap coefficient (R) and Pearsons correlation coefficient (r) were

calculated as previously described (Table 1) [1–2,26]. Colocaliza-

tion was determined with our new algorithm, described below. For

the analysis of time-lapse images, either we determined a

colocalization mask or, comparatively, we delimited a mitochon-

drial compartment when the MitoTracker fluorescence intensity

was twice above the mean of the whole image. The cellular

compartment was delimited when GFP (for Akt) or DsRed (for

MEK) fluorescence intensity was over the mean fluorescence

intensity of the whole image. Akt-GFP or DsRed-MEK kinetics

were studied only in mitochondria of transfected cells, and thus a

new mask was determined by the combination of both the cellular

mask and the MitoTracker generated mask when we delimited the

compartments manually. The change in GFP and DsRed

fluorescence intensity was evaluated inside mitochondria and

normalized to the whole cell fluorescence intensity to contemplate

photobleaching.

Image deconvolution was performed with Huygens Deconvolu-

tion Software (Scientific Volume Imaging). The point-spread

function (PSF) was calculated theoretically based on the imaging

parameters. Signal-to-noise ratio was set to 30–40. Deconvolution

was performed by the Maximum Likelihood Estimation (MLE)

algorithm. Background was subtracted automatically.

The maps for the coefficients were computed by estimating the

contribution of each single pixel to the coefficient. Thus, single

pixel value corresponds to the value they generate according to

the equations in Table 1, divided by the whole equation

denominator.

New colocalization algorithm
Starting with the whole population of pixels of the green and red

channel images, the algorithm constructs the r map and the R

map, and then calculates the product of the r6R map, which we

call mixed map. Subsequently, it selects pixels that contribute

highly positively (colocalizing) or highly negatively (anti-colocaliz-

ing) to r6R -this is, those pixels that contribute to the product of

numerators above or below certain thresholds- and classifies them

into two different groups. The thresholds were arbitrarily set as the

80% of the maximum value of the mixed map for colocalizing

pixels and the 80% of the minimum value of the mixed map for

anti-colocalizing pixels. With the remaining population of pixels

the algorithm constructs a new mixed map and again classifies and

adds these pixels into one of the former groups. The algorithm

continues with this procedure until more than 1% of the pixels

classified in one step belong to the background –defined as zero

intensity- of any of the channels. At the end of this procedure

several masks are achieved –one per round of classification- with

either the colocalized or anti-colocalized pixels.

Figure 1. New colocalization algorithm, description. A) Two-dimensional fluorescence histogram (left panel) of the images on the right. The
pixel distribution is highlighted in jet colour map. Pixels displaying fluorescence only in the green or red channel lie on the x or y axis, respectively,
pixels displaying fluorescence in both channels are placed along the diagonal, pixels with background signal are accumulated at the origin of the
histogram. Four representative rounds of pixel classification are highlighted in pink colours (rounds 3, 15, 30 and 45). On the right, 2566256 pixel
sized images with 15 ‘‘green channel’’ and 14 ‘‘red channel’’ objects (circles) with random intensities varying between 40 and 160. A definite number
of objects were deliberately set as colocalized (True colocalization). Jet colour bar, number of pixels. Bins, intervals of fluorescence. B) Four
representative rounds of our colocalization algorithm. Upper panels, pixel populations that contribute positively to the r6R coefficient; middle
panels, pixel populations that contribute negatively to the r6R coefficient and lower panels, the remaining population of pixels. C) Graph bar
representing the amount of pixels in the masks shown on B). As the algorithm proceeds with the detection and classification, the positive and
negative populations increase, as the remaining population decreases.
doi:10.1371/journal.pone.0019031.g001
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In the next step, the algorithm determines which of all the

colocalized pixels masks is the most appropriate. With this aim, the

algorithm computes the R for the pixels enclosed by every

colocalizing mask, thus it achieves one R value per round of

classification. The minimum R is subtracted from all the R values

and then plotted vs the classification round (R-Rmin vs. round of

classification). Subsequently, the algorithm calculates the area

under the former function and determines the most appropriate

colocalizing mask that one attained in the round where the 86% of

the area is reached. This value was empirically determined by

running the algorithm on different simulated image sets (different

object densities) and different colocalization extents (for details see

Text S1 and Fig. S1). We chose 86% of the area as this value

rendered the best approximation to the true colocalization and the

minimum detection of false positives.

Test of significance for the Manders Overlap coefficient
(R)

In the same way Costes and coworkers derived a statistical

significance test to evaluate the significant correlation in a pair of

images [3], we derived a statistical significance test to evaluate the

probability (P) that the measured value of R from the two images is

significantly greater than values of R that would be calculated if

there was only random overlap. Briefly, by repeatedly scrambling

the pixels in one image, and then estimating R of this image with

the other (unscrambled) image we generate the empirical

probability distribution of the amounts of random overlap

specifically for these two images. By comparing the R measured

for the original unscrambled image with this distribution we

determine whether significant colocalization exists for a predefined

probability for significance (Students t distribution).

Since single pixel intensity is correlated with its neighboring pixels

due to optical limitations, i.e., the PSF, for randomization we divided

the images into independent blocks of approximately the size of the

PSF, when necessary. We then scrambled the blocks instead of the

individual pixels. We performed 20 randomizations and chose a P

value of 0.95% to indicate significant (true) colocalization.

Simulated images
We generated 1606160 pixels images with a determined

number of pixel-sized objects with a range intensity distribution

of 30–155 for both channels. Colocalized pixels had identical non-

zero intensities. The density of each channel varied and ranged

from 5% to 30% for each green or red objects (i.e., 5% to 30% of

the area is covered by green objects; the same for red objects).

Simulations covering the full range of possible colocalization were

performed, from all green or red objects colocalized to no

colocalization. Noise with intensities distributed uniformly be-

tween 10 and 30 was added to both channels.

Alternatively, we generated 2566256 pixels images. Objects

consisted of 220 pixels circles with random intensities from 40 to

160. We deliberately set 20 objects as colocalized. We added 15

objects to each image randomly, and this increased the percentage of

colocalized signal, as some of the balls partially overlapped. The

colocalization achieved was 7%. Finally, normally distributed noise

(mean = 10, Standard deviation = 15) was added to the whole image.

Results

New colocalization algorithm, rationale
In accord to r (Table 1), two images are correlated if r.0,

independently distributed if r,0 or negatively correlated if r,0. It is

generally assumed that there is colocalization between two images if

the overall r is positive. As r is invariant to background and intensity

scales, it provides a robust estimator for colocalization [1]. However,

the major drawback of this estimator is its lack of biological meaning

and the fact that in a variety of cases, the ratio colocalized/total

image area is so small that the overall estimator remains around 0 or

slightly positive [27]. Indeed, the fact that the overall r is either 0 or

even negative does not imply the complete absence of colocalized

signal, rather than the null or negatively contributing pixels are

abundant (Fig. S2A). Manders coefficients m1 and m2 are more

biologically meaningful (Table 1) [2] as they contemplate the

colocalization area between the images independently of their

correlation. Their major disadvantage is that they relay further on

visual estimation to establish the cut-off to determine signal from

noise, or more complex, random from specific localization.

To develop this algorithm we assumed that in a dual-channel

image, those pixels that contributed positively to r accounted for

the colocalized population of pixels, while those pixels that

contributed negatively to r corresponded to the mutually exclusive

(anti-colocalized) population of pixels. Depending on the propor-

tion of these populations the overall r may be positive, negative or

null (Fig. S2A). We first studied the behavior of r and R. For this,

we plotted the contribution to r and R of each potential green-red

fluorescence intensity combination for a pair of images with

fluorescence ranging from 0–255 with a mean of 75 (Fig. S2B).

There are different fluorescence intensity combinations that

contribute to r or R with the same value and these constitute the

coefficient’s level curves (Fig. S2B, highlighted in colors). In other

words, level curves indicate those green and red fluorescence

intensity pixels that contribute equally to r or R. In addition, pixels

can contribute negatively to r numerator, and this is achieved

when either the green or red channel fluorescence is below its

respective mean fluorescence intensity; R numerator cannot attain

negative values (Fig. S2B, left panels). The same is true for images

with other fluorescence intensity maxima and mean.

Our algorithm proceeds by subsequently classifying pixels as

colocalized or anti-colocalized in accord to the r and R level

curves. A simple way of visualizing the practice of the algorithm is

by combining the 2D histogram derived from the pair of images

with the r6R level curves generated from the image statistic

parameters (Fig. 1A). In this graph, the intensity of a given pixel in

the green image is used as the x-coordinate and the intensity of the

corresponding pixel in the red image as the y-coordinate. Thus,

pixels that display fluorescence only in the green or red channel

will lie on the x or y axis, respectively, pixels that display

Figure 2. Performance of the new colocalization algorithm in simulated images. The accuracy of the algorithm was tested in a variety of
simulated images with different colocalization extent. A) 1606160 pixel sized images were generated with different number of pixel-sized objects
either located at random positions or in the same position (colocalized). Intensity distribution varied between 30 and 155 for both channels.
Colocalized pixels/objects had identical non-zero intensities. Noise with intensities distributed uniformly between 10 and 30 was added to both
channels. The density of each channel (percentage of the image covered by objects) varied and ranged from 5% to 30% for each green or red
channel. Simulations covering the full range of possible colocalization were performed, from no colocalization to all green objects colocalized. The
performance of our algorithm is plotted in black circles. Comparatively, it is plotted the performance of an algorithm written after Costes et al. [3] (red
asterisks). Pearsons correlation coefficient for each image pair is plotted multiplied by a factor of 100 (green dots). B) Example of a pair of images
generated for this simulation.
doi:10.1371/journal.pone.0019031.g002
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fluorescence in both channels will be placed along a diagonal, and

pixels belonging to background signal will accumulate in the origin

of the histogram. The intensity of each pixel in the 2D histogram

(highlighted in jet colour map) represents the frequency of pixels

that display those particular red and green values. The approach

starts considering the totality of the pixels in both images, and

subsequently classifies them as colocalized and anticolocalized in

accord to r6R level curves. Indeed, in every round of classification,

the algorithm groups those pixels that contribute greater than the

0.86 the maximum value or lower than 0.86 the minimum value

of the product r6R. As the algorithm proceeds, the number of

pixels in the remaining population decreases, while the colocalized

and anti-colocalized populations increase (Fig. 1C). It continues

until the step in which more than 1% of the pixels classified belong

to the background, and then it selects the most appropriate

colocalization mask out of all the generated masks (Fig. 1B and 1C,

see Materials and Methods). The output of the algorithm is a

colocalization mask which is highly similar to the true colocaliza-

tion mask that encloses the pixels deliberately set as colocalized

when we generated the images (compare Fig. 1B and 1A).

The rationale for determining the contribution of every pixels

fluorescence intensity to the r6R map instead of using any of the

coefficients by itself is as follows: the individual contribution of every

pixel to the r can be negative or positive (Table 1, Fig. S2), which in

general we attribute to colocalized and anti-colocalized pixels.

Background pixels will contribute positively to this coefficient

pushing the coefficient’s numerator towards 1. However, the

contribution of background pixels to the R is close (albeit positive)

to 0 (Table 1). Thus, the product r6R map will bring all the

correlated pixels of the background towards 0 while maintaining the

higher values of the colocalized population of pixels, and thus it

increases the dissimilar contribution of background and signal.

New colocalization algorithm, validation in simulated
images

We performed simulations covering different green and red

object densities (this is, percentage of image area occupied by the

objects) ranging from 5–30% and different amount of colocalization

(from 0 to 100% of the green objects colocalized), and tested the

accuracy of our algorithm and comparatively, an algorithm written

after Costes et al., [3] to detect the existent colocalization. The new

colocalization algorithm probed to be accurate and reliable for

determining colocalization in most of the situations, even in those

where the overall r was negative (Fig. 2A). However, Costes’

algorithm was only accurate in images with low object density and

could proceed only when the overall r was positive (Fig. 2A).

New colocalization algorithm, validation in biological
samples

To determine the accuracy of our algorithm in biological

samples, we compared different possible subcellular colocalization

patterns (Fig. 3). A complete colocalization pattern was achieved

by labeling actin cytoskeleton simultaneously with Phalloidin

conjugated with FITC or Rodhamine (Fig. 3A). As a model for

partial colocalization we studied NGF receptors fused to

fluorescent proteins (TrkA-CFP and p75-YFP) that were charac-

terized in our lab (Iacaruso et al., in preparation) or in previous

literature [23] (Fig. 3B). Lack of colocalization was achieved by

transfecting HeLa cells with p75-YFP and subsequently labeling

with MitoTracker (Fig. 3C). For each pair of images, we

constructed a 2D fluorescence intensity histogram, determined

the colocalizing pixels with our algorithm and comparatively, with

the algorithm written after Costes et al., [3] and constructed the m1

and m2 maps with the derived colocalizing masks (Fig. 3). Our

algorithm successfully determined the actin filaments as coloca-

lized in the model of complete colocalization, and some regions of

the membrane and certain endosomes as colocalized in the model

of partial colocalization, whereas Costes algorithm defined the

whole cell as colocalizing in both cases (Fig. 3). Our algorithm

detected the lack of colocalization in Figure 3C whereas Costes’

approach was unable to proceed due to the negative r value (Fig. 3).

Time-lapse confocal fluorescence microscopy, image
deconvolution and analysis of colocalization: validation
for the study of kinases intracellular redistribution

We employed fluorescence confocal microscopy followed by image

processing to address the intracellular redistribution of MEK, with

particular interest in its traffic to mitochondria. We first validated the

utilization of these techniques by evaluating the behavior of Akt1,

which has been previously and extensively addressed [22]. Briefly,

Akt is a serine/threonine kinase involved in cell proliferation,

apoptosis, and glucose metabolism and is differentially activated by

growth factors and oxidative stress by sequential phosphorylation of

Ser473 by mTORC2 and Thr308 by PDK1. Phosphorylation of

Thr308 in mitochondria determines Akt1 passage to nuclei and

triggers genomic post-translational mechanisms for cell proliferation.

At high H2O2, Akt1-PDK1 association is disrupted and thus, Akt1

phosphorylated at Ser473 accumulates in mitochondria in detriment

to nuclear translocation; accordingly, the mutant Akt1 T308A is

retained in mitochondria [22].

Here, we repeated the experiments of Antico-Arciuch and co-

workers [22]. In these experiments, NIH/3T3 cells were transfected

with wt Akt1-GFP or the respective mutants that lack one of the

phosphorylation sites, Akt1 T308A-GFP and Akt1 S473A-GFP, and

further stained with a specific mitochondrial marker, MitoTracker

Deep Red, and analyzed by confocal microscopy. We determined the

colocalization mask with our colocalization algorithm and measured

GFP intensity inside this mask and normalized it to GFP intensity in

the whole cell. In accord to the previous results, Akt1 T308A-GFP

accumulated in mitochondria whereas Akt1 S473A-GFP localization

in the organelle was scarce (Fig. S3A).

To improve the resolution of the images and more unequivo-

cally determine the localization of Akt in mitochondria we

employed image deconvolution. For these experiments, HeLa

Figure 3. Performance of the new colocalization algorithm in biological samples. The accuracy of the algorithm was tested in a variety of
biological images with a previously known colocalization extent. A, B and C are examples of whole, partial or no colocalization, respectively. Whole
colocalization is achieved by labelling NIH cells with both Phalloidin-FITC and Phalloidin-Rhodamine. Partial colocalization is studied by transfection
of TrkA-CFP and p75-YFP receptors into PC12 cells (Iacaruso et al., in preparation). Absence of colocalization is achieved by transfection of p75-YFP
into HeLa cells and subsequent labelling with MitoTracker Deep Red. Green and red fluorescence channels and the merge of both channels are
shown in every case. A mask enclosing the colocalized population of pixels detected with our algorithm is shown (middle left panel). Comparatively,
the mask enclosing the colocalized population of pixels detected by the algorithm written after Costes et al. [3] (lower left panel). Additionally, the m1
and m2 maps generated with ours and comparatively, Costes colocalization masks. On the right, two dimensional fluorescence histograms for each
pair of images. Note the disposition of the pixels along the diagonal when colocalization is complete (A), or their segregation towards the x and y axis
upon lack of colocalization (C). Bar, 10 mm. Jet colour bar, contribution of each pixel to the m1 or m2 coefficients (i.e., colocalized pixel intensity/
whole image intensity). Bins, intervals of fluorescence intensity.
doi:10.1371/journal.pone.0019031.g003
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Figure 4. Image deconvolution: validation for the study of kinase translocation into mitochondria. HeLa cells co-transfected with mito-
DsRed and either A) Akt1-T308A-GFP, B) Akt1-GFP, or C) Akt1-S473A-GFP were analysed by confocal microscopy and images were deconvolved with
Huygens Deconvolution Software (Scientific Volume Imaging). A confocal plane of the deconvolved green and red channels is shown individually or
merged (upper panels). Colocalization between the images was assessed by our colocalization algorithm and the m1 and m2 maps were generated

Novel Algorithm for Colocalization

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19031



cells were transfected with Akt1 or its mutants and DsRed-mito.

Images were specifically acquired and processed for image

deconvolution. Deconvolved green and red fluorescence channels

are shown in Figure 4. We determined the colocalization mask

with our colozalization algorithm and constructed the m1 and m2

maps. Accordingly, Akt1 T308A-GFP accumulated in mitochon-

dria as can be observed in the green fluorescence and merged

images, in the m1 map (yellow and red pixels) and in the

fluorescence intensity profile in Figure 4A. Akt1 S437A-GFP

localization to mitochondria was scarce as can be observed

primarily in the dark m1 map and in the fluorescence intensity

profile (Fig. 4C). Thus, deconvolution analysis further corrobo-

rated the previously described Akt1 intracellular localization.

We then evaluated Akt redistribution upon stimulation with

50 mM H2O2, following the experiments of Antico-Arciuch and

coworkers [22]. Transfected NIH cells were labeled with

MitoTracker DeepRed and stimulated with H2O2 at the moment

of image acquisition. GFP and MitoTracker fluorescence was

followed every 1–2 min. We determined a colocalization mask

with our colocalization algorithm for each time point and

estimated the m1 coefficient value by normalizing the GFP

fluorescence intensity inside the mask per the GFP fluorescence in

the whole cell. Akt1-GFP increased rapidly in mitochondria upon

stimulation whereas the other variants did not display a major

redistribution (Fig. S3B) as was previously reported.

To further corroborate the suitability of this analysis for kinase

redistribution we compared it with a previously reported image

processing and analysis of kinase redistribution. NIH cells were

transfected and labelled as above and stimulated with FCS. Images

were acquired every 1–2 min as above. We determined the change in

GFP fluorescence intensity either in the colocalization mask generated

with our algorithm or in a manually generated mask (see Materials

and Methods) [20,22] and normalized to GFP intensity in the whole

cell. The redistribution retrieved by both methods was similar (Fig. 5);

Akt1-GFP entered into mitochondria upon serum stimulation.

We concluded that these techniques are suitable for the study of

kinase intracellular localization and redistribution.

Presence and translocation of MEK1 into cellular and
isolated mitochondria

In this work we demonstrated the presence of MEK1 in

mitochondria of HeLa and MEF cells. In the first experiments,

HeLa cells were transfected with DsRed-MEK1 and YFP-mito and

images were acquired for deconvolution with or without prior

serum starvation. The deconvolved images together with the r and R

maps and an intensity profile are shown in Figure 6. We observed

that MEK localization in mitochondria was augmented in non-

starved cells (yellow and red pixels in r and R maps and coincident

red and green fluorescence peaks in intensity profile). Furthermore,

we computed the overall r and R inside the cell for both the starved

and serum grown cells and observed that r was significantly higher

in serum grown cells (Fig. 6B). We tested the significance of r and R

in every case by assessing the empirical distribution of random

utilizing the derived colocalization mask (lower panels). The fluorescence intensity profile across the arrow for both green and red channels is shown
in the graph. Black arrows indicate the decrease in GFP inside mitochondrial regions. Bar, 10 mm. Jet colour bar, contribution of each pixel to the m1
or m2 coefficients (i.e., colocalized pixel intensity/whole image intensity). On the right, Simulated Fluorescence Process (SFP) volume. SFP volume is
generated with an algorithm in which the data is taken as a distribution of fluorescent dye. By modelling a physical light/matter interaction process
an image is computed showing the data as it would have appeared in reality when viewed under these conditions.
doi:10.1371/journal.pone.0019031.g004

Figure 5. Performance of the new colocalization algorithm in the study of protein translocation kinetics. NIH/3T3 cells transfected with
Akt1-GFP and stained with MitoTracker Deep Red were 24 h serum starved and subsequently stimulated with 10% fetal calf serum. Fluorescence
intensity of both green (GFP) and red (Mitotracker) channels was followed for 20 min in a confocal microscope. The change in GFP fluorescence
intensity after serum stimulation was analyzed in mitochondria by generating a colocalization mask with our colocalization algorithm or
comparatively, generating a mask using MitoTracker fluorescence intensity [20,22]. The graphs show the redistribution of Akt1-GFP in mitochondria
assessed by computing the m1 coefficient either with our algorithm or MitoTracker fluorescence generated masks for each of the 3 confocal planes
analysed. A series of merged images and m1 maps of representative time points after serum stimulation is shown on the left. Bar, 10 mm. Jet colour
bar, contribution of each pixel to the m1 coefficient (i.e., colocalized pixel intensity/whole image intensity).
doi:10.1371/journal.pone.0019031.g005
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Figure 6. MEK1 is present in mitochondria of HeLa cells. A) HeLa cells transfected with mito-YFP and DsRed-MEK1 either 24 h serum starved
or continuously grown in fetal calf serum were analysed by confocal microscopy and images were deconvolved with the Huygens Deconvolution
Software (Scientific Volume Imaging). Deconvolved green and red channels of a confocal plane are shown individually or merged (upper panels). The
Pearsons correlation coefficient and Manders Overlap coefficient maps (lower panels) are also shown. The fluorescence intensity profile across the
arrow for both green and red channels is shown in the graph. Blue arrows indicate an increase in MEK fluorescence intensity in mitochondrial areas.
Bar, 10 mm. Jet colour bar, contribution of each pixel to the m1 coefficient (i.e., colocalized pixel intensity/whole image intensity). B) Pearsons

Novel Algorithm for Colocalization

PLoS ONE | www.plosone.org 11 April 2011 | Volume 6 | Issue 4 | e19031



coefficients, achieved by subsequently scrambling one of the images,

and determined that the coefficients of the unscrambled -original-

images were significant in both cases (Fig. 6C).

We then evaluated MEK redistribution upon FCS stimulation.

For this, HeLa cells were transfected with DsRed-MEK1, labeled

with MitoTracker green and 24 hs serum starved. At the moment

of image acquisition, cells were stimulated with 10% FCS and

imaged every 1–2 min. Analysis was performed by determining

the colocalization mask with our colocalization algorithm and

deriving the m1 coefficient value as described above. Stimulation

led to an early entrance of the kinase to the mitochondria followed

by the exit of the organelle. Comparatively, we imaged and

analyzed cells without FCS stimulation and observed no major

redistribution (Fig. 7).

To confirm the localization of MEK in mitochondria, we

isolated the organelle from HeLa cells, labeled them with

MitoTracker DeepRed and subsequently fixed and immuno-

stained them for MEK1/2 plus a secondary antibody conjugated

to Cy3. Mitochondria were washed, mounted and analyzed by

confocal microscopy. We observed the presence of endogenous

MEK in purified non-contaminated mitochondria from HeLa cells

(Fig. S4).

MEK localization to mitochondria was not particular of HeLa

cells, as transfected DsRed-MEK1 was also present in mitochon-

dria of MEF erk12/2 cells (Fig. S5), as well as its substrate ERK1

(Fig. S6). In both cases, the colocalization mask was determined

with our colocalization algorithm and the r and R coefficients were

calculated and were significantly higher than those obtained from

independent (scrambled) images.

Discussion

Here we present a new algorithm to determine the true

colocalization in a pair of confocal fluorescence images without the

bias of visual estimation. The algorithm is accurate and reliable for

a variety of simulated and biological images and overcomes certain

limitations of previous methods: i) it is functional for the whole

range of object densities and percentage of colocalization in a pair

of images; ii) it can proceed even when the overall r is zero or

negative and, iii) it is accurate not only in ‘punctated’ images but

also in situations where proteins are widely distributed throughout

the cell. In a previous work, Costes and co-workers generated an

algorithm that determined the colocalization based on the linear fit

and the r of the pair of images [3]. These authors designed and

algorithm capable to detect the smallest colocalization possible in

images that contained few objects, i.e., few pixels with fluorescence

intensity. Thus, the images employed contained a deliberately low

object density (6–9%). The authors claimed that their algorithm

was capable to detect pixels that contained colocalized signal that

was not significantly above the mean intensity of the full image.

They argued in those cases, it was impossible to identify

colocalization by eye and thus, the algorithm had a sub-visual

capacity to asses for colocalization. To accomplish with this

challenge the algorithm sacrificed its precision in images where the

colocalization between objects is high or asymmetric, or in those

images where a high proportion of pixels contains fluorescence

signal, i.e., high object density images (Fig 2) [6,8]. Thus, care

should be taken when applying this method in biological samples

since these images tend to contain quite extensive object densities

and variable degree of colocalization. Our colocalization algo-

rithm was designed to contemplate this variability and was precise

and consistent in a variety of simulated images including those

where colocalization cannot be determined by eye (i.e., our

algorithm has sub-visual capacity), and in the biological samples

evaluated here as well as in other models. For example, in a former

experiment Antico-Arciuch and co-workers [22] prepared a

mixture of isolated mitoplasts and vesicles of NIH cells labelled

with MitoTracker or an anti ATPase antibody, respectively, and

additionally for phospho-Thr308 or phosphor-Ser473 Akt. The

algorithm was employed to detect the colocalization of Mito-

Tracker with ATPase and measure the fluorescence intensity of

Akt in those vesicles that had ‘engulfed’ mitoplasts. This

fluorescence intensity was compared to that found in vesicles that

did not colocalize with MitoTracker (vesicles alone). The authors

observed that P-Akt1 Ser473 label was predominantly in lone

vesicles, whereas the highest P-Akt1 Thr308 fluorescence was

detected in those vesicles that contained mitoplasts. This finding

supported the notion that the plasma and mitochondrial

membranes cooperate for the complete Akt activation in NIH

cells and confirmed that Ser473 phosphorylation was a prerequi-

site for Thr308 phosphorylation to occur in mitoplasts [22]. In a

different experiment, Iacaruso and co-workers followed the

endocytosis kinetics of NGF receptors TrkA and p75 after NGF

stimulation and confirmed by using our algorithm that TrkA

endocyted rapidly while p75 remained in the cell membrane, and

that there was a delayed appearance of colocalizing endosomes

corresponding to the co-internalization of these receptors (Iacaruso

et al., in preparation).

Costes’ algorithm firstly calculates a least-squares fit for the 2D

scattergram based on orthogonal regression and then progressively

lowers intensity thresholds for both axes of the scatterplot and

calculates the r between the pixels beneath the intensity thresholds

of each channel until it reaches a pair of thresholds beneath which

r is no longer positive. These thresholds are used to determine the

cut-off for the calculation of m1 and m2. The approach of Costes

et al. therefore only considers positively correlated populations of

pixels to be of interest -uncorrelated and anticorrelated pixels are

ignored by their approach-, but also, due to its way of proceeding,

it can only be applied to those images where the overall correlation

is positive. This leaves out of the analysis a variety of images where

the overall distribution is uncorrelated albeit still there is some

minor but specific signal colocalization (Fig S2A) [27]. Our

colocalization algorithm overcomes this inconvenient by indepen-

dizing of the overall r value to proceed. Rather it contemplates the

individual contribution of every pixel to both r and R.

The exhaustive image analysis performed in the present work,

as well as its statistical validation, support the notion of a real

localization of recombinant DsRed-MEK1 in mitochondria of

HeLa and MEF erk12/2 cells. Mitochondrial size ranges from 1–

10 mm. Pixel size in these images was ,140 nm for time-lapse

microscopy images or ,70 nm for images acquired for deconvo-

lution. According to the optics, the minimal lateral and axial

resolution gained with the microscope settings employed was

correlation coefficient (r) and Manders overlap coefficient (R) were estimated for the image enclosed in the colocalization mask generated by our
algorithm, for both serum starved and serum grown cells. R was significantly higher for cells continuously grown in serum, which suggests that MEK
accumulates in mitochondria in this condition (p = 0.055, n = 6, Students t test). C) Significance of r and R was determined by comparison with those r
and R values obtained when one of the images was repeatedly scrambled. The graph shows the empirical distribution of r and R values for
independent (scrambled) images. Red line, R or r distribution adjusted to a normal fit. The R and r values obtained for the original pair of images is far
beyond the probability distribution of random r or R, indicated by the black arrows.
doi:10.1371/journal.pone.0019031.g006
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approximately 150 nm and 400 nm, respectively. Thus, although

mitochondria are above the diffraction limit, we incorporated

image deconvolution to the analysis to improve the resolution and

more unequivocally determine the presence of MEK in the

organelle. We confirmed the presence of MEK in the organelle by

immunostaining of isolated organelles with an anti MEK antibody.

Figure 7. Kinetics of MEK1 translocation into mitochondria. A) HeLa cells transfected with DsRed-MEK1 and stained with MitoTracker Green
were 24 h serum starved and subsequently stimulated with 10% fetal calf serum. Fluorescence intensity of both green (MitoTracker) and red (MEK)
channels was followed for 20 min in a confocal microscope. The change in DsRed fluorescence intensity after serum stimulation was analyzed in
mitochondria by generating a colocalization mask with our algorithm and subsequently generating the m1 map and estimating m1 coefficient value.
A series of merged images and m1 maps of representative time points after serum stimulation is shown on the left. For comparative purposes, MEK
redistribution was evaluated in time prior to serum stimulation. A series of representative merged and m1 images is shown on the right. Bar, 10 mm.
Jet colour bar, contribution of each pixel to the m1 coefficient (i.e., colocalized pixel intensity/whole image intensity). B) Changes in DsRed-MEK1
fluorescence intensity prior (right) or after (left) serum stimulation in mitochondria assessed by computing the m1 coefficient using the colocalization
mask generated with our algorithm for each of the 5 confocal planes analysed.
doi:10.1371/journal.pone.0019031.g007
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MEK localization in mitochondria augmented in proliferative

conditions. Additionally, FCS stimulation of starved cells caused a

rapid entrance of MEK into the organelle. In a previous work, we

demonstrated that upon FCS stimulation of starved HeLa cells,

hERK1-GFP entered the organelle with a maximum accumula-

tion at around 5–10 min [20]. MEK accumulation in the

organelle was faster, before 5 min of stimulation (Fig. 7). We

have previously suggested that mitochondria are common sites for

phosphorylation of proteins [19,20,22]. Here we propose that

early transit of MEK to mitochondria would favor its phosphor-

ylation, as c-Raf has also been reported in mitochondria [28], and

in turn it would phosphorylate and activate ERK. Phosphorylated

ERK would then shuttle into the nuclei and activate transcription

(Fig. 8). Several experiments on permeabilized heart muscle fibers

suggest the existence of diffusion restrictions grouping mitochon-

dria and surrounding ATPases. The specific causes of these

restrictions are not known, but intracellular structures are

speculated to act as diffusion barriers. Indeed, Ramay y Vendelin

[29] developed a three dimensional finite-element mathematical

model in which the restriction barriers were composed by the

sarcoplasmic reticulum, cytoskeleton proteins close to this

reticulum and cytoskeleton proteins crowding that well adjusted

the existent experimental data. This data supports our hypothesis

in the sense that if mitochondria are source of ATP and the

diffusion of this metabolite is restricted, it is expectable that kinases

would reach the mitochondrial surroundings for activation prior to

their translocation into the nuclei.

Both MEK and ERK have a role on mitochondrial metabolism

regulation. For instance, Monick and co-workers [30] reported the

presence of significant levels of MEK and ERK in mitochondria of

alveolar macrophages and inhibition of ERK activity in these cells

induced an early and profound depletion in cellular ATP,

coincident with a loss of mitochondrial transmembrane potential.

In concordance, Galmiche and co-workers [28] found c-Raf –

which participates in MEK-ERK signalling cascade- in mitochon-

dria of different cell lines and reported that c-Raf overexpression

induced a change in mitochondrial morphology that rendered

disaggregated organelles. This is consistent with our observations

that overexpression of MEK or ERK induce mitochondrial fission

as we did not observe the characteristic mitochondrial reticulum

that we found in non-transfected cells (data not shown). Finally, we

have recently shown evidence that suggests that mitochondrial

ERK could induce mitochondrial genome expression [20]. Thus,

the data from the present work in combination with early data

from this and other labs propose a new frame for the study of

kinase signalling pathways, in particular MEK-ERK cascade, that

contemplates mitochondria as an obligatory station for activation,

as well as a target for modulation of these kinases. The fact that

kinase mutants that cannot be activated are retained in

mitochondria in detriment of their nuclear translocation supports

this notion [20,22].

Together, we introduce a novel statistical approach to

determine the colocalization in a pair of fluorescence images

which is accurate in a surfeit of biological samples, ranging from

small to large population of labelled molecules, lack to complete

colocalization and even in those pair of images where the overall

correlation is negative. This algorithm together with the

construction of the more informative maps derived from the

Figure 8. Intracellular redistribution of MEK and ERK. Scheme showing the new perspective of the redistribution of MEK and ERK inside the
cell. As mitochondria are the source of ATP, MEK and ERK would go to the mitochondrial surroundings where phosphorylation might occur and
afterwards ERK would translocate into the nuclei. There, ERK interacts with transcription factors and the transcription machinery to enhance RNA
synthesis. The scheme was taken and modified from Galli et al. [20].
doi:10.1371/journal.pone.0019031.g008
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colocalization coefficients allowed us to directly observe in which

parts inside the cell the colocalization was particularly relevant.

Finally, all functionality of the methods here described was integrated

into a friendly graphical user interface (GUI) environment for Matlab,

designed for easy accessibility. This toolbox will be freely available for

open source development (www.mathworks.com/matlabcentral/

fileexchange/30665-villalta-et-al-s-colocalization-algorithm).

Supporting Information

Figure S1 New colocalization algorithm: end criterion.
A) Manders overlap coefficient is calculated inside the colocalized

mask after each round of classification and is plotted vs. the round

of classification. B) The area under this curve is calculated and

normalized to the total area. The colocalization mask is the one

attained when the area reaches ,86%. In this simulation, the

colocalization mask was determined in the iteration 21, with an

area of 85.9% (dashed blue line in B and A). For this simulation, a

pair of simulated images with ball objects was generated as in

Figure 1. C) Colocalization mask determined by our algorithm.

The number of circle objects was 17 for the red (D) and 14 for the

green (E) images, with a final Pearson’s correlation coefficient of

0.32.

(TIF)

Figure S2 New colocalization algorithm, rationale. The

algorithm relies on the contribution of the individual pixels to

the Pearsons correlation and Manders overlap coefficients. Two

images can be positively, negatively or not correlated in accord

to the proportion of pixel pairs that contribute positively,

negatively or null to the overall Pearsons correlation coefficient

A) Representative graphs showing how the distribution of pixels

affect the overall coefficient value. B) Pearsons correlation and

Manders Overlap coefficient level curves represented in a three

(left) or two (middle) dimensional histogram. The distribution

was achieved by setting the maximum and mean fluorescence

intensity to 255 and 75, respectively, for both the green and red

channels, and computing the numerator of r or R for each

possible pixel’s fluorescence intensity combination (see Materials

and Methods). Different contributions to the coefficients

numerators highlighted in jet colour map. The masks over the

2D histograms (right) enclose pixel pairs that contribute

positively to Pearsons or Manders numerator. Jet colour bar,

values of the Pearsons or Manders numerator. Fluorescence

intensity in bins.

(TIF)

Figure S3 Presence and translocation of Akt1 and its
phosphorylation mutants Akt-S473A and Akt-T308A into
mitochondria. NIH/3T3 cells transfected with Akt1-GFP, Akt-

T308A-GFP or AktS-473A-GFP and stained with MitoTracker

Deep Red were stimulated with 50 mM H2O2. Fluorescence

intensity of both green (GFP) and red (Mitotracker) channels was

followed for 20 min in a confocal microscope. A) GFP mean

fluorescence intensity was quantified in the colocalization mask

generated with our algorithm and normalized to whole cell mean

GFP fluorescence before the stimulation. B) The change in GFP

fluorescence intensity after H2O2 stimulation was analyzed in the

colocalization mask generated with our algorithm and normalized

to the total GFP intensity in the cell for all the Akt variants.

(TIF)

Figure S4 MEK is present in isolated mitochondria of
HeLa cells. Isolated mitochondria from serum starved HeLa

cells were labelled with MitoTracker Deep Red and further fixed

and immuno-stained for MEK. Secondary antibody was conju-

gated to Cy3. An image of the individual and merged channels is

shown (upper panels) together with a magnification (lower panels).

Bar, 2.5 mm.

(TIF)

Figure S5 Presence of MEK1 in mitochondria of MEF
erk1 2/2 cells. MEFs were transfected with DsRed-MEK1 and

stained with MitoTracker Green. Images were acquired in a Zeiss

LSM 510-meta confocal laser scanning microscope (Carl Zeiss,

Thornwood, NY) with a 6361.2 NA water immersion objective.

Excitation and filters were as follows: MitoTracker Green, 488 nm

excitation, emission BP 520+12 nm filter; RFP, 532 nm excita-

tion, emission LP 585 filter. A) Green and red channels shown

individually or merged. B) Colocalized pixels were determined

with our colocalization algorithm and m1 and m2 maps were

constructed with this mask. C) Significance of r and R was

determined by comparison with those r and R values obtained

when one of the images was repeatedly scrambled. The

distribution of r and R values for independent (scrambled) images

are shown. Red line, R or r distribution adjusted to a normal fit. R

and r values obtained for the original images is far beyond the

probability distribution of random r or R (black arrows). Middle

bar graphs, Pearsons and Manders coefficients. On the right

Pearsons and Manders maps. Bar, 2.5 mm. Jet colour bars,

contribution of each pixel to the m1, m2, Pearson or Manders

coefficient. These experiments were carried out in Dr. Jovin’s

laboratory.

(TIF)

Figure S6 Presence of ERK1 in mitochondria of MEF
erk1 2/2 cells. MEFs were transfected with GFP-ERK1 and

stained with MitoTracker CMXRos. Images were acquired in a

Zeiss LSM 510-meta confocal laser scanning microscope (Carl

Zeiss, Thornwood, NY) with a 6361.2 NA water immersion

objective. Excitation and filters were as follows: GFP, 488 nm

excitation, emission BP 520+12 nm filter; MitoTracker, 532 nm

excitation, emission LP 585 filter. A) Green and red channels

shown individually or merged. B) Colocalized pixels were

determined with our algorithm and m1 and m2 maps were

constructed from this mask. C) Significance of r and R was

determined by comparison with those r and R values obtained

when one of the images was repeatedly scrambled. The

distribution of r and R values for independent (scrambled) images

are shown. Red line, R or r distribution adjusted to a normal fit. R

and r values obtained for the original images is far beyond the

probability distribution of random r or R (black arrows). Middle

bar graphs, Pearsons and Manders coefficients. On the right

Pearsons and Manders maps. Bar, 2.5 mm. Jet colour bars,

contribution of each pixel to the m1, m2, Pearson or Manders

coefficient. These experiments were carried out in Dr. Jovin’s

laboratory.

(TIF)

Text S1 New colocalization algorithm: end criterion.

(DOCX)
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