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Abstract

The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin,
but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight
similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with
those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded,
hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural
and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman
spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish
neuroglobins can reversibly bind oxygen and CO in the Fe2+ form, and show six-coordination by distal His in the absence of
exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled
three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis
and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins. Comparison of
structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly
improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the
adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins,
hemoglobin and myoglobin, in the same organisms.
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Introduction

Vertebrate neuroglobin (Ngb) is present in neuronal cells and its

expression results in neuroprotection against the deleterious effects

of hypoxia and ischemia [1,2], even though these observations

have been recently debated [3]. The available data also suggest

that Ngb may play an important role in neuronal protection

against reactive oxygen and nitrogen species [4–7]. Indeed,

previous studies have demonstrated that Ngb can function as a

nitrite reductase to form nitrogen monoxide (NO) [8] by a reaction

similar to that of myoglobin (Mb) [9–10]. Furthermore, Jayaraman

et al (2011) recently showed that hypoxia stress induces post-

translational modifications, e.g. phosphorylation of Ngb, increas-

ing its nitrite reductase activity [11].

Antarctic icefish of the family Channichthyidae lack the genes

encoding hemoglobin (Hb) and, in many species, Mb. The blood

of Chaenocephalus aceratus is colourless and nearly transparent, and

iron poor [12]. Oxygen is carried in physical solution in the
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plasma, providing ,10% of the carrying capacity of red-blooded

Antarctic fish species. The lack of Hb is accompanied by dramatic

cardiovascular modifications compared to similar-sized red-

blooded notothenioids [13–15]. C. aceratus also fails to produce

cardiac Mb, and the mitochondrial density of cardiomyocytes is

greatly increased as compared to red-blooded, Mb-expressing fish

[16]. The expansion of cellular mitochondrial density in C. aceratus

may enhance oxygen flux in the heart [17], for compensating the

absence of Mb [18,19]. Moreover, recent studies highlight how the

loss of Hb and Mb, their associated NO-oxygenase activity and the

subsequent increase of NO circulating levels with respect to the

other Antarctic red-blooded fishes could explain the unique

cardiovascular and physiological traits evolved in icefish [15,20].

Therefore, the icefish may be a valuable system for understanding

the homeostatic and signal transduction pathways involved in the

response to the lack of respiratory hemoproteins.

The discovery of the Ngb gene in the icefish [21,22] suggests

that, although Hb and Mb are missing, the protein may have

important implications in the physiology of the brain of these

organisms. In order to investigate the influence of the lack of Hb

and Mb on the function of Ngb, we have cloned, over-expressed

and purified Ngb from the brain of C. aceratus and, in parallel, from

the retina of the closely related Antarctic red-blooded fish

Dissostichus mawsoni (belonging to the same suborder Notothenioi-

dei), which shares 98% amino-acid sequence identity with icefish

Ngb [23]. This study has also called for a detailed comparison with

the well characterised human protein, which shares 54% amino-

acid sequence identity with Antarctic fish Ngbs [23].

Although the R and T canonical structures of Antarctic fish Hbs

have been shown to be very similar to those of human Hb (HbA),

Antarctic fish Hbs display different functional properties compared

to HbA, e.g. very low-oxygen affinity [24] and high auto-oxidation

rate [25,26]. Given these differences, we thoroughly characterised

Antarctic fish Ngbs to highlight possible divergences in the

functional/structural properties with respect to the human protein.

In contrast to expectation, the structural/functional properties of

Ngb are maintained in the two fish and strongly resemble those of

human Ngb, suggesting an essential, conserved role. However,

human Ngb is an intracellular protein and does not cross cell

membranes, whereas zebrafish Ngb seems endowed with cell-

penetrating capability [27].

Resonance Raman (RR) spectroscopy, auto-oxidation kinetics,

Molecular Dynamics Simulations (MDS), and Laser-Flash Pho-

tolysis experiments were carried out in a combined fashion, to gain

insight into these proteins.

Differences in the reactivity with exogenous ligands and the

ability to retain them for a longer time in multiple cavities with

alternative exchange pathways between the solvent and the

protein matrix are significant in comparison with human Ngb.

These results appear relevant in the biological context of cold-

adapted fish that lack oxygen-transport proteins, and are totally or

partially devoid of Mb.

Materials and Methods

Site-directed mutagenesis
Cloning and sequencing of Ngb cDNA are reported in the

Supporting Information (Text S1). Three mutations were made for

crystallisation purposes on cDNA of Ngb resulting in the

replacement of Cys51(CD5), Cys57(D6), and Cys121(G15) with

Ser, using the QuikChangeTM site-directed mutagenesis method

(Stratagene). The Ngb mutants C. aceratus and D. mawsoni bearing

the CysRSer substitutions were named C. aceNgb* and D.

mawNgb*, respectively. These mutants were used in the spectro-

scopic characterisation due to their stability and for comparison

with X-ray structure data. Control experiments (data not shown)

indicated no significant difference with the wild-type.

Expression and purification of Ngb
The recombinant expression plasmid was successfully trans-

formed in the Escherichia coli strain BL21(DE3)pLysS (Invitrogen).

Growth of the transformed bacterium and over-expression of

mutants C. aceNgb* and D. mawNgb* were performed as described

for wild-type (wt) human Ngb [28]. After expression, the cells were

harvested and resuspended in lysis buffer [50 mM Tris-HCl

pH 8.0, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride

(PMSF), 0.5 mM dithiothreitol (DTT)]. The resuspended cells

were exposed to three freeze-thaw steps and sonically disrupted.

The extract was clarified by centrifugation at low (10 min at

10,7006 g, 4uC) and high (60 min at 105,0006 g, 4uC) speed

centrifugation and fractionated with ammonium sulfate. The 40–

60%-ammonium-sulfate pellet was dissolved in 5 mM sodium

phosphate pH 8.5 and dialysed. A DEAE-Sepharose Fast-Flow

column (Amersham Biosciences) was equilibrated in the same

buffer and bound Ngb was eluted with 5 mM sodium phosphate

pH 8.5, 300 mM NaCl. The dialysed and concentrated material

was loaded on a HitrapTM DEAE fast-flow column (GE

Healthcare) and the protein was eluted using a gradient (buffer

A: 5 mM sodium phosphate pH 8.5; buffer B: 5 mM sodium

phosphate pH 8.5, 1 M NaCl; 25 min 100% A, linear gradient in

40 min to 60% B). Eluted Ngb was dialysed against gel-filtration

buffer, 50 mM Tris-HCl pH 8.5, 150 mM NaCl, 0.5 mM EDTA

and concentrated using a Stirred Cell (Cat nr 5122, Millipore)

under 2-bar air pressure. The concentrated material was run on a

Superdex TM75 column (1.56100 cm) in gel-filtration buffer.

Electronic absorption spectroscopy
Electronic absorption spectra were measured with a double-

beam Cary 5 spectrophotometer (Varian, Palo Alto, CA, USA)

using a 5-mm NMR tube or a 1-cm cuvette, and a 600-nm/min

scan rate. Spectra were recorded both before and after RR

measurements. No degradation was observed under the experi-

mental conditions employed. Protein samples (30–35 mM) were

prepared in 20 mM Tris-HCl pH 7.6.

Autoxidation
In order to assess and compare the stability of the oxygenated

forms of C. aceNgb*, D. mawNgb* and human Ngb, their

autoxidation rate was measured at 20uC. The proteins were

previously reduced using the Hayashi reducing system [29] in a

helium atmosphere in 100 mM phosphate pH 7.0. Once reduc-

tion was complete, the low-molecular-weight components of the

Hayashi system were quickly removed by subsequent cycles of

concentration and dilution using Vivaspin filtration devices

(Sartorius Stedim Biotech GmbH, Goettingen, Germany). This

step was performed at low temperature, which dramatically slows

down heme autoxidation. The protein was then warmed to 20uC,

and oxidation was followed through time-resolved spectra using a

Cary 400 spectrophotometer (Varian, Inc).

Resonance Raman (RR) spectroscopy
The RR spectra were obtained by excitation with the 413.1-nm

line of a Kr+ laser (Coherent, Innova 300 C, Santa Clara, CA).

Backscattered light from a slowly rotating 5-mm NMR tube was

collected and focussed into a triple spectrometer as previously

reported [30]. To improve the signal/noise ratio, a number of

spectra were accumulated and summed only if no spectral

The Icefish Neuroglobin
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differences were noted. The RR spectra were calibrated with

indene, carbon tetrachloride, dimethyl sulfoxide and pyridine as

standards to an accuracy of 61 cm21 for intense isolated bands.

The ferrous form and its CO- and oxy-adducts were prepared

as described previously [26,31]. The oxy-samples were cooled by

an external flow of cold nitrogen, the laser beam was focussed on

the sample using a cylindrical lens to minimise photolysis, and

3.2 mM DTT was added in order to avoid fast oxidation of the

oxy form.

CO-dissociation kinetics
Kinetics of CO replacement by NO to determine the kOFF of

CO were measured on the CO complexes of human Ngb, C.

aceNgb* and D. mawNgb* using a thermostatted stopped-flow

apparatus (Applied Photophysics, Salisbury, UK). Solutions

containing 10 mM Ngb in a 100 mM sodium phosphate, 1 mM

DTT at pH 7.0 were degassed in a helium atmosphere, reduced

with an equimolar concentration of sodium dithionite and briefly

exposed to pure CO. Excess CO was finally removed by flushing

with helium for 30 minutes. The entire process was followed by

UV-visible absorption spectroscopy using gas-tight cuvettes

endowed with a reservoir for gas equilibration [32]. A NO

solution was prepared by anaerobically dissolving the NO donor

MAHMA NONOate (Sigma Aldrich) in a solution containing

100 mM sodium phosphate at pH 7.0. The exact concentration of

NO was then determined as 200 mM by titration with human

deoxy-Hb. Displacement of CO by NO was monitored at 415 nm

and 20uC.

Classical Molecular Dynamics Simulations (MDS)
MDS were performed as described before [23,33]. Briefly, the

model of wt C. aceratus Ngb was generated with the Modeller9

program [34], using the human X-ray structure (PDB entry

1OJ6,16) as a template. For five- and six-coordinated states,

protonation of distal HisE7 and proximal HisF8 was chosen to be

in the Nd position. For ligand-bound states (either oxygen- or CO),

distal HisE7 was protonated in the Ne atom. All simulations were

performed at 300 K and 1-bar pressure using Berendsen

thermostat and barostat. The Amber99 force field (ff99SB) was

used for all residues, whereas parameters previously developed and

thoroughly tested [35,36] were used for the heme. All simulations

were performed with the PMEMD module of the AMBER9

package [37]. After equilibrating the MD run of the six-

coordinated D. mawsoni Ngb for 20 ns, the other structures were

generated by deleting the His-Fe bond (five-coordinated state)

and/or introducing the two point mutations that differentiate the

two Antarctic fish Ngbs [23], followed by several ns equilibration

runs. Ligand bound Ngb structures were generated by introducing

CO atoms to the five-coordinated state followed by several ns

equilibration runs. For each structure, 40-ns MD production runs

were analysed. Frames were collected at 1-ps intervals, which were

subsequently used to analyse the trajectories.

Implicit Ligand Sampling (ILS)
The ILS method computes a regularly spaced grid (with a

spacing of 0.5 Å) placing a ligand in each grid point to calculate

the free energy associated with the probability of having the ligand

at that position. The MDS were run in the absence of explicit

ligands, assuming that diatomic ligands interact weakly with the

protein. The parameter set for CO (eO: 20.12 kcal mol21, eC:

20.11 kcal mol21, Rmin,O/2: 1.70, Rmin,C/2: 2.10, lbond:1.13) was

taken from [38]. The ILS free energy was computed using a total

of 5000 frames from a 40-ns MDS and 20 rotamers per grid point.

MD runs were described in [23] for fish Ngb and in [33,39] for

human Ngb.

Laser-flash photolysis
Human wt Ngb, C. aceNgb*, and D. mawNgb* were diluted in

100 mM phosphate pH 7.0 to a final concentration of 40 mM and

incubated overnight with 10 mM DTT. The samples were then

reduced under anaerobic conditions with sodium dithionite at a

final concentration of 10 mM and finally equilibrated at either 1

atm or 0.1 atm CO in a gas-tight cuvette. The laser-flash-

photolysis setup has been described elsewhere [40]. Photolysis was

achieved with the second harmonic of a Q-switched nanosecond

Nd:YAG laser (Spectron Laser). Absorbance changes were

monitored using a monochromatic cw output of a 150 W Xe

arc lamp coupled to a 0.25-m monochromator (AMKO gmbh).

The transient absorbance traces were measured through a second

0.125-m monochromator (77250, LOT-Oriel) with a 5-stages

photomultiplier (Applied Photophysics). The voltage signal was

digitalised by a digital oscilloscope (LeCroy Waverunner 104-Xi, 5

GS/s; 1 GHz). A custom dichroic filter (Omega optical) was

positioned between the exit slit of the monochromator and the

photomultiplier to remove residual stray light from the pump laser.

A fast shutter (Vincent Associates, Uniblitz VS35 controlled by the

driver VMM-T1) was positioned between the output of the first

monochromator and the sample holder. The synchronisation of

the laser and the shutter was controlled by a digital delay

generator (Berkeley Nucleonics). The sample holder was accu-

rately temperature controlled with a Peltier element, allowing

temperature stability of at least 0.1uC (Flash100, Quantum

Northwest).

Results and Discussion

Electronic absorption spectroscopy
The UV-visible absorption spectra of ferric and ferrous C.

aceNgb* are typical of six-coordinated low-spin hemes (6cLS)

(Figure 1, panels A and B). In particular, the UV-visible spectra of

the ferric (Soret band at 411 nm, b and a bands at 534 and

557 nm, respectively) and deoxy ferrous (Soret band at 425 nm, b
and a bands at 530 and 560 nm, respectively) forms unequivocally

indicated the presence of a bis-His heme-iron coordination, in

analogy with other Ngbs [41]. The spectra of D. mawNgb* and C.

aceNgb* were almost identical (1 nm shift of the Soret band in the

ferric form); the spectroscopic data of D. mawNgb* are reported in

the Supporting Information (Figure S1 and Figure S2).

Upon addition of oxygen and CO to the ferrous form, the

diatomic ligands replaced distal His and gave rise to the oxy (Soret

at 413 nm, b and a at 543 and 571 nm, respectively) and CO

(Soret at 417 nm, b and a at 538 and 563 nm) adducts [41–43].

The oxygenated proteins remained stable over the time scale

necessary to acquire absorption and RR spectra.

Autoxidation
Autoxidation of the proteins (Figure S3) was observed to occur

with a single exponential relaxation with time constants

t= 3961 min (C. aceNgb*) and t= 6863 min (D. mawNgb*) at

20uC. By comparison, autoxidation of human oxy Ngb occurred

at the same temperature with a time constant of 4961 min. At

4uC the reaction was slowed down to a t= 909 min for C. aceNgb*,

as reported in the Supporting Information.

In spite of the stabilisation of the oxygenated complex by distal

His, the observed autoxidation rates in C. aceNgb* and D.

mawNgb* are higher than those typical for oxygen-transport

proteins, e.g. tetrameric human HbA (time constant <86103 min)

The Icefish Neuroglobin
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and horse-heart Mb (time constant <126103 min) [44]. This

further supports a role other than simply oxygen transport or

storage, similar to human Ngb [41]. It has been suggested that

inactivation of the protein by relatively high autoxidation rate

would be overcome by a specific Ngb reductase, similar to the met-

Mb reductase described in heart tissue [29]. While such reducing

enzyme may also be available in these fish, efforts to identify and

isolate it have been unsuccessful so far.

Resonance Raman spectroscopy
The RR spectra of D. mawNgb* and C. aceNgb* were almost

identical and the complete assignment of RR core size bands is

reported in the Supporting Information (Table S1). In the

spectrum of the oxy C. aceNgb*, the band at 568 cm21 (Figure 1,

panel C), absent in the RR spectra of the ferrous deoxy form and

of the Fe2+-CO adduct, was assigned to the n(Fe-O2) stretching

mode. Its frequency, similar to that of mouse Ngb (571 cm21)

[42], suggested the presence of H-bond interaction between

oxygen and distal His. Further insight into the distal cavity was

gained by the study of CO bound C. aceNgb* (Fe2+). In fact, heme-

bound CO is a sensitive probe for investigating distal effects on

ligand binding by heme proteins, since back-donation from the Fe

dp orbital to the CO p* orbitals is modulated by polar and H-bond

interactions with protein residues [45,46]. As back-donation

increased, the Fe-C bond strengthened whereas the CO bond

weakened, thereby increasing the n(Fe-C) vibrational frequency and

Figure 1. UV-visible and RR spectra of C. aceNgb*. UV-visible (A) and RR spectra of Fe3+, Fe2+, oxy, and CO complex of C. aceNgb* in the high (B)
and low (C) frequency regions. Experimental conditions: A. Scan rate of 600 nm/min. B. 413.1 nm excitation wavelength, 1.2 cm21 resolution. Fe3+:
10 mW laser power at the sample, average of 20 spectra with 240-sec integration time. Fe2+: 10 mW laser power at the sample, average of 10 spectra
with 78-sec integration time. Oxy: 1 mW laser power at the sample, average of 30 spectra with 180-sec integration time. CO: 900 mW laser power at
the sample, average of 7 spectra with 160-sec integration time. The intensities are normalised to that of the n4 band. Spectra have been shifted along
the ordinate axis to allow better visualisation. C. Experimental conditions in panel B. Fe3+: average of 12 spectra with 240-sec integration time. Fe2+:
average of 8 spectra with 300-sec integration time. Oxy: average of 10 spectra with 80-sec integration time. CO: average of 14 spectra with 522-sec
integration time. Spectra have been shifted along the ordinate axis to allow better visualisation. The intensities are normalised to that of n7 (not
shown). In the inset: RR spectra of the CO adducts in the n(CO) stretching region, average of 3 spectra with 3600-sec integration time, and 3.3 cm21

spectral resolution.
doi:10.1371/journal.pone.0044508.g001
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decreasing the n(CO) frequency. In analogy with the Fe2+-CO

complexes of human and mouse Ngbs [42,43], the isotopic shift

observed in the 13CO adduct (Table 1) allowed to identify two

conformations of the Fe2+-CO unit in the C. aceNgb* Fe2+-CO

adduct (Figure 1, panel C). One arose from an ‘open’ conforma-

tion (Form 1) of distal His, preventing the H-bond with CO [n(Fe-C)

and n(CO) at 489 and 1965 cm21, respectively], and the other

corresponded to a ‘closed’ conformation (Form 2) where the close

proximity of dissociated distal His to CO strongly stabilised the

complex, as suggested by n(Fe-C) and n(CO) at 522 and 1934 cm21,

respectively. Thus, distal His can adopt two conformations, in

agreement with previous findings in human wt Ngb and its H64V

mutant [43]. Similar open and close conformers were detected also

by FTIR on the CO complex of wt Ngb [47]. Moreover, a third

conformer (Form 3), weakly H-bonded with a distal residue [n(Fe-

C) and n(CO) at 505 e 1956 cm21, respectively], has recently been

identified in the RR spectra of the CO adduct of recombinant

human Ngb [48]. The comparison of the n(Fe-C) and n(CO)

frequencies in different Ngbs-CO adducts reported in Table 1

clearly indicated that the exogenous ligand binds the proteins in a

similar manner.

Information on the proximal heme cavity can be obtained by

the frequency of n(Fe-His) stretching mode being very sensitive to

the interaction between the proximal ligand and the distal cavity

residues [49]. However, the band was only present in the RR

spectra of ferrous five-coordinated hemoproteins, giving rise to a

strong band at 200–250 cm21, but it is absent in the spectra of six-

coordinated forms of ferrous hemoproteins [50]. Therefore, the

n(Fe-His) stretching mode could not be detected in the RR spectra of

ferrous C. aceNgb*; the band at 224 cm21 (Figure 1, panel C) also

observed in human wt Ngb [43,48] was assigned to a c24 in

analogy to cytochrome c [49]. Unlike the previous experiment,

where upon CO photolysis the formation of the five-coordinated

high-spin (5cHS) forms was clearly shown by the appearance of

the RR n3 mode at 1470 cm21 [42], photolysis of the C. aceNgb*-

CO complex (using 25 mW, exc. 413.1 nm) was followed by

immediate distal-His rebinding to the heme iron, giving rise to a

bis-His 6c-LS heme (n3 = 1492 cm21, Figure S4). As a conse-

quence, in the low-frequency region, while the n(Fe-C) stretching

mode at 522 cm21 decreased in intensity, no new band due to the

n(Fe-His) stretch was observed. In a similar fashion, no n(Fe-His)

stretch was observed in photolysed human Ngb-CO (data not

shown); however, its n(Fe-His) has been recently assigned by time-

resolved [48] and steady-state RR experiments on the distal

variant H64V [43] at 221 cm21, a frequency similar to that

observed in horse-heart Mb [51].

Our results reveal that, similar to other Ngbs, strong polar

interactions with distal pocket residues stabilise the bound ligand,

as shown by RR spectra of CO and oxygen complexes.

CO-dissociation kinetics
CO-dissociation kinetics in D. mawNgb* and human Ngb

(Figure S5) are homogeneous, with estimated kOFF of

0.16460.001 s21 and 0.17360.001 s21, respectively. CO dissoci-

ation from C. aceNgb* appears more heterogeneous, with the main

component corresponding to a kOFF of 0.11560.001 s21. A faster,

minor component accounts for less than 5% of the signal change.

Implicit Ligand Sampling (ILS)
One of the most intriguing characteristics of Ngbs is the presence

of a huge cavity of several hundred Å3 [52]. Since the existence of

this cavity involves a very high energy cost, efforts were devoted to

understanding its role. Ligand migration and docking sites have

been described in human Ngb by both experimental and theoretical

approaches [40,53–56]. To study the tunnels and docking sites of C.

aceratus and D. mawsoni Ngbs, MDS and ligand (CO) migration

within the protein matrix by ILS were performed as described [38].

Detailed analyses of dynamic properties of these proteins have been

described elsewhere [23,57] and we just refer to a few key findings.

As expected, both Antarctic Ngbs show a huge inner cavity

connected to the solvent through a few distinct pathways. Notably,

in addition to the tunnel passing through the distal site and exiting

by the CD corner, there are several other channels connecting

docking sites to the solvent, characterised by similar and relatively

low energetic barriers, as reported in human Ngb [56]. The overall

shape of the cavities appears similar in the five-coordinated deoxy

form. In the six-coordinated bis-histidyl and the CO conformations

of Ngb, the details of the energetic profiles retrieved by ILS, are

different, suggesting relevant dynamic processes affecting ligand

migration and reactivity of Ngbs.

The mutual position of cavities is highlighted in Figure 2A for

the five-coordinated deoxy conformation of C. aceratus Ngb. The

cavity on top of the heme (DS in Figure 2A) is connected to the

solvent by a tunnel passing by the CD corner. Exit from DS

through this pathway, which resembles the distal His gate in Mb,

occurs via an energy barrier of ,4 kcal/mol in C. aceratus Ngb and

,3 kcal/mol in D. mawsoni Ngb (Figure 2B). These barriers are

higher than in human Ngb, for which we estimate nearly 2 kcal/

mol (Figure 2B). These differences may be explained by the fact

that Antarctic fish Ngbs are shorter by one residue in the CD

region than human Ngb [23]. This structural difference is relevant

in a region such as the CD loop. The latter is significant for protein

function because it affects the position and the dynamics of distal

His, thus shaping the connection between the solvent and DS. As a

Table 1. n(Fe-C) and n(CO) frequencies (cm21) of the Fe2+-CO adduct of several Ngbs.

Form 1 (no H-bond) Form 3 (weak H-bond) Form 2 (strong H-bond) Reference

n(Fe-C) n(CO) n(Fe-C) n(CO) n(Fe-C) n(CO)

C. aceNgb* 489 (485) 1965 (1918) 522 (518) 1934 (1888) This work

D. mawNgb* 489 (485) 1965 (1918) 522 (518) 1934 (1888) This work

Mouse 492 1969 523 1933 [42]

Human 494 1972 505 1956 521 1932 [43,46]

The frequencies obtained for the 13CO-adducts are given in parentheses.
doi:10.1371/journal.pone.0044508.t001
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consequence of the shorter CD loop, the Cys-Cys distance

between the two Cys, that form the disulfide bridge in human

Ngb, is several Å shorter than in human Ngb [23]. Thus, the

protein adopts a conformation, which is in principle more suitable

to form a disulfide bridge than in human Ngb, where a more

important rearrangement is needed.

Cavity DS is also connected through the small cavity A to the huge

cavity B, from which several tunnels depart (Figure 2A). While the

barrier that ligands encounter on the path from DS to A is similar in

human and C. aceratus Ngb, the next steps are characterised by

shallower dips in human Ngb (Figure 2B). In D. mawsoni Ngb, DS and

cavity A are separated by a lower barrier than in human Ngb and C.

aceratus Ngb, whereas the next steps show activation energies

comparable to the ones for C. aceratus Ngb (Figure 2B).

There are alternative pathways from cavity B to the solvent.

The main ones are: (i) the tunnel between helices G and H, close to

the GH loop (main cavity F in Figure 2A); (ii) the tunnel between

helices G and H, close to the C terminus (main cavity G in

Figure 2A); (iii) the tunnel between helices E and F, between the

heme and the EF loop with the identified docking site D; (iv) the

tunnel between helix A and the GH loop (main cavity E in

Figure 2A). All these cavities are energetically accessible at room

temperature with a probability comparable to that for the DS exit.

The correspondence between ligand migration pathways studied

in this work and those identified in similar investigations [56,58] is

reported in the Supporting Information (Table S2). The first

barriers from B to the different cavities are equivalent in the three

proteins, except for a high barrier of almost 7 kcal/mol from B to

G in human Ngb (Figure 2C). The second barriers from cavities to

the solvent are slightly lower in human Ngb, especially for the path

through the F cavity, in contrast with slightly higher barriers in C.

aceratus Ngb. In particular, there is a barrier of 6 kcal/mol from E

to the solvent, expected to inhibit exit to the solvent through this

route in C. aceratus Ngb (Figure 2C). The different barriers between

the distal cavity and the solvent along the migration pathways

mean that ligands can exploit some of the pathways to migrate

from the distal pocket to the solvent, or vice versa. In contrast, some

of the pathways inhibit such exchange.

In the six-coordinated and CO bound conformations, the DS

path is blocked by the sixth ligand. Alternative ligand-entry paths

from the solvent to B exist, with barriers below 5 kcal/mol (Figure

S6). Notably, the corresponding barriers in the CO-coordinated

species of C. aceratus are much lower than in the other two CO-

coordinated species (Figure S6). In contrast to human Ngb, the B

cavity in the six-coordinated conformation of C. aceratus and D.

mawsoni Ngbs remain available and connected to the solvent

through the G cavity with relatively low-energy barriers (less than

4 kcal mol21) [56] (Figure S6, panel B).

The usual assumption is that ligands enter the protein in the

reactive five-coordinated state. Here we show that both in the CO-

and six-coordinated species, the ligand may enter with a relatively

low barrier to the internal cavities. Thus, these results suggest that

proteins may load ligands before His dissociation occurs and

enhance protein reactivity. Alternatively, a second ligand may

enter the protein in a ligand-bound state favouring multi-substrate

reactions such as NO dioxygenase [6].

Figure 2. Cavities in Antarctic Ngbs. A. Iso surface representation of five-coordinated C. aceratus Ngb highlighting the distal site (DS), and A, B, D,
E, F and G cavities. The heme is in sticks and putative ligand exit sites are indicated. B. Free-energy diagram of migration pathway found in five-
coordinated C. aceratus Ngb (black), D. mawsoni Ngb (red) and human (green), connecting cavity B to the solvent (SV) through DS. From right to left
are the energies of a ligand exiting to the solvent through the HisE7 gate, visiting the DS. C. Free-energy diagram of the alternative most favourable
migration pathways connecting cavity B (left) to the solvent (SV, right). Energy barriers of a ligand exiting from B to the solvent through cavities D
(top), E (upper middle), F (lower middle) and G (bottom).
doi:10.1371/journal.pone.0044508.g002
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Laser-flash photolysis
CO rebinding after laser photolysis of Ngbs occurred with

multiphase kinetics, in which specific contributions can be

identified, on the basis of previous experiments on human and

murine Ngbs [59,60]. Figure 3A compares the CO-rebinding

kinetics measured in C. aceNgb*, D. mawNgb*, and human wt Ngb,

following nanosecond laser photolysis. Experiments at different

CO concentrations, e.g. the one reported in Figure 3B for C.

aceNgb*, allowed to distinguish between the geminate and the

second-order rebinding phases. When liganded Ngb is photodis-

sociated, there is a period of time during which the photodisso-

ciated ligands remain within the protein. This composite species is

referred to as the ‘geminate pair’. The geminate pair can decay

either through escape of the ligand into the bulk solvent or by

recombining with the heme iron to which it was originally bound.

The geminate phase in ligand-rebinding kinetics to Ngb exposed a

series of ligation intermediates, consistent with the presence of a

discrete series of temporary docking sites (see above), through

which the photodissociated ligand migrates. The results indicated

that geminate recombination in C. aceNgb* and D. mawNgb* was

similar and remarkably larger than the corresponding phase in

human Ngb, probably as a result of a hindered escape route for

photodissociated ligands. The extent of the six-coordinated

species, formed after photodissociation in a competitive reaction

with CO rebinding, was different in the three proteins. This is

clearly seen from the data at 20uC in Figure 3A, in which the six-

coordinated species was produced in higher yield for C. aceNgb*.

As judged from the residual absorbance at <10 ms, heme

hexacoordination by distal HisE7 competes with CO rebinding

with the highest efficiency. While rebinding was extended in time

in all samples, we observed a broader second-order phase in D.

mawNgb* and to a larger extent in C. aceNgb* than in human Ngb.

Broadening was mostly evident in an additional decay at about

200 ms, whose rate is weakly temperature dependent, and almost

CO-concentration independent. Geminate rebinding had an

appreciable temperature dependence, generally proving involve-

ment of protein dynamics in the exit of the photodissociated ligand

from the distal pocket. By contrast, second-order rebinding had an

apparently weaker temperature sensitivity than in human Ngb.

The above results from ILS as well as recent literature data [58]

suggest that the kinetic model we have recently proposed for human

Ngb based on static crystal structures [40] requires some

modifications to take into account the dynamic connectivity of

internal cavities. The distal cavity (DS in Figure 3A) in human Ngb

and in both fish Ngbs is connected to a tunnel hosting a series of

docking sites (A and B in Figure 3A). This tunnel branches into

distinct pathways, labelled as D, E, F, and G in Figure 3A. The ILS

results suggest that some of the tunnels may represent additional

entry/exit points for ligands, through direct connections to the

solvent. In contrast, ligand exchange through some of the branches

appears more difficult. Thus, we adopted a branched reaction

scheme (Scheme 1). As for human Ngb, the model assumes that the

photodissociated ligand can either escape to the solvent (Ngbp)

through a direct channel connecting the distal pocket with the

solvent (the His gate), or migrate through a series of temporary

docking sites. From the primary docking site in the distal pocket (DS

in Figure 2B), the photodissociated ligand can sequentially access

two additional binding sites (A and B in Figure 2B). Then the ligand

can migrate to one of several pathways with main docking sites D, E,

F, and G. All these paths are more or less connected to the solvent,

through barriers of different heights. Since modelling explicitly all

four migration pathways would result in heavy over-parameterisa-

tion of the kinetics, we have simplified the reaction scheme by

including only two reaction branches. One is representative of those

paths, characterised by a high enough barrier between the docking

site T1 and the solvent, to prevent exit of the ligand to an

appreciable extent. A second reaction route has an explicit

connection between trap T2 and the solvent, through a barrier

allowing some ligands to escape the protein matrix. Finally, the

deoxy five-coordinated species (Ngbp) is in equilibrium with the

deoxy six-coordinated bis-His species (Ngbh).

T1
�?ke

/�
k{e

B �?
kf

/�
k{f

T2

kd :;k{d

A k3:;k{3

kc:;k{c

NgbCO �?hu

/�
k{1

DS �?
k2

/�
k{2

NgbpzCO �?
kb

/�
k{b

NgbhzCO

Scheme 1. Minimal reaction scheme for the observed kinetics with

sequential migration between internal hydrophobic cavities. To

Figure 3. Laser-flash photolysis of D. mawNgb*, C. aceNgb* and
human Ngb. A. Comparison between CO-rebinding kinetics measured
at 436 nm for D. mawNgb* (red), C. aceNgb* (black) and human Ngb
(green) at 20uC (solid lines) and 10uC (dotted lines). Solutions were
equilibrated with 1 atm CO. B. Fitting of CO-rebinding curves to C.
aceNgb* T = 20uC, 1 atm (filled circles), 0.1 atm (open circles). Reaction
intermediates are also reported as solid and dotted lines for data taken
at 1 atm CO and 0.1 atm CO, respectively. C, D, E. Free-energy profiles
at 20uC for ligand migration through the internal cavities, ligand exit to
the solvent from the distal pocket, and six-coordination by distal His. In
black, C. aceNgb*; in red, D. mawNgb*; in green, human Ngb. F. Time
course of the fraction of photodissociated ligands migrating through
cavities as estimated from the fitting with Scheme 1. In black, C.
aceNgb*; in red, D. mawNgb*; in green, human Ngb. T = 20uC, 1 atm CO.
doi:10.1371/journal.pone.0044508.g003
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allow easier comparison, we have labelled the reaction intermedi-

ates using the same symbols we used to indicate the cavities

identified by ILS.

Analysis of the CO rebinding kinetics to C. aceNgb*, D.

mawNgb* and human Ngb with the model proposed in Scheme 1

proved satisfactory in the temperature and CO-concentration

ranges employed. An example of fitting under selected conditions

is reported in Figure 3B for C. aceNgb*, along with the time course

of the reaction intermediates. Rate constants at 20uC retrieved

from the fitting procedure are reported in Table 2, along with the

activation free energies estimated from linear Eyring plots of the

microscopic rate constants. For comparison, Table 2 also reports

the corresponding values in human Ngb. While the progress curve

appears equivalent to the one we have previously proposed for

human Ngb [40], the current determination considers an

additional piece of information from MD simulations, which at

the time was not available.

Numerical analysis demonstrated that, in C. aceNgb* and D.

mawNgb*, the photodissociated ligand escapes to the solvent (rate

k2) with lower probability than in human Ngb. Reactivity of the

ligand at the primary docking site (rate k21) is on the other hand

similar to that of human Ngb. The values of these two rates

account for the observed larger geminate recombination observed

in C. aceNgb* and D. mawNgb*.

Formation of the six-coordinated species (rate kb) occurs with

higher rate in C. aceNgb* and leads to more efficient formation of

this reaction intermediate. Dissociation of distal His from the

heme also occurs with higher rate, resulting in not too dissimilar

equilibrium constants. The equilibrium constants KH, determined

at 20uC from the ratio of the binding (kb) and dissociation (k2b)

rates (Table 2), yield 483 for C. aceNgb*, 258 for D. mawNgb*, and

1300 for human Ngb. The values of these equilibrium constants

result in full bis-histidyl hexacoordination in the deoxy Fe2+

proteins.

The extent of ligand migration can be easily appreciated

comparing the total relative concentrations of ligands inside inner

cavities, reported in Figure 3F. Migration to the first inner cavity A

is most effective in D. mawNgb* and human Ngb, with a peak

population at about 40 ns, although this appears to result from a

different combination of microscopic rate constants (Table 2).

Ligands in cavity A survive for just a few hundred nanoseconds,

then quickly move on to B and the subsequent docking sites. The

similarity between the time profiles reported in Figure 3F for

ligand migration in D. mawNgb* and human Ngb extends to about

3 ms. In contrast, migration inside C. aceNgb* cavities leads to a

slower, but eventually more efficient, accumulation of reactants

inside the protein matrix, with a peak concentration at ,10 ms.

Interestingly, a peak is observed at this time also in the time profile

for D. mawNgb*. Given the combination of rates, once entering the

cavity system, the ligand appears to persist within it for a slightly

longer time in C. aceNgb* and D. mawNgb* (,1 ms) than in

human Ngb, a fact that suggests a higher stability for these

locations inside fish Ngbs. Thus, from a qualitative point of view,

migration through D. mawNgb* cavities is somehow intermediate

between human and C. aceNgb*, sharing similarities with both of

them.

In human Ngb, the free-energy barrier for binding to the heme,

DG{ (k21), from the primary docking site (DS) was higher and the

barrier for exit to the solvent, DG{ (k2), was lower than the

corresponding barriers in C. aceNgb*and D. mawNgb* (Figure 3,

panels C, D, and E).

Further insight comes from a comparison between the free-

energy barriers for migration, displayed in panels C–E of Figure 3.

The barrier DG{ (kc) is similar in human Ngb and D. mawNgb* and

it is higher in C. aceNgb*. Notably, barrier DG{ (k2c) is smaller in

human Ngb than in C. aceNgb*, and the corresponding barrier in

D. mawNgb* is intermediate between the two. The activation free

energies retrieved for the remaining rate constants describing

ligand migration (kd through k2f) are very similar in C. aceNgb*and

D. mawNgb*, both being rather different from the corresponding

barriers determined in human Ngb. Thus, on short time scale after

photolysis, the energetic barriers for ligand migration are similar in

human Ngb and D. mawNgb*, while after a few hundred

nanoseconds, the barriers encountered by the diffusing ligand

Table 2. Microscopic rate constants from the fit of the flash photolysis data, at 20uC.

C. aceNgb* D. mawNgb* human

k DG{ (kcal/mol) k DG{ (kcal/mol) k DG{ (kcal/mol)

k21 (107 s21) 2.0 7.060.7 3.0 6.960.1 1.7 7.460.4

k2 (107 s21) 5.6 6.860.2 8.5 6.660.7 10.5 6.060.4

k22 (108 M21 s21) 8.3 5.460.9 6.6 5.360.9 5.5 561

k3 (103 s21) 15.9 1163 42.0 1169 0.85 1365

k23 (106 M21 s21) 4.4 865 0.81 861 2.9 963

kb (s21) 2900 1261 670 1363 545 1362

k2b (s21) 6.0 1666 2.6 1663 0.42 1664

kc (107 s21) 0.88 7.660.7 4.0 762 5.4 761

k2c (107 s21) 0.1 8.860.9 4.3 6.760.8 12.8 660.8

kd (106 s21) 3.0 8.260.8 6.0 861 70.2 6.660.9

k2d (106 s21) 1.4 8.760.1 0.29 9.560.1 34.9 7.060.1

ke (106 s21) 0.042 10.560.9 0.036 1162 12 861

k2e (105 s21) 0.026 1266 0.031 1265 5.5 965

kf (105 s21) 1.4 1064 1.4 9.960.5 0.85 1062

k2f (103 s21) 17.0 11.4610 20.5 12617 3.3 1265

Activation free energies at 20uC were estimated from the linear Eyring plots for each rate constant ki in the temperature range 5–20uC.
doi:10.1371/journal.pone.0044508.t002

The Icefish Neuroglobin

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e44508



are more similar in C. aceNgb*and D. mawNgb*. Again, we point

out that the behaviour of D. mawNgb* shares features with both C.

aceNgb* and human Ngb.

A common feature to all investigated Ngbs is that the barriers

increase as the ligand proceeds towards more internal cavities, a

fact which may reflect coupling with concomitant conformational

transitions, which ultimately result in six-coordination of the heme

by distal His.

The competing reaction of the ferrous heme with the

endogenous ligand, leading to bis-histidyl six-coordination, has

functional consequences on the binding rate constants for

exogenous ligands [61]. The binding rate constant to the ferrous

five-coordinated form (kON) is quite similar in C. aceNgb* and D.

mawNgb*, with values of 2.26108 M21 s21 and

1.76108 M21 s21, respectively. These figures are at least twofold

higher than the value of 7.76107 M21 s21 observed in human

Ngb, a difference arising from similar rebinding (k21) and lower

escape (k2) and return (k-2) rates. kON we estimated in human Ngb

compares well to previous determinations (5.06107 M21 s21)

[62]. Interestingly, CO binding to zebrafish Ngb occurs with

kON = 76107 M21 s21 [62], a value which is almost identical to the

one we determined in human Ngb. CO rebinding in Antarctic fish

Ngbs occurs significantly faster than in human Ngb. Since

rebinding in the latter Ngb occurs at a rate which is similar to

that of Danio rerio Ngb (see the two kON values), the difference

between human and Antarctic fish Ngbs appears relevant, and not

due to the different phylogeny of the species. Further, it should be

considered that binding to equilibrium in deoxy Fe2+ human Ngb,

C. aceNgb* and D. mawNgb* occurs to fully bis-histidyl, six-

coordinated proteins with KH = 476 in C. aceNgb*, KH = 255 in D.

mawNgb*, and KH = 1300 in human Ngb. Thus, observed binding

rates to six-coordinated proteins (kON,obs) are much lower and can

be estimated from [61]:

kON,obs~
k{bkON CO½ �

kbzk{bzkON CO½ �

It can therefore be estimated that at 1 mM CO, the value of kON,obs

are 6 s21 in C. aceNgb*, 3 s21 in D. mawNgb*, and 0.2 s21 in

human Ngb. Thus, even in the presence of relatively high

concentrations of gaseous ligands, these globins are expected to

react rather slowly. As already pointed out for other parameters,

kON,obs of D. mawNgb* is intermediate between those of C. aceNgb*,

which shows the highest binding rate, and human Ngb,

characterised by the lowest binding rate.

Concluding Remarks

Unlike Antarctic fish Hbs, which display different functional

properties compared to HbA, all experimental and theoretical

data presented herein suggest that the structural properties of Ngb,

are maintained in the two Antarctic fish and between them and

human Ngb.

Larger geminate recombination and faster CO rebinding in

both Antarctic Ngbs compared to human Ngb suggest they may be

responsible for optimisation of biological function. In contrast to

red-blooded-fish Ngb, the icefish protein shows slower migration

into and within the cavities, accompanied by a more efficient

accumulation of ligands within the protein matrix. Migration

across the cavities of D. mawNgb* displays a behaviour that falls

between human and C. aceNgb*. While the rapid autoxidation of

the oxygen-bound species suggests that Ngb has not evolved to

store and supply oxygen, the presence of multiple binding sites

allowing temporary docking of small gaseous ligands for relatively

long times may be consistent with involvement in the NO-

dependent processes, as proposed for human and mouse Ngbs [6].

Antarctic fish live at a constant temperature of 21.9uC. The

high-oxygen content in the Antarctic waters led to remarkable

evolutionary adaptations in fishes. Antarctic icefish survive without

Hb genes and many species also fail to express Mb. In these fish,

globin loss is correlated with increases in cellular mitochondrial

density, heart size, blood volume and capillary bed volume. It was

suggested that the high NO levels occurring in the absence of both

Hb and Mb have triggered some of the major cardiovascular and

sub-cellular compensations mentioned above. In cellular and tissue

microenvironments, dynamic NO behaviour is strongly dependent

on the action of Hb and Mb, the major drivers in scavenging NO

bioactivity. Therefore, icefish represent a particularly challenging

case study in analysing NO metabolism, as well as in understand-

ing the interplay of hemoproteins with NO.

Because NO regulates physiological responses that are similar to

the cardiovascular adaptations of icefishes, increasing attention is

being focussed on the pathways of NO production and degrada-

tion in Antarctic notothenioids. In mammals, the molecular

response to limited oxygen availability include higher expression of

nitric oxide synthase (NOS) such as the type I (neuronal, nNOS)

that produces an increase in NO synthesis [63]. Morlà et al. (2003)

reported that five icefish species express nNOS constitutively in

skeletal muscle at higher levels than those found in six red-blooded

notothenioids [64]. These results are consistent with a higher NO

production in icefish that may participate in mantaining a reduced

peripheral resistance to blood flow. Although these data are

limited, they strongly suggest that NO biology is fundamentally

different in icefish compared to that of red-blooded fish.

Although the influence of NO metabolism in the icefish does not

apparently result in structural and biophysical differences in Ngb

properties, other mechanisms, such as gene regulation and/or

protein expression, may govern Ngb adaptations in Antarctic fish

under specific physiological requirements. These mechanisms have

been already pointed out in other species [65–68] but are poorly

understood in Antarctic fish. Future investigations on the role of

mRNA expression in the brain and retina will identify putative

differences between proteins adapted in different environments

(Giordano, personal communication).

Since the icefish C. aceratus lacks Hb and cardiac Mb, this study

was performed to investigate the differences between its Ngb and

the human protein. Moreover, the comparison with a phyloge-

netically related red-blooded phenotype in which globin genes are

functional may be a valuable system for understanding the

interplay of globins in tissues.

Supporting Information

Figure S1 UV-visible and RR spectra of D. mawNgb*.
UV-visible (left) and RR (right) spectra of Fe3+, Fe2+, oxy, and CO

complex of D. mawNgb*, in 20 mM Tris-HCl pH 7.6. The

asterisks in the spectrum of the CO adduct indicate impurities.

Experimental conditions are identical to those of C. aceNgb* (see

Figure 1).

(DOC)

Figure S2 RR spectra in the low-frequency region of D.
mawNgb*. RR spectra in the low- frequency region of Fe2+, and

CO complex of D. mawNgb*, in 20 mM Tris-HCl pH 7.6.

Experimental conditions are identical to those of C. aceNgb* (see

Figure 1).

(DOC)
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Figure S3 Autoxidation of the oxygenated forms of C.
aceNgb* (green circles), D. mawNgb*(red circles) and
human Ngb (black circles). The reaction was monitored at

580 nm and the traces were normalised using a spectrum collected

at 4uC immediately after exposure to oxygen and a spectrum

obtained in the presence of sodium ferricyanide as references for

the pure oxy- and met- forms, respectively. Red solid lines are the

result of the best fit to single exponential decay functions.

(DOC)

Figure S4 RR spectra in the high-frequency region of
the Fe2+ form, its CO complex, and the photolysed-CO
product of C. aceNgb*. Experimental conditions for the Fe2+

and CO-adduct (20 mM Tris-HCl pH 7.6) are as reported in

Figure 1. Photolysed-CO: 25 mW laser power at the sample,

average of 2 spectra with 240-sec integration time (high- and low-

frequency regions). Spectra have been shifted along the ordinate

axis to allow better visualisation. The low-frequency region has

been expanded 2.5-fold.

(DOC)

Figure S5 CO dissociation kinetics of human Ngb, C.
aceNgb* and D. mawNgb*. The Fe2+ complexes with CO

were reacted treated with excess NO.

(DOC)

Figure S6 Energy profile of migration pathways con-
necting cavity B to the solvent (SV) in CO-coordinated (A)
and six-coordinated (B) species. From left to right: energy

barriers of a ligand exiting from B to the solvent through cavities D

(top), E (upper middle), F (lower middle) and G (bottom). In black,

C. aceNgb*; in red, D. mawNgb*; in green, human Ngb.

(DOC)

Table S1 Normal mode assignments of the RR band of
C. aceNgb* and D. mawNgb*. Normal mode assignments of

the RR band (in cm21) observed in the high-wavenumber region

of the Fe3+, Fe2+ forms together with the oxy and CO adducts of

C. aceNgb* and D. mawNgb*.

(DOC)

Table S2 Comparison of topologically similar ligand
migration pathways in different works. Correspondence

between ligand migration pathways identified in this work and

those in [56] and [58].

(DOC)

Text S1 Cloning and sequencing of Ngb cDNA. To obtain

notothenioid-specific primers for Ngb cDNA, a partial Ngb gene

was PCR-amplified from genomic DNA of several Antarctic

notothenioid species with a pair of primers designed to conserved

regions in teleost Ngb sequences available in the database.

Sequencing of the PCR product from each species confirmed

that we were dealing with Ngb genomic sequences.

(DOC)
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