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Abstract

Background: Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-
inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer
formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced
side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and
inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3,
master drivers of Th1 and Th2 differentiation, respectively.

Results: Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet
activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of
GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the
involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine
production shown by a decrease in IFN-c and an increase in IL-5 production, respectively.

Conclusions: Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for
which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.
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Introduction

Glucocorticoids (GCs) are the most potent and frequently used

anti-inflammatory drugs for a variety of Th1- and Th2-mediated

immune disorders. Nevertheless, long-term applications are often

complicated by severe adverse effects [1]. GCs act via binding to

the glucocorticoid receptor (GR), a transcription factor (TF)

belonging to the nuclear receptor superfamily. It is widely

accepted that the desired anti-inflammatory effects of GCs are

caused by the interaction of the monomeric GR with the activity

of other TFs that drive proinflammatory gene expression, whereas

the direct binding of GR to GC response elements (GREs)

resulting in the direct transcription of target genes is mostly

associated with well-known endocrine side effects [2]. This has led

to the search for selective GR modulators, such as dissociated GR

ligands, that selectively transrepress and which are predicted to

reduce the appearance of a wide range of side effects. As the quest

for dissociated steroidal GR ligands did not quite live up to

expectations, there is currently a renewed interest of the

pharmaceutical industry to find non-steroidal selective GR

modulators with a reduced side effect profile yet maintaining

their therapeutic efficacy [3].

Compound A (CpdA) is a stable analog of the hydroxy phenyl

aziridine precursor found in the Namibian shrub Salsola tubercu-

latiformis Botschantzev [4]. CpdA is a clearly dissociating

compound [4]. This means that it does not stimulate GRE-driven

gene expression. It has been shown that CpdA and the synthetic

GC dexamethasone (Dex) interact with the GR with comparable

affinities, in the nanomolar range, but varying dependent on the

cell type [4,5]. The specific gene-repressive effect of CpdA

depends on the presence of functional monomeric GR [6],

displaying a differential phosphorylation status as compared to
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Dex [4]. The anti-inflammatory mechanism of CpdA involves

both a reduction of DNA-binding activity, as well as an

interference with the transactivation potential of NF-kB [4],

which plays a central role in inflammation. Analysis of diverse

mouse models of inflammatory and autoimmune diseases further

supports the idea that CpdA has a potent anti-inflammatory

activity and particularly lacks diabetogenic and bone metabolism

side effects when applied in vivo compared with GCs [4,6–10].

The adaptive immune response is triggered when T cells

recognize antigens, which have been presented by antigen

presenting cells. GATA-3 [11] is a master TF involved in Th2

development [12]. Th2 cytokines promote B cell-mediated

humoral immunity against extracellular pathogens [13]. Th2

cytokines include IL-4, IL-5, IL-13 and IL-10. Ectopic expression

of GATA-3 in developing and fully committed Th1 cells gives rise

to Th2 cytokine production as well as Th1 cytokine inhibition

[14]. GATA-3 regulates Th2 cytokine expression not only at the

transcription level, by directly binding to the IL-5-promoter, but

also by remodeling the chromatin structure and opening the IL-4

locus [15]. As a master control, GATA-3 stabilizes the Th2

phenotype in three ways [16]. First, GATA-3 shuts down Th1

development by down-regulation of STAT4/IL-12Rbeta2 chain

or T-bet. Second, GATA-3 augments its own expression by a

positive feedback autoregulation [17]. Third, GATA-3 favors

selective growth of Th2 cells [16]. In Th2 cells [18], cAMP induces

GATA-3 phosphorylation via p38 MAPK and stimulates GATA-

3-dependent promoter activities [18,19]. Intracellular increments

of cAMP levels in Th cells are associated with an augmentation of

Th2 cytokine production via GATA-3 and protein kinase A (PKA)

activation [20].

T box expressed in T cells (T-bet) is a Th1 specific TF that

controls the expression of the potent proinflammatory cytokine

IFN-gamma (IFN-c) [21], hallmark of Th1 cell-mediated immu-

nity [22,23]. Over-expression of T-bet into primary T cells or even

fully polarized Th2 cells is able to generate IFN-c-producing Th1

cells, concomitant with an inhibition of the production of the Th2

cytokines IL-4 and IL-5 [21]. T-bet deficient mice show normal

lymphoid development, but profound defects in mounting a Th1

immune response and a corresponding increase in Th2 cytokines

[24]. T-bet may down-regulate GATA-3 function either by

regulating its expression or by inhibiting its activity [21,25].

We have previously described that GCs inhibit the transcrip-

tional activity of T-bet [26] by a transrepression mechanism

involving a protein-protein interaction between the activated GR

and T-bet, resulting in a diminished DNA binding [26]. Also the

master Th2 TF GATA-3 is inhibited by GCs, yet via a different

molecular mechanism. GCs inhibit GATA-3 activity by the

inhibition of p38 MAPK-induced GATA-3 phosphorylation and

its nuclear translocation [27,28]. Therefore, by suppressing Th1

responses to a stronger extent than Th2, GCs favor a shift from a

Th1 towards a Th2 profile, which might have relevant

implications in the treatment of Th1-polarized immune disorders

[26,29].

In order to discover novel targets in relevant immune-

modulatory pathways that may be differentially affected by

nonconventional GR modulators such as CpdA, and hence may

become of direct clinical relevance, a detailed understanding of the

molecular mechanism underlying the immune-modulatory effects

of GCs and dissociated GCs in immune cells is a prerequisite.

Although recent data regarding the effect of CpdA on the

expression of Th cytokines in various animal models of immune

diseases has been presented [7,8], the molecular mechanism

underlying differential effects of a selective modulation of GR in

immune cells on downstream TF targets has not yet been clarified.

To this purpose, we investigated how CpdA- and Dexamethasone

(Dex)-activated GR differentially affect the activity of key TFs

involved in the regulation and final outcome of Th-mediated

immune responses.

Results

CpdA Inhibits the Transcriptional Activity of T-bet
We established before that conventional GR activation, through

the use of the classic GC Dexamethasone (Dex), can negatively

impact on the activity of T-bet [26]. At present it is unknown

whether or not selective GR modulation, through the use of the

dissociated GR modulator CpdA, can regulate the activity of

immune-regulatory TFs, other than NF-kB. Hence, we investi-

gated whether CpdA could also negatively regulate the transcrip-

tional activity of the key Th1 TF T-bet. Transfection of EL4 T

cells with T-bet response elements cloned upstream of the

luciferase gene (T-bet-RE-Luc) together with GR (CMV-hGR)

and T-bet (pcDNA3-T-bet) expression vectors in the presence of

increasing amounts of CpdA led to a dose-dependent inhibition of

T-bet’s transcriptional activity (Fig. 1A), similar to the effect we

have previously reported for GCs (Fig. 1A, striped bar) [26]. The

antagonistic effect exerted by RU38486 proved that the ligand-

binding domain of GR is involved in CpdA-mediated inhibition of

T-bet activity (Fig. 1A). In addition, no effect of CpdA was

observed when the GR was absent from the transfection

experiments. Similar results were obtained using the human

Jurkat T cell line (data not shown).

Western Blot assays performed under similar conditions as

mentioned above, showed that CpdA does not affect the over-

expressed protein levels of T-bet (Fig. 1B), strongly suggesting that

CpdA directly targets T-bet at the transcriptional level.

CpdA Inhibits the Transcriptional Activity of T-bet via a
Transrepression Mechanism

Taking into account that GCs inhibit T-bet activity via

transrepression and that CpdA does not transactivate GRE-

dependent genes but can transrepress cytokine genes [4], we

analyzed whether the underpinning mechanism by which CpdA

inhibits T-bet activity could be transrepression. To adress this

hypothesis we used two extensively described GR mutants

[26,30,31]. A458T is a D-loop dimerization interface mutation

that blocks GR dimerization and activation of transcription [31].

S425G is a DBD mutant that has a serine to glycine substitution at

position 425, which removes a hydroxyl group supposed to alter

bondings between the zinc finger domain and other proteins and

hence disrupts transrepression [30]. Transfection and recombinant

reporter gene analyses in EL4 cells show that CpdA-activated

wild-type GR, but not CpdA-activated S425G GR, the GR

mutant defective for transrepression, was able to transrepress kB-

Luc activity (Fig. 2A). On the contrary, CpdA retained its

transrepressive capacity when triggering the A458T GR-transac-

tivation defective mutant (Fig. 2A). Neither the wild-type nor the

mutant GRs could transactivate TK-GRE2-Luc in the presence of

CpdA (Fig. 2B), confirming its dissociated activity also in immune

cells. As expected, Dex, the classic GC, behaved similar as CpdA

in the transrepression assays (Fig. 2A, striped bars), and opposite to

CpdA in the transactivation assays (Fig. 2B, striped bars).

Concerning the effect of a dissociative GR modulation on the

T-bet-RE-Luc reporter gene activity, we found that both CpdA-

activated wild-type GR and A458T, the GR-transactivation

mutant, can strongly inhibit T-bet activity. On the contrary,

CpdA-activated S425G GR mutant displayed a reduced ability in

repressing T-bet activity, when compared to the strong inhibition

CpdA Inhibits T-bet and Induces GATA-3 Activity
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exerted by the CpdA-treated wild-type and A458T mutant. These

data, using mutant GR and/or the dissociative activity of a GR

ligand, are in line with a mechanism whereby the transrepressive

function of GR can be exclusively held responsible for the GR-

mediated inhibition of T-bet activity.

CpdA Inhibits T-bet-driven IFN-c Gene Expression and
Protein Production

We tested the functional relevance of CpdA-mediated inhibition

of T-bet transcriptional activity on IFN-c, hallmark of Th1-

mediated immune responses [21]. To investigate whether CpdA-

dependent inhibition of T-bet activity can be observed in a

functionally relevant promoter context, i.e. on the IFN-c
promoter, EL4 cells were transfected with a -3447-IFN-c
promoter cloned upstream of the luciferase gene together with

the GR expression vector. Over-expression of T-bet resulted in a

strong increase of the luciferase activity, whilst cotransfection of

GR in the presence of CpdA led to the inhibition of IFN-c-

promoter activity (Fig. 3A). No effect of CpdA was observed when

GR was absent from the transfection experiments. Under the same

conditions as in the transfection experiments, Western Blots were

carried out to analyze T-bet protein expresion. No changes in the

over-expressed T-bet protein levels were observed following CpdA

treatment (data not shown), suggesting that the CpdA-mediated

inhibition of T-bet is at the transcriptional level and a relevant

mechanism in the regulation of the IFN-c promoter. Next, we

analyzed whether the transcriptional repression of CpdA could

also be reflected in a diminished IFN-c protein production in

purified CD4+ T cell cultures. Indeed, Fig. 3B shows that CpdA

strongly inhibits IFN-c production. Similar results were obtained

in non-adherent and in total splenocyte cultures (data not shown).

CpdA Induces the Transcriptional Activity of GATA-3 by
Signaling Through p38 MAPK

To determine whether CpdA also regulates the transcriptional

activity of the master Th2 TF GATA-3, we transfected EL4 cells

with a GATA-3-dependent reporter gene construct (GATA-3-RE-

Luc) together with GR (CMV-hGR) and GATA-3 (pcDNA3-

GATA-3) expression vectors (Fig. 4A). Contrary to the effect we

have previously described for GCs [27], increasing amounts of

CpdA, in the presence of cAMP, led to a dose-dependent

induction of GATA-3 activity (Fig. 4A).

The reversion by the specific antagonist RU38486 proved that

the ligand-binding module of the GR is involved in the CpdA-

mediated induction of GATA-3 activity (Fig. 4A). In addition, no

effect of CpdA was observed when GR was not present in the

transfection experiment. Similar results were obtained using Jurkat

cells (data not shown).

As the induction of GATA-3 activity could be the consequence

of an increased GATA-3 protein expression, we analyzed over-

expressed GATA-3 protein levels by Western Blot under the same

conditions as in the transfection experiments. We observed no

changes in GATA-3 protein levels, strongly suggesting that CpdA

induces GATA-3 transcriptional activity (Fig. 4B).

As previously described, cAMP treatment enhances the activity

of GATA-3 via p38 MAPK induction [18–20,27]. Therefore, in

order to study the effect of CpdA on the activity of this kinase, EL4

cells were transfected with a GATA-3-dependent reporter gene

construct (GATA-3-RE-Luc) together with GR (CMV-hGR) and

GATA-3 (pcDNA3-GATA-3) expression vectors. CpdA-induced

GATA-3 activity was inhibited in the presence of the kinase

inhibitor SB203580 (Fig. 4C), supporting the involvement of the

p38 MAPK pathway for CpdA-induced GATA-3 activity.

Overexpressing p38 MAPK, using a p38 expression vector

Figure 1. Compound A inhibits T-bet transcriptional activity. A, EL4 cells were transfected with 9 mg of a reporter plasmid which contains T-
bet response elements upstream of the luciferase gene (T-bet-RE-Luc) with or without 9 mg of T-bet and GR expression vectors. After 16 h in culture,
cells were stimulated for 5 h with or without Compound A (CpdA, 0.1, 1, 5 and 10 mM), Dexamethasone (Dex, 10 nM) or the GR specific antagonist
RU38486 (1 mM). Results, as folds, normalized to b-galactosidase activity, are expressed as mean 6 SEM (n = 6, * p,0.001 vs. basal without T-bet,
** p,0.05 vs. T-bet without CpdA), averaged from three independent experiments. B, Lysates obtained from transfection experiments performed
under similar conditions as mentioned above, were prepared for T-bet analysis by Western Blot. Single bands corresponding to T-bet were obtained.
GAPDH signal was used as loading control; one of three independent experiments with similar results is shown.
doi:10.1371/journal.pone.0035155.g001
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(pcEFL-p38a), resulted in a further increase of CpdA- and cAMP-

induced GATA-3 activities. These results confirm an important

role for p38 MAPK in driving the activity of GATA-3, elicited by

two different (Fig. 4D).

To test whether the molecular mechanism by which CpdA

induces the transactivation of GATA-3 involves CpdA-mediated

p38 phosphorylation, we performed Western Blot assays in EL4

cells transfected with a GR expression vector (CMV-hGR) in the

presence of CpdA and cAMP (Fig. 4E). The results demonstrate

that CpdA already on its own strongly induces p38 phosphory-

lation, and that the effect is enhanced in the presence of cAMP.

Phosphorylation and activation of the downstream TF ATF2 is

known to reflect an activation of the p38 MAPK signaling

pathway [32]. A chimeric trans-activator protein containing ATF2

fused to the DNA binding domain of the yeast transcriptional

activator GAL4 (pFA-ATF2) was transiently transfected into cells

with a luciferase reporter containing five copies of a GAL4 DNA

binding element upstream of a TATA box and the luciferase gene

(pG5-Luc). Thus, by monitoring the activity of the pG5-Luc

reporter, the activation of ATF2 by p38 MAPK was followed.

Fig. 4F shows that CpdA strongly induces the reporter activity and

SB203580 inhibits this induction further confirming that CpdA is

able to induce p38 MAPK activity.

PKA, MEK-1 and JNK pathways are not involved as shown by

the lack of inhibition of CpdA-induced GATA-3 activity using the

specific inhibitors of these kinases H89, PD98059 and SP600125

respectively (data not shown).

CpdA Induces Phosphorylation and Nuclear
Translocation of GATA-3

It has been reported that p38 MAPK induces GATA-3

phosphorylation and nuclear translocation, which impacts on the

transcriptional activity of GATA-3 [19]. To directly investigate

whether the effect of CpdA on p38-mediated GATA-3 activity

involves the induction of GATA-3 phosphorylation [27,28],

Western Blots were performed using EL4 cells stimulated under

basal, cAMP- and CpdA-activating conditions using a specific

antibody against phospho-GATA-3 (p-GATA-3). As shown in

Fig. 5A, although CpdA does induce a slight GATA-3 phosphor-

ylation on its own; in the presence of cAMP, this effect is

significantly enhanced. As expected, also cAMP on its own induces

phosphorylation of GATA-3. Whole extract lysates were used as

controls for total GATA-3 expression (Fig. 5A).

To address whether CpdA further enhances the nuclear

translocation of GATA-3, we performed Western Blot experi-

ments using cytoplasmic and nuclear extracts. Fig. 5B shows that

as previously reported, cAMP induces GATA-3 nuclear translo-

cation. An additional treatment with CpdA further induces this

translocation. A specific antibody against Histone H3 was used as

control to demonstrate the purity of the nuclear extracts and

GAPDH was used as control of the cytoplasmic extracts (Fig. 5B).

Figure 2. Compound A inhibits T-bet transcriptional activity by transrepression. A, EL4 cells were cotransfected with 9 mg of kB-Luc
reporter plasmid and 9 mg of Rel A plus 9 mg of phGR-SB (wt) wild-type GR expression vectors or the GR mutants A458T or S425G. After 16 h, cells
were stimulated for 8 h with IL-1b (10 ng/ml), which induces kB-Luc activity, and with CpdA (10 mM) or Dex (100 nM). Results, as % of inhibition of
kB-Luc, normalized to b-galactosidase activity, are expressed as mean 6 SEM (n = 3, * p,0.001 vs. Rel A plus IL-1b without Dex or CpdA), of one
representative experiment of three independent experiments with similar results. B, EL4 cells were transfected with 9 mg of a reporter plasmid
containing two palindromic GR-binding sites coupled to the TK promoter reporter plasmid (TK-GRE2-Luc) plus 9 mg of phGR-SB (wt) wild-type GR
expression vector or the GR mutants A458T or S425G. After 16 h, cells were stimulated for 5 h with CpdA or Dex. Results, as % of activation of TK-
GRE2-Luc, normalized to b-galactosidase activity, are expressed as mean 6 SEM (n = 3, * p,0.05 vs. basal without Dex or CpdA, ** p,0.05 vs. Dex
treated wild-type or S425G mutant GR), of one representative experiment of three independent experiments with similar results. C, EL4 cells were
transfected with 9 mg of T-bet-RE-Luc reporter plasmid and with 9 mg of T-bet and wild-type GR expression vectors (ph-GR-SB) or the GR mutants
A458T or S425G. After 16 h, cells were stimulated for 5 h with CpdA. Results, as % of inhibition of T-bet-RE-Luc, normalized to b-galactosidase activity,
are expressed as mean 6 SEM (n = 3, * p,0.001 vs. ph-GR-SB or A458T-mediated T-bet-RE-Luc relative inhibition) of one representative experiment
of three independent experiments with similar results.
doi:10.1371/journal.pone.0035155.g002
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CpdA Induces GATA-3-driven IL-5 Gene Expression and
Protein Production

To investigate the possible involvement of CpdA-dependent

induction of GATA-3 activity in the regulation of IL-5, a central

Th2 cytokine, EL4 cells were transfected with the IL-5 promoter

cloned upstream of the luciferase gene together with GR (CMV-

hGR) and GATA-3 (pcDNA3-GATA-3) expression vectors. Over-

expression of GATA-3 in the presence of CpdA led to strong

induction of IL-5 activity (Fig. 6A). The involvement of p38

MAPK was evident because CpdA-induced GATA-3 activity was

inhibited in the presence of the specific kinase inhibitor SB203580.

To confirm the involvement of GATA-3 on CpdA-mediated IL-

5 promoter activity, we transfected EL4 cells with the proximal IL-

5 promoter (2120 to +44) bearing its unique GATA-3 binding site

(around position 272), or its mutated version on the GATA-3

binding site (IL5-Gm-luc) (Fig. 6B). CpdA induces the wild-type

IL-5 promoter activity but its effect is strongly inhibited upon using

the promoter variant containing the mutated GATA-3 binding

site, confirming the importance of GATA-3 in mediating the

CpdA-activated promoter activity.

The A20 mouse B lymphoma cell line, which does not express

endogenous GATA-3 but expresses endogenous GR, was

transfected with the IL-5 promoter-driven reporter gene construct

in the presence or absence of a GATA-3 expression vector. There

was no IL-5 promoter activity in the absence of GATA-3 and

when GATA-3 is overexpressed, CpdA is able to further induce

the activity of cAMP-stimulated GATA-3, confirming that the IL-

5 promoter is induced by a CpdA-modulated GATA-3 activity

(Fig. 6C).

Next, we analyzed whether the transcriptional activation of

CpdA could also be reflected in an increase of IL-5 protein

production in purified CD4+ T cell cultures. Indeed, Fig. 6D

shows that CpdA strongly induces IL-5 production. Similar results

were obtained in non-adherent and in total splenocyte cultures

(data not shown).

Discussion

In this work we describe the mechanisms of action following

selective GR modulation in immune T cells. Hereto, we studied

the effect of CpdA, as a paradigm for a dissociative GR activity, on

the activity of key Th TFs that control the development and final

outcome of the adaptive immune responses: T-bet, involved in

Th1 cellular immunity; and GATA-3, involved in Th2 humoral

immune responses.

Our findings demonstrate that in T cell lines, CpdA inhibits the

transcriptional activity of T-bet via a mechanism involving GR-

mediated transrepression, similar to the effect previously described

for GCs [26]. On the other hand, different from the mechanism

that was previously described for GCs on GATA-3 activity [27],

CpdA induces the transcriptional activity of GATA-3 via an

enhanced induction of p38 MAPK-mediated GATA-3 phosphor-

ylation and subsequent nuclear translocation. Considering that in

rats with experimental autoimmune neuritis, CpdA treatment

increased the numbers of anti-inflammatory M2 macrophages and

inhibited the mRNA expression of inflammatory cytokines [8],

CpdA may have a dual effect on immune cells: 1) on macrophages

to dampen an uncontrolled first line of defense, and 2) modulation

of the Th1-Th2 balance in the second stage.

Since nothing is known yet about the regulation of key Th

immune-regulatory TFs, we first investigated the role of CpdA on

the transcriptional activity of T-bet in T cells. We transfected EL4

cells with a construct bearing T-bet response elements cloned

upstream of the luciferase gene and found that CpdA strongly

inhibits the transcriptional activity of T-bet. The actions of CpdA

were reverted by the synthetic antagonist RU38486 which acts as

a competitor for ligand binding to GR, unambiguously demon-

strating direct GR involvement.

It is generally accepted that DNA binding and subsequent

activation of gene expression requires the dimerization of GR and

Figure 3. Compound A inhibits IFN-c promoter activity and
cytokine production. A, EL4 cells were cotransfected with 9 mg of
IFN-c promoter-driven luciferase plasmid (IFN-c-Luc) plus 9 mg of GR
expression vector and with 9 mg of T-bet expression vector. After 16 h
in culture, cells were stimulated for 5 h with Compound A (CpdA,
10 mM). Results, as folds, normalized to b-galactosidase activity, are
expressed as mean 6 SEM (n = 6, * p,0.001 vs. basal without T-bet,
** p,0.001 vs. T-bet without CpdA), averaged from three independent
experiments. B, Purification of T cells was achieved by a conventional
technique involving cell adhesion to plastic and then to a nylon wool
column and alternatevely by FACS sorting. Purified T cells were
activated with PMA (P) and Ionomycin (I) during 24 h and then
incubated with CpdA for 5 h. Supernatants were used to measure
mouse IFN-c according to the manufacturer’s instructions by ELISA.
Results are expressed as mean 6 SEM (n = 4, * p,0.001 vs. basal
without CpdA, ** p,0.001 vs. P+I without CpdA) of one representative
experiment of three independent experiments with similar results.
doi:10.1371/journal.pone.0035155.g003
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binding to a palindromic GRE [33]. Mutagenesis studies of the

GR DBD showed that disruption of the D-loop abolishes the

ability of GR to dimerize, thus inhibiting GC-mediated activation

[34]. On the other hand, a GR mutant harboring a point mutation

in the second zinc finger of the DBD was unable to repress

stimulated NF-kB but still could activate target genes through

GREs suggesting that activation and transrepression are separate

phenomena. As mentioned before, S425G DBD mutant has a

serine to glycine substitution at position 425, which removes a

hydroxyl group supposed to alter bondings between the zinc finger

domain and other proteins such as T-bet [26]. Our finding that

the first zinc finger of the DBD is important for CpdA and GC-

mediated inhibition of T-bet activity strongly suggests that this

region is essential for transrepression between the GR and T-bet.

IFN-c is a strong activator of inflammatory responses and

cellular immunity. Studies of the IFN-c gene promoter have

shown that T-bet elements play an important role in the induction

of transcription and production of this cytokine [21,24,35,36]. It

has been previously reported that CpdA inhibits IFN-c mRNA

expression and cytokine production in spinal cord and total

Figure 4. Compound A induces GATA-3 transcriptional activity by signaling through p38 MAPK. A, EL4 cells were transfected with 9 mg
of a reporter plasmid, which contains GATA-3 response elements upstream of the luciferase gene (GATA-RE-Luc) and with 9 mg of GATA-3 and GR
expression vectors. After 16 h, cells were stimulated for 5 h with Compound A (CpdA, 1, 5 and 10 mM), Dexamethasone (Dex, 10 nM), cAMP (0.3 mM)
and with the GR specific antagonist RU38486 (1 mM). n = 6, * p,0.001 vs. GATA-3 without CpdA and cAMP, ** p,0.001 vs. GATA-3 with cAMP and
without CpdA. B, Lysates obtained from transfection experiments performed under similar conditions as mentioned above, were analysed by Western
Blot. GAPDH was used as loading control. C, EL4 cells were transfected with 9 mg of GATA-RE-Luc reporter and with 9 mg of GATA-3 and GR
expression vectors. After 16 h, cells were stimulated for 5 h with CpdA (10 mM) and cAMP. Also, EL4 cells were pretreated during 1 h with the p38
MAPK inhibitor, SB203580 (10 mM). n = 6, * p,0.001 vs. GATA-3 without cAMP and CpdA, ** p,0.001 vs. GATA-3 with cAMP and without CpdA,
*** p,0.001 vs. GATA-3 with cAMP and CpdA. D, EL4 cells were transfected with 9 mg of GATA-RE-Luc reporter and 9 mg of GATA-3, GR and p38
MAPK expression vectors. After 16 h, cells were stimulated for 5 h with CpdA and cAMP. n = 6, * p,0.001 vs. GATA-3 without cAMP and CpdA, **
p,0.001 vs. GATA-3 with cAMP and without CpdA, *** p,0.001 vs. GATA-3 with cAMP and p38. E, EL4 cells were transfected with 20 mg of the GR
expression vector. After 16 h, EL4 cells were pretreated during 30 minutes with CpdA and then with cAMP during 25 minutes. Cell lysates were
prepared for Western Blot analysis against phospho-p38 (p-p38) MAPK. GAPDH and total p38 signals were used as loading controls. Lower panel: NIH
Image semiquantification. F, EL4 cells were transfected with 9 mg of pFA-ATF2 and 9 mg of pG5-Luc reporter plasmid, and the GR expression vector.
After 16 h, cells were stimulated for 5 h with CpdA and cAMP. Also, EL4 cells were pretreated during 1 h with the p38 MAPK inhibitor, SB203580. n =
6, * p,0.001 vs. basal without cAMP and CpdA, ** p,0.001 vs. cAMP without CpdA, *** p,0.001 vs. cAMP and CpdA. For all the transfections
experiments, results, as folds, normalized to b-galactosidase activity, are expressed as mean 6 SEM, averaged from three independent experiments.
doi:10.1371/journal.pone.0035155.g004
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splenocytes from mice with EAE [9] and also the mRNA

expression in lymph nodes of rats with EAN [8]. Our data add

onto these observations by demonstrating the inhibitory effect of

CpdA on PMA and Ionomycin-stimulated IFN-c production in

purified CD4+ T cells. Moreover, we continue to show that the

underlying molecular mechanism of IFN-c gene inhibition

following selective GR modulation involves the inhibition of T-

bet activity. Considering the previously reported inhibition of NF-

kB by CpdA [4], we speculate that other TFs besides T-bet, such

as NF-kB, may also be involved and may contribute to the

inhibition of IFN-c cytokine production by CpdA. If we consider

that IFN-c is a major activator of macrophages and that CpdA

inhibits IFN-c production by T cells, the inhibitory effect of CpdA

on macrophage-mediated inflammatory responses may be rein-

forced by the inhibition of IFN-c production and therefore may

further favor the resolution of inflammation.

Upon investigating the effect and functional consequences of

CpdA on the activity of the Th2 key TF GATA-3 we found that

CpdA induces GATA-3 activity on its own GATA-3 response

elements. GR specificity was guaranteed by showing that the

CpdA effect could be reversed by the synthetic antagonist

RU38486 that acts as a competitor for binding to GR.

GCs inhibit GATA-3 activity by inhibition of p38 MAPK-

mediated GATA-3 phosphorylation and hindering its nuclear

translocation [27,28]. Bearing this in mind, we studied the effect of

CpdA on p38 MAPK signaling and its subsequent effect on

GATA-3 activity. Using the p38 MAPK inhibitor SB203580, we

showed that CpdA induces GATA-3 transcriptional activity by

induction of p38 MAPK phosphorylation. Intracellular increments

of cAMP levels are associated with an augmentation of Th2

cytokine production via GATA-3 and PKA activation [20].

Therefore we performed transfection and Western Blot experi-

ments using the heat stable inhibitor of the PKA (PKI) or the PKA

inhibitor H89 and demonstrated that CpdA induces GATA-3

activity independently of PKA (data not shown). CpdA induction

of p38 MAPK phosphorylation is mediated by the GR because

pre-incubation with RU38486 reversed this effect (data not

shown). In addition, Western Blot experiments using a specific

antibody against phosphorylated GATA-3 show that CpdA

strongly induces GATA-3 phosphorylation.

GCs induce the expression of mitogen-activated protein kinase

(MAPK) phosphatase-1 (MKP-1), the endogenous inhibitor of p38

MAPK, which is necessary for GATA-3 nuclear translocation

[27,28]. To study whether the induction of p38 MAPK by CpdA

could be due to the inhibition of MKP-1 expression, we checked

the levels of endogenous MKP-1. These experiments however

showed that MKP-1 protein levels are not affected by CpdA (data

not shown). This is in accordance with previous results showing

that MKP-1 expression on primary microglia and astrocytes is not

affected by the addition of CpdA [9]. We also tested the possibility

that the mitogen- and stress-activated protein kinase- 1 (MSK1),

which has been shown to be activated by p38 MAPK and

inhibited by GC [37], was implicated in CpdA induction of

GATA-3 phosphorylation. However, no MSK1 induction was

found in CpdA-stimulated EL4 cells (data not shown).

Because GATA-3 directly controls the expression of IL-5 gene,

by binding to elements on the –70 to –59 region [38] on its

minimal promoter, we used as a readout of CpdA effect on

GATA-3 activity the IL-5 promoter. We describe for the first time

that selective modulation of GR, by means of the transrepression-

favouring GR modulator CpdA, strongly induces IL-5 gene and

cytokine production via an enhancement of the activation of

GATA-3. We show that CpdA induces GATA-3 activity, driving

the IL-5 promoter. The addition of SB203580 inhibits this

induction, again suggesting an involvement of the p38 MAPK

pathway. GATA-3 binding site mutations in the IL-5 promoter

further confirm that GATA-3 is a likely target of CpdA, and is

needed in order to enhance the activity of this promoter. The

mechanism described here does not rule out that in a full

physiological promoter context additional indirect effects may

occur. For example, a combination of CpdA-mediated induction

of other kinase pathways implicated in GATA-3 phosphorylation

or in p38 MAPK induction such as the upstream MAPK kinases

MKK3 and MKK6 [39], an interaction with other TFs involved

in the transcriptional complex of GATA-3, a recruitment and

activation of other TFs to the IL-5 promoter [40] or even a

recruitment of co-activators by GR may all contribute to the

overall induction of IL-5 gene.

In lymph nodes of rats with EAN, CpdA inhibits mRNA

expression of the IFN-c gene and at the same time induces Th2-

type cytokines expression [8]. In line with this observation, our

data showing that CpdA inhibits T-bet activity which impacts on

IFN-c gene, and at the same time induces GATA-3 mediated

Th2-type cytokine production, may contribute to provide a

molecular understanding for the previously described immuno-

suppressive action of CpdA in EAN.

Summing up, CpdA directly inhibits T-bet activity and IFN-c
production. On the other hand, considering the mutual inhibitory

action between T-bet and GATA-3 [14,17,25,41], the inhibition

Figure 5. Compound A induces GATA-3 phosphorylation and
nuclear translocation. A, EL4 cells were transfected with 15 mg of the
GR and 15 mg of GATA-3 expression vectors. After 16 h in culture, EL4
cells were pretreated during 30 minutes with or without Compound A
(CpdA, 10 mM) and then treated under basal or activated conditions
using cAMP (0.3 mM) during 25 minutes. Cell lysates were prepared for
Western Blot analysis against phospho-GATA-3 (p-GATA-3) (bands of
55 kDa). Total GATA-3 signal was used as loading control. One out of
three independent experiments with similar results are shown. B, EL4
cells were transfected with 15 mg of the GR and 15 mg of GATA-3
expression vectors. After 16 h in culture, EL4 cells were pretreated
during 30 minutes with or without CpdA (10 mM) and then treated
under basal or activated conditions using cAMP (0.3 mM) during 25
minutes. Cell nuclear and cytoplamic extracts were prepared for GATA-3
analysis by Western Blot. Histone H3 and GAPDH signals were used as
nuclear and cytoplasmic extracts control respectively. One out of three
independent experiments with similar results are shown.
doi:10.1371/journal.pone.0035155.g005
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of the Th1 profile by CpdA may be reinforced by inducing

GATA-3 and Th2-type cytokine production, which in turn may

further inhibit Th1 development. T-bet is known for its important

role in inflammation and autoimmune disorders such as

Inflammatory Bowel Disease, Multiple Sclerosis, Inflammatory

Arthritis and Diabetes [42]. Therefore, CpdA-mediated inhibition

of the Th1 phenotype may be helpful to understand the anti-

inflammatory role reported for CpdA in many of these diseases

and holds potential for the application of novel drugs which retain

CpdA-like characteristics in other inflammatory and Th1-

mediated autoimmune disorders. Indeed, although CpdA is not

druggable as such, its molecular regulation of GR activities

presents important insights on GR biology in immune regulation,

and confidence that the dissociative ligand hypothesis remains of

great value. However a clinical application of CpdA-like molecules

for the treatment of inflammatory and Th1-mediated autoimmune

diseases must be carefully studied taking into account the

association of GATA-3 and IL-5 with allergic diseases such as

asthma pathogenesis. Therefore, a balance considering the

reduction of T-bet-mediated autoimmune and inflammatory

responses together with the induction of Th2 responses should

be considered while setting up the clinical use of GR-ligands that

harbor similar characteristics as CpdA.

Materials and Methods

Splenocytes and Cell Line Cultures
Studies employing animals were conducted according to the

NIH guidelines and were approved by the Animal Research and

Care Committee (CICUAL # 2009/044) at the School of Exact

and Natural Sciences, University of Buenos Aires.

Spleens were removed aseptically from naive BALBc mice and

dispensed through a metal mesh in order to obtain single-cell

suspensions. Splenocytes were resuspended at a density of 2.5 6
106 cells and plated in 6-well plates. Purification of T cells was

achieved as described [26,27] using a nylon wool column.

Monocyte contamination was verified to be less than 1%. Purity

of the cell population was assayed by immunofluorescence using

specific monoclonal antibodies (Serotech Laboratories Limited,

Toronto, Canada) [26]: CD2, CD4, CD8, CD14, CD19, and

Figure 6. Compound A inhibits IL-5 promoter activity and cytokine production. A, EL4 cells were cotransfected with 9 mg of IL-5-Luc
reporter plasmid plus 9 mg of GR and GATA-3 expression vectors. After 16 h, cells were stimulated for 5 h with CpdA (10 mM) and cAMP. Also, EL4
cells were pretreated during 1 h with p38 inhibitor, SB203580 (10 mM). n = 6, * p,0.001 vs. GATA-3 without cAMP and CpdA, ** p,0.001 vs. GATA-3
with cAMP and without CpdA, *** p,0.001 vs. GATA-3 with cAMP and CpdA, # p,0.001 vs. GATA-3 with cAMP and SB203580 and without CpdA. B,
EL4 cells were cotransfected with 9 mg of the wild-type or GATA-3 mutated-binding site on the IL-5 promoter (IL-5-Luc-WT and IL-5-Gm-Luc) plus
9 mg of GR and GATA-3 expression vectors. After 16 h, cells were stimulated for 5 h with CpdA and cAMP. n = 6, * p,0.001 vs. GATA-3 without cAMP
and CpdA on IL-5-Luc WT, ** p,0.001 vs. GATA-3 with cAMP and without CpdA on IL-5-Luc WT, *** p,0.001 vs. GATA-3 with cAMP and CpdA on IL-5-
Luc WT, # p,0.05 vs. GATA-3 with cAMP and without CpdA on IL-5-Gm-Luc. C, A20 cells were cotransfected with 9 mg of IL-5-Luc reporter plus 9 mg
of GR and GATA-3 expression vectors. After 16 h, cells were stimulated for 5 h with CpdA and cAMP. n = 6, * p,0.001 vs. basal, ** p,0.001 vs. GATA-
3, *** p,0.001 vs GATA-3 with cAMP. D, Purification of T cells was achieved as described in Materials and Methods. Cells were activated with PMA (P),
Ionomycin (I) and cAMP during 24 h and then with CpdA for 5 h. Supernatants were used to measure mouse IL-5 by ELISA. n = 4, * p,0.05 vs. basal
without P+I, ** p,0.001 vs. P+I without cAMP, *** p,0.001 vs. P+I and cAMP, of one representative experiment of three independent experiments
with similar results. For the transfections experiments, results, as folds, normalized to b-galactosidase activity, are expressed as mean 6 SEM,
averaged from three independent experiments.
doi:10.1371/journal.pone.0035155.g006
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CD45, which define antigens on T cells/NK cells, Th lympho-

cytes, T cytotoxic/suppressor cells, monocytes/macrophages, B

cells and leukocytes (leukocyte common antigen), respectively.

Where indicated, these purified murine T cells were further

purified by FACS (FACSAriaII, Becton Dickinson, San Jose CA)

using anti-CD4 antibody (BD Pharmingen, San Jose, CA) to 95–

99% of purity. To determine cytokine secretion cells were seeded

and stimulated at the beginning of the culture with 10 ng/ml

PMA, 500 ng/ml ionomycin (I) for 24 h and then incubated with

10 mM CpdA for 6, 12 or 24 h. Cytokines were measured

according to the manufacturer’s instructions by ELISA (Pierce

Biotechnology Inc. Rockford, IL).

The murine cell line EL4, extensively used for studies with these

Th TFs [20,26,27,43] was obtained from Dr. N.W. Zwirner

(Department of Microbiology, Parasitology and Immunology,

School of Medicine, University of Buenos Aires, Buenos Aires,

Argentina) and were treated, where indicated, with 10–100 nM

Dex (a synthetic GC) or 0.1–10 mM CpdA and 10 ng/ml PMA,

500 ng/ml I, and/or 0.3 mM cAMP (all, except CpdA, from

Sigma Chemical Co., St. Louis, MO). Transfection experiments

were also repeated in human Jurkat T cells and the A20 mouse B

lymphoma cell line, both obtained from Dr. Mirta Giordano

(Department of Immunology, Institute for Hematologic Research,

National Academy of Medicine, Buenos Aires, Argentina).

CpdA was synthesized as described by Louw et al. [44]. CpdA

was lyophilized and stored at 270uC.

Some experiments were performed in the presence of the

specific GR antagonist RU38486 (Sigma Chemical Co., St. Louis,

MO) (1 mM), added 30 minutes before the addition of GCs, to

prove ligand-specific interactions with the ligand-binding domain

of GR.

For analysis of MAPK activation, cells were incubated with or

without the PKA inhibitor H89, the p38 inhibitor SB203580, the

MEK-1 inhibitor PD98059 and c-Jun NH2-terminal kinase (JNK)

inhibitor SP600125 (10, 20 and 40 mM) (Calbiochem, San Diego,

CA) for 1 h before stimulating with cAMP.

Plasmids and transfection assays
The plasmid constructs were kindly provided and previously

described as follows: the murine IL-5 promoter (which contains

the –1200 to +33 sequence from the IL-5 gene) coupled to the

luciferase reporter vector, was provided by Dr. T. Yokota [45] (IL-

5-Luc); the murine wild-type IL-5 promoter (2120 to +44) and

mutated on the GATA-3 binding site, were provided by Dr. E.

Serfling [46] (IL-5-Luc-WT and IL-5-Luc-Gm); the murine

GATA-3 expression vector, obtained from Dr. J. Leiden [11]

(pcDNA3-GATA-3); the reporter gene vector carrying GATA-3

response elements, coupled to the luciferase reporter vector, was

provided by Dr. A. Ray [18] (GATA-RE-Luc); the human GR

expression vector subcloned in a cytomegalovirus promoter

(CMV)-hGR and the CMV-b-galactosidase were supplied by

Dr. D. Spengler [47]; the p38 MAPK expression vector (pcEFL-

p38), the chimera pG5-Luc/ATF-2 and the catalytic subunit of

PKAc was provided by Dr. O. Cosso and Dr. T. Tanos [48,49];

the heat stable inhibitor of the PKA (PKI) was provided by Dr. R.

Mauer [50]; the murine IFN-c promoter was provided by Dr. H.

S. Fox [51] and was subcloned into the pGL3-Basic luciferase

reporter vector (Promega, Madison, WI) [26] (IFN-c-Luc); murine

pJG4.5mT-bet, obtained from Dr. L. H. Glimcher [21], was

subcloned into the pcDNA3 expression vector (Invitrogen,

Carlsbad, CA) [26] (pcDNA3-T-bet); the T-bet binding sites

[21] subcloned into the pTATA-GL3-Basic luciferase reporter

vector (Promega, Madison, WI) was obtained as previously

described [26] ((T-bet-RE)3-Luc); the TK-GRE2-Luc promoter,

was supplied by Dr. D. Spengler [47]; the wild-type human GR

(phGR-SB) and its GR DNA-binding domain (DBD)-derived

mutants A458T and S425G, were provided by Dr. A. C.B. Cato

[30], the construct containing the multimerized NF-kB-binding

sites linked to a minimal promoter upstream of the luciferase gene

(kB-Luc promoter) was previously described [52].

Transfection of EL4, Jurkat and A20 cells (56107 cells/ml) was

performed by electroporation, as previously described [26,27].

Cells were washed with PBS and extracts were prepared with

reporter lysis buffer (Promega, Madison, WI). After treatments,

cells were harvested and luciferase activity was measured as

previously described [26,27], using the Luciferase measure kit

(Promega, Madison, WI) with a Junior luminometer (Berlthod,

Bad Wildbad, Germany). CMVhGR expression vector was

cotransfected in EL4 cells in order to make them responsive to

GCs. In all cases, cells were cotransfected with the RSV-b-

galactosidase plasmid expression vector, used as control for

transfection efficiency to standardize the results. Lysates from

the transfections were also analyzed by Western Blot as described

below.

Western Blot Assays
Following the appropriate inductions, cells were washed once

with PBS (pH 7.0), and lysates were prepared as previously

described [26,27]. The membranes were incubated with the

mouse monoclonal anti-GATA-3 antibody (200 ng/ml) (Santa

Cruz Biotechnology, Santa Cruz, CA), anti-phospho-GATA-3

antibody (Abcam Inc, Cambridge, UK) (dilution: 1:500), followed

by incubation with HRP-conjugated specific secondary antibodies

(dilution: 1:3000) (Bio-Rad Laboratories, Hercules, CA), and

detection was performed with the ECL kit according to the

manufacturer’s instruction (Pierce Biotechnology, Rockford, IL).

The anti-GAPDH antibody (dilution: 1:10000) (Abcam Inc,

Cambridge, UK) was routinely used as a loading control. Anti-

histone H3 antibody (dilution: 1:20000) (Millipore, Billerica, MA)

was used as a control for the efficiency of the nuclear fractionation

and the anti-GAPDH antibody (dilution: 1:10000) (Abcam Inc,

Cambridge, UK) as a cytoplasmic fractionation control. To

separate nuclei from cytoplasm, we proceeded as previously

described [27]. To separate nuclei from cytoplasm, 1 6 107 cells

were washed in ice-cold phosphate-buffered saline and incubated

for 10 min on ice in 200 ml of buffer A containing 10 mM

HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM dithio-

threitol, 2 mM orthovanadate, 0.5 mM phenylmethylsulfonyl

fluoride and protease inhibitor cocktail (Roche Diagnostics,

Mannheim, Germany). At the end of the incubation, a 0.1 volume

of 1% Nonidet P-40 was added and lysates were centrifuged at

3000 xg for 5 min. Supernatants were collected and used as

cytoplasmic extract. Pelleted nuclei were resuspended in 50 ml of

lysis buffer containing 20 mM HEPES, pH 7.9, 25% v/v glycerol,

420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM dithio-

threitol, 2 mM orthovanadate, 0.5 mM phenylmethylsulfonyl

fluoride and protease inhibitor cocktail (Roche Diagnostics,

Mannheim, Germany). After incubation for 30 min at 4uC with

vigorous shaking, nuclei were centrifuged at 12000 xg for 10 min

and the supernatants were collected and used as nuclear extract.

To analyze MAPK activation, blots were incubated with rabbit

anti-phospho-p38 (p-p38) (Thr180/Tyr182) and rabbit anti-pan-

p38 antibodies (dilution: 1:1000) (Cell Signaling, Beverly, MA).

Statistics
Statistics were performed by ANOVA in combination with the

Scheffés test. Data are shown as mean 6 SEM.
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