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Abstract

Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions.
Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against
Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we
developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered
experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their
posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses
a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer
and T Cells together with the interpheron (IFN)-c and tumor necrosis factor (TNF)-a levels in the media culture. Fast and
complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the
immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the
Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte
Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the
evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells.
Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-
c levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect
of CD137 signaling on TNF-a production were based on a decrease of TNF-a production by APC and, perhaps, on the
increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during
human response against Mycobacterium tuberculosis.
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Introduction

Tuberculosis is one of the earliest recorded human diseases that

still poses an unresolved global health problem. Mycobacterium

tuberculosis (M.tb), the causative agent of tuberculosis, results in 2

million deaths annually worldwide despite available treatment.

Furthermore, approximately one-third of the world population is

estimated to be infected with M.tb (WHO, 2010).

Although the immunological mechanisms against M.tb are not

fully understood, protective defense against mycobacterial infec-

tions is primarily mediated by the interaction of antigen-specific T

cells and macrophages [1,2]. This interaction often depends on the

interplay of cytokines produced by these cells.

Even though a wide spectrum of cytokines may contribute to

protection, a type 1 response, dominated by interferon (IFN)-c
secretion, is considered the main mediator of the protective

immunity against M.tb [2,3]. IFN-c activates macrophages to

become effector cells that express microbicidal substances and

cytokines, with tumor necrosis factor a (TNF-a) playing a funda-

mental role in controlling the mycobacterial infection [4–5]. While

the protective role of IFN-c in tuberculosis is well established [2]

[6], TNF-a exhibits a very complex network of interactions and

many of its functions are still not fully understood [7]. In spite of

the major role TNF-a plays a major role in controlling M.tb

infection, activating macrophages early during the immune

response and participating in granuloma formation [8,9], excessive

levels of TNF-a may cause tissue damage in vivo, including

hyperinflammation and caseous necrosis [7].

Several signaling proteins modulate the levels and pattern of

cytokines produced by immune cells upon M.tb antigen (Ag)

stimulation [10–12]. In particular, we have demonstrated a key

role of CD137 (4–1BB) in modulating human cytokine responses

against M.tb. CD137 is a TNFR related superfamily signaling

molecule that regulates the effector functions of most types of

immune cells [13,14]. We have previously shown that signaling

through the CD137:CD137 ligand (L) pathway interfered with

IFN-c and TNF-a secretion by innate immune cells, while

boosting T cell effector functions during tuberculosis [15].

However, these results did not provide a definite answer on the
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nature of the mechanisms of CD137 signaling. Therefore, we

sought to develop a Bayesian Computational Model (BCM) in

orfer to further our understanding of the mechanisms of this

pathway. This BCM allowed us to fit previously gathered

experimental data. By using the BCM we could predict the

dynamics of Antigen Presenting Cells (APC), Natural Killer (NK)

and T Cells together with the IFN-c and TNF-a levels in the

media culture. Bayes factors provided decisive evidence favoring

direct CD137 signaling on T cells. Futhermore, the posterior

distribution of the parameters that predicted that CD137

modulation on IFN-c levels is based more on its effect on T cell

survival than on direct induction of the cells. Besides, TNF-

a regulation by CD137 was based on a reduction in TNF-

a production by APC and, perhaps, on the increase in APC

apoptosis. BCM proved to be a useful tool to gain insight on the

mechanisms of CD137 signaling during human response against

Mycobacterium tuberculosis.

Classical immunology uses conceptual models to make predic-

tions and draw conclusions from experimental data, relying on the

expert criteria of the researcher. Computational models arise from

the formalization of those conceptual models and the expert

criteria in a set of defined rules operating on simplified

representations of the immunological process.

A BCM is meant to fit a set of actual experimental

measurements. The probability function of the experimental

observations is obtained using the error rate of the provided

measurements. BCMs formalize the link between a qualitative

hypothesis and experimental data. Our BCM applies successively:

1) the Euler method to solve the set of ordinary differential

equations (ODE) that model the system to predict the outcome of

the experiments, 2) the Square Sum of normalized residuals that

compare predicted and measured values to calculate the posterior

likelihood; 3) the Levenberg-Marquardt algorithm (LMA) to find

the parameter that maximizes the posterior likelihood; 4) the

Metropolis Markov Chain Monte Carlo method (MCMC) to

sample from the posterior distribution of the parameters and 4)

Thermodynamic Integration to calculate the evidence of alterna-

tive hypothesis about the signaling mechanism.

Here we present a parameterized BCM of a set of previous

experiments performed to investigate the CD137 signaling

pathway in tuberculosis and to gain an insight into the possible

mechanisms of this pathway.

Materials and Methods

Experimental Data
The experimental rationale consists in studying the role of

CD137 in the context of tuberculosis by using an anti-CD137

blocking monoclonal antibody (mAb) during proliferation, apo-

ptosis and cytokine production. Most of the experimental data

were from our previous work [15], with some additional kinetics

results included here.

Study Subjects
BCG vaccinated healthy adults (n = 40) with no history of

tuberculosis participated in the study. Quantiferon TB Gold In-

TubeH test (Cellestis INC, Valencia, CA, USA) was used to

differentiate true healthy donors (HD) from individuals with

latent tuberculosis, which were excluded from the study. HIV-

negative patients (n = 40) with active tuberculosis (TB) were

evaluated at the Hospital Muñiz (Buenos Aires, Argentina). The

diagnosis of tuberculosis was established based on clinical and

radiological data together with the identification of acid-fast

bacilli in sputum. All participating patients had received ,1

week of anti-tuberculosis therapy. Peripheral blood samples were

collected in heparinized tubes from all individuals after receiving

informed consent. The local ethical committee approved all the

studies performed.

Antigen
In vitro stimulation of cells throughout the present study was

performed with a cell lysate from the virulent M. tuberculosis H37Rv

strain (obtained through BEI Resources, NIAID, NIH: Mycobac-

terium tuberculosis, Strain H37Rv, Whole Cell Lysate, NR-14822)

prepared by probe sonication. The antigen (Ag) preparation is

indicated as ‘‘ M. tb Ag’’ throughout the manuscript.

Culture Conditions
PBMC were isolated by density gradient centrifugation on

Ficoll-Paque (Amersham Biosciences), resuspended in supple-

mented RPMI1640 and cultured (16106 cells/ml) in flat-bottom

24-welll or 96-well plates. In different experiments, cells were

incubated in the presence/absence of M.tb Ag (10 mg/ml). At

different times, CD137 and CD137L expression was determined

by flow cytometry. For blocking experiments, cells were

incubated 30 minutes with blocking mAbs (BD) against

CD137, CD137L, or isotype control. Then, cells were

stimulated with or without M.tb Ag. After 16 h, 4 or 5 days,

the percentage of IFN-c or TNF-a-secreting cells, lytic de-

granulation and apoptosis were determined by flow cytometry.

For proliferation determination, cells were pulsed with [3H]TdR

(1 mCi/well), harvested 16 h later and [3H]TdR incorporation

was measured in a liquid scintillation counter. In separate

experiments, mAbs anti-CD137 or anti-CD137L were added to

cells with or without the specific Ag. After 16 h, 48 h or 5 days,

IFN-c and TNF-a production was evaluated by ELISA

following the manufacturer’s instructions (eBioscience).

Flow Cytometry
In different experiments, PBMC were cultured with M.tb Ag 6

CD137 or CD137L blocking mAbs and stained for CD3, CD4,

CD8, CD56, CD14, CD137, CD137L expression using specific

mAbs (BD). Intracellular cytokine staining was also performed to

determine IFN-c and TNF-a (eBioscience) production at the

single-cell level as reported [16]. CD107a/b lysosome-associated

membrane protein-1/2 expression was used to measure CD8+ T

lymphocyte degranulation, as previously described [17]. In all

cases, negative control samples were incubated with irrelevant,

isotype-matched mAbs in parallel with the experimental samples.

For apoptosis analysis, after 5 days of culture, the percentage of

apoptotic/necrotic CD3+, CD3+CD4+ or CD3+CD8+ cells was

determined using the Annexin V-FITC Apoptosis Detection Kit I

(BD) following the instructions of the manufacturer.

Bayesian Computational Model
The parameterized BCM was developed for the prediction of

the previously described experiments. To build the BCM, we

identified the relevant elements of the biological process that are

needed to fit the experimental data based on the prior

knowledge of the system. We included only the variables for

which we have experimental data, excluding those cell types or

cytokines for which we have not. The Bayesian approach

implies that one must ‘‘forget’’ about the information present in

the results we want to fit. In this way, the amount of

information present in the experiments that was not present

in the prior information can be quantified.

Bayesian Model of CD137 Signaling in Tuberculosis
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Simulation of the Experimental Results and Calculation of
their Likelihood

The BCM is fed with the experimental data with their standard

errors and, for a given vector of parameters, it simulates the results

and calculates the vector of the normalized residuals. Each

normalized residual eyi is obtained by taking the difference

between the simulated and the experimental datum and dividing

it by the experimental measurement error:

eyi bð Þ~ yi bð Þ{yi

syi
ð1Þ

where yi(b) indicates the predicted value of the ith observation as

a function of the parameter vector b(explained below); yi indicates

the actual measurement and syi indicates the standard error of the

ith measurement. The parameter likelihood is evaluated via:

logLik bð Þ~{
1

2
: SSdata bð Þ{

Xn
i

log 2:p:syi
2

� � !
ð2Þ

where, SSdata, the squared sum of the residuals, is defined as

SSdata bð Þ~
Xn
i

eyi bð Þ
� �2

; ð3Þ

The predicted values arose from the numeric approximation of

a set of 17 nonlinear ordinary differential equations each one

describing the time evolution of a particular variable of the

idealized experimental system:

Lsi tð Þ
Lt

~fi s tð Þ,bð Þ ð4Þ

where b is a vector comprising 77 parameters. The system

variables include the number of cells in each state of the three

modeled cells types and the levels of cytokines and Ag. The initial

state of the system variables is also dependent on some

components of the parameter vector:

si 0ð Þ~hi bð Þ ð5Þ

This system of ODE equations (4) and the initial values of the state

variables (5) are presented in the Supporting Information

(Equations S1–S17 in Supporting Information S1). We took

special care in choosing the variables and parameters so that each

one represents an actual biological process. We only included one

phenomenological variable, the proliferation ratio, which repre-

sents the cell capacity of the system.

Additional equations are used to relate the system variables with

the expected value for each experimental data: the percentage of

receptor/ligand expression for the included types of cells, the levels

of IFN-c and TNF-ain the media culture, the percentage of IFN-c
and or TNF-a-secreting cells, the apoptosis for T-cells and the rate

of [3H]TdR incorporation by PBMC:

yi bð Þ~gi s ti,bð Þ,bð Þ ð6Þ

These equations are presented in Supporting Information S1

(R1–R14).

The ODE system of our BCM was constructed after the M.tb-

immune system model developed by Marino [18]. We included

NK cells and developed an approach for simulating co-stimulation

and competition for receptor binding between the ligand and the

anti-CD137 blocking mAb.

Simulations were performed for three different virtual treat-

ments: first, the ‘‘M.tb treatment’’; second, the ‘‘Blocking

treatment’’ (M.tb+a-CD137) and finally, the ‘‘Media treatment’’

(control experiments).

From the point of view of plausible reasoning, the prior

distribution of parameter values measures our knowledge (or

ignorance) about the system. Therefore, we used experimental

data obtained from different experimental contexts (including

several models in vivo and in vitro) and/or theoretical considera-

tions to determine the prior distribution of the BCM parameters

(Table S1 in Supporting Information S1).

Parameters that indicate the scale magnitude of some property

are better described after a logarithmic transformation, where

equivalent uncertainties of scale are represented by adding or

subtracting the same constant [19]. Alternatively, in the case of

parameters describing ratios (the ratio of each type of cells in

PBMC, the ratio of cells expressing the receptor, the ratio of cells

producing cytokines), we chose a slightly different transformation

to linearize uncertainty. We presumed that the mechanism

responsible for ratio, r, could be modeled as a first order

equilibrium constant, r = E/(1+E), hence E= r/(12r). Therefore,

for these parameters we applied a logit transformation, log(-

r)2log(12r). In both cases, we describe our ignorance of the exact

parameter values with a normal distribution of the logarithmic

transformation of the parameters. The normal distribution is the

probability density function that maximizes the entropy when only

the mean and variance are known [19].

The solution of the ODE system was numerically approximated

implementing the Euler method or the forth order Runge Kutta

method in C++. Each one of the differential equations S1–S17 in

Supporting Information S1 was approximated by assuming that all

the state variables remained constant during each time step. Time

steps of 6 seconds were used, since all the modeled biological

processes occur in longer time scales. As those time scales were also

longer that the mixing time of the system, we did not take into

account local variations in the concentrations of the different

components of the system. Instead, we approximated the evolution

of the system as if there were an instantaneous and complete

mixing of cells and cytokines. We modeled the evolution of a single

average value for each state variable. This approximation, taking

spatial structure out of the model, allowed for a considerable

reduction in computational time and coding efforts.

Our model included three types of cell populations: Antigen

Presenting cells (APC class), NK cells (NK class) and T cells (T

class). We have previously demonstrated that CD137 and

CD137L are both expressed on APC and NK cells, while only

CD137 is expressed in lymphocytes after in-vitro M.tb stimulation

[15]. To simplify the model, APC and NK are set to express the

ligand and receptor simultaneously on the same cell, since it was

reported that a receptor and ligand can be expressed on the same

innate immune cell [20–21]. However, the implication of a single

cell expressing both the ligand and the receptor and the immune

outcome of bidirectional signaling by CD137/CD137L are not

well understood [14]. Because the literature provides more

evidence for reverse rather than direct signaling in monocytes,

we only included the reverse signaling in these cells [22,23]. On

the other hand, we included only direct receptor signaling in NK

Bayesian Model of CD137 Signaling in Tuberculosis
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and T cells, as there is no evidence for reverse signaling in these

cell types. We modeled CD137 or CD137L signaling as a single

instantaneous event.

CD137L stimulation in human monocytes has been shown to

induce DC differentiation, with CD137L-DCs being more potent

in stimulating T cell responses in vitro than the classical DCs.

Taking into consideration these findings and the fact that we only

had experimental data in CD14+ cells, we captured monocytes,

macrophages and dendritic cells as a single APC population. Their

importance lies in that macrophages are the preferred habitats of

M.tb [24], and DCs are the major antigen presenting cells [25,26].

During a persistent infection such as tuberculosis, CD137 and

CD137L expression can be prolonged, therefore our model did

not describe receptor internalization [14].

Because our focus was on the cytokine responses, we only

included CD56bright natural killer cells (NKbright) as they are the

most efficient cytokine producers among NK populations [27].

Additionally, we excluded cytotoxic CD56dim natural killer cells

(NKdim) and CTL function in T cells. Finally, the entire T cell class

(TL) captures both the CD4 and CD8 proinflammatory T cell

subsets.

APC Dynamics
We described five different APC subpopulations (Figure 1,

Equations. S1–S5 in Supporting Information S1): resting (A0),

activated (Aa), activated and signalized through CD137 (As),

activated and bound to anti-CD137 blocking mAb (AAb), and

activated, signalized through CD137 and bound to anti-CD137

blocking mAb (As_Ab).

A0 includes circulating undifferentiated monocytes and imma-

ture dendritic cells. Upon interaction with M.tb, dendritic cells

undergo a number of phenotypical changes, a process termed

maturation [26]. TNF-a and IFN-c are also required for

macrophage activation by the antigen [28]. Therefore, in our

model the resting APC undergoes activation by the antigen uptake

in a TNF-a and IFN-c independent (DC, term K(AxAg)) or

dependent (monocytes, term K(AxAg)ac) manner. Thus, loss of A0

was modeled with the A0 antigen uptake and natural death at

a rate of mA0 (Equation (Eq.) S1 in Supporting Information S1).

We defined natural cell death as all processes that end up in cell

death with the exclusion of TNF-a dependent apoptosis. A small

A0 fraction expresses receptor and ligand and produces basal levels

of cytokines. This model included only classical macrophage

activation.

Eq.S2 in Supporting Information S1 describes the Aa dynamics,

showing a balance between APC Ag uptake (production of Aa),

natural death (mAa) and TNFa-induced apoptosis (maA). Since we

focused on CD137 signaling, the rate parameters describing

cytokine production, proliferation and apoptosis were defined for

two types of activated cells depending on whether they are

signalized by CD137 (As,As_Ab) or not (Aa, AAb).

CD137 is expressed by primary monocytes in an activation

dependent manner [29]. We assume that while all activated APC

express ligand and receptor and produce TNF-a, only a fraction

produce IFN-c. There have been previous works showing that

CD137 pathway induces activation, migration, survival, and

differentiation on monocytic cells (monocytes, macrophages, and

DCs) [23] [30]. However, it also seems likely that CD137 could

play different roles depending on the infecting bacterial species. In

fact, it has been proposed that CD137 plays opposite roles in

Gram-negative and Gram-positive bacterial infections [31].

Therefore, in our model the initial guess for induction of apoptosis

(ImA), and cytokine secretion (IaA IcA) by CD137 may be either

positive or negative.

Preliminary results using cultures of purified monocytes

stimulated with lysate of M.tb Ag, suggested that CD137 interacts

with CD137L, both expressed on APC, causing a decrease in

TNF-a secretion. It was also demonstrated that APC and NK

activate each other during human response against M.tb [32]

Thus, our model allows the interaction of ligand APC with NK

receptor. Eq.S3 in Supporting Information S1 describes As

dynamics. Once Aa population interacts with other APC or NK

cells expressing CD137, it becomes signalized be CD137 (As). If Aa

presents the antigen to a naı̈ve T cell, it can also become signalized

via CD137 as long as the interaction is not blocked by an

antibody. Traditionally, it was assumed that monocytes are unable

to proliferate; however, it has been shown that CD137 induces

a widespread proliferation of human peripheral monocytes [21].

Hence, we only allowed As to proliferate. The dynamics of these

cells also include natural death as well as TNF-a-induced

apoptosis.

Eq.S4 in Supporting Information S1 refers to AAb dynamics.

These cells come from CD137 receptor in Aa binding to the

blocking mAb. As they are involved in signaling, other term

parameters are the same as in Aa. Despite the receptor blockage,

these cells can be modulated by reverse signaling through the

antigen (As_Ab). As_Ab also comes from As that binds the anti-

CD137 blocking mAb (Eq. S5 in Supporting Information S1).

These populations use the same term parameters as As.

NK Dynamics
NK cell activity is regulated by a balance between the activating

and inhibitory receptors [33–34]. Early studies demonstrated that

mouse NK cell stimulation with cross-linking anti-CD137 anti-

bodies or with CD137L-expressing cells induced NK cell pro-

liferation and IFN-c secretion [35]. However, it was recently

demonstrated that CD137 is expressed by activated human NK

cells and that this interaction reduced NK-cell activation and IFN-

c production. Additionally, it was shown that impaired NK-cell

reactivity after CD137 triggering was not due to survival but

rather to inhibitory signals [36].

Two major subsets of NK cells have been recognized in

peripheral blood based on the differential expression of CD56

receptor [27]. The vast majority of circulating NK cells (CD56dim)

are cytotoxic and do not produce IFN-c. Only 5–10% of NK cells

are IFN-c producing cells (CD56bright). We have previously shown

that CD137 and CD137L are expressed only on CD56bright NK

cells [15]. Considering our analysis was focused on cytokine

modulation by CD137, we therefore included only the CD56bright

NK cells in our model.

Similar to APC dynamics, the model includes five NK cell

stages (Figure 2, Equations S6–S10 in Supporting Information S1):

resting (N0), activated (Na), activated with signaling though CD137

(Ns), activated and blocked (NAb) and activated with signaling and

blocked by anti-CD137 mAb (Ns_Ab).

CD56bright NK cell activation in tuberculosis requires IL12, NK

cell–APC interaction and M.tb–NK direct contact [37–38]. IL-12

is indirectly modeled through the presence of activated APC. As

shown in Eq. S6 in Supporting Information S1, the loss of N0 is

modeled as NK activation (rate k(N0,Na)A) and death (mN0). During

NK activation, NK-CD137:CD137L-APC interaction is possible,

but there is no actual evidence for this interaction. Thus, for the

sake of clarity and simplicity, we chose to include activation and

signaling in two separate steps. Additionally, because it was

demonstrated that the NK-NK interaction is possible and that NK

express both a ligand and a receptor, we incorporated this

interaction as well. Hence, Na dynamics (Eq. S7 in Supporting

Bayesian Model of CD137 Signaling in Tuberculosis
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Information S1) include CD137 signaling by APC or NK cells,

natural death, TNF-a induced-apoptosis and proliferation.

Eq. S8 in Supporting Information S1 describes Ns dynamics:

this population consists of Na signalized by the receptor. Eq. S9 in

Supporting Information S1 describes NAb, defined by the same

parameters that Na, but with the receptor bound to anti-CD137

blocking mAb. Equation S10 in Supporting Information S1

describes Ns_Ab which behaves as Ns, but with the receptor

blocked. We assumed that all activated NK cells produced IFN-c,

but only a fraction produced TNF-a and expressed ligand/

receptor pair.

T Lymphocytes Dynamics
T lymphocytes (TL) mediate adaptive immune responses that

play a vital role in the elimination of M.tb [39]. We modeled four

different T cells population: non-specific-antigen-T cells (Tns),

specific-antigen naı̈ve T cells (T0), activated and CD137 co-

stimulated cells (Ts) and activated T cells without CD137 signaling

(because of mAb blockage) (Tbl). (Fig. 3 Equations. S11–S14 in

Supporting Information S1).

Non-specific T cells, Tns, (Eq. S11 in Supporting Information

S1), the more numerous component of PBMC in vitro, were

included because their importance in the total cell count. Their

population proliferates at a rate of kT0 and dies at a rate of mT0.

T0 dynamics are described in the equation S12 in Supporting

Information S1. These cells proliferate and die at the same rate of

Tns, but can undergo activation/differentiation that depends on

the presence of activated APC (Aa, As, As_Ab and AAb). The rate of

activation was set to be independent from the CD137 receptor

blockage state. During activation, T cells express the receptor that,

depending on the concentration of anti-CD137 blocking mAb in

the media, can become blocked.

Extensive evidence has shown that signals through CD137

delivered by agonistic antibodies or by an overexpressed ligand

can augment T-cell activation or survival [40–43]. CD137 is not

expressed on resting T cells, but is induced by antigen (Ag)-

receptor signaling [41] [43–44]. Moreover, CD137 was proposed

as an effector T cell marker [45]. Thus, we postulated that all

activated TL express the receptor. Unpublished data from our lab

demonstrated that only 43.82% 61.63 and 23.95% 63.85 of

CD137+ TL are IFN-c+ and TNF-a+, respectively. Additionally,

we proposed that CD137 blockade in T cells induced apoptosis

and inhibited proliferation and cytokine production.

Figure 1. Diagram of APC dynamics in the in vitro culture. Five different APC subpopulations are described: resting (A0); activated (Aa);
activated and signaling through CD137 (As); activated and bound to anti-CD137 blocking mAb (Abl); and activated, signaling through CD137L and
bound to anti-CD137 blocking mAb (As_Ab). Rows indicate possible mechanisms for each subpopulation. Loss of A0 is modeled with A0 uptake of the
Ag (in the presence or absence of proinflammatory cytokines (macrophages and DC, respectively)) and death at a rate of mA0. A small A0 ratio
expresses receptor and ligand and produces basal levels of cytokines. Aa dynamics show the balance between APC uptake of Ag, natural death (mAa)
and TNF-a-induced apoptosis (maA). Once Aa interacts with other APC, NK or TL expressing CD137, signaling is initiated (As). As dynamics includes
proliferation, natural death and TNF-a induced apoptosis. AAb come from Aa receptor binding to blocking mAb. Although they have the receptor
blocked, these cells can be reverse signalized by the antigen (As_Ab). As_Ab also comes from As that bind the antigen. As we focus on CD137 signaling,
parameters (cytokine production, proliferation and apoptosis rates) define two types of activated cells, determined by signaling through CD137
(As,As_Ab) or not (Aa, AAb). We assume that all activated APC express ligands and receptors and produce TNF-a, but only a fraction produces IFN-c. The
initial estimation for the induction of apoptosis, proliferation and cytokine secretion by CD137 can be either positive or negative.
doi:10.1371/journal.pone.0055987.g001

Bayesian Model of CD137 Signaling in Tuberculosis
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Equation S13 in Supporting Information S1 models Ts

dynamics, accounting for the differentiation of naı̈ve TL (T0),

proliferation (with a rate of kTs), natural death (mTs) and TNF-

induced apoptosis. Eq.S14 in Supporting Information S1 describes

Tbl cell dynamics, incorporating CD137 blockage, induction of

apoptosis, proliferation and IFN-c and TNF-a production. We

modeled apoptosis as occurring during time tA (time duration of

apoptosis); therefore, to predict the results of annexin binding, we

counted the cells that entered apoptosis in a time window of tA
before the measurement took place (Eq. R10, Supporting In-

formation S1).

Culture Media Dynamics
Cytokines are produced by a large variety of cells involved in

innate and adaptive immunity [46]. Because we measured IFN-c
and TNF-a levels in media and intracellular expression by single

cells in our experimental data, we modeled these two key cytokines

in tuberculosis.

Each equation has a degradation rate for each cytokine

represented by a m coefficient. TNF-a (Eq. S16 in Supporting

Information S1) is mainly secreted by activated APC (at a rate of

a-Aa). Because CD137 might have opposite roles in TNF-

a regulation during different bacterial infections [31], prior

estimates for the induction of TNF-a (a-IA) by CD137 included

both up (greater than one) and down (less than one) regulatory

effects. The antigen presence enhances TNF-a production by Aa.

Additionally, TL and NK cells can secrete TNF- a; however, prior

estimates indicated a low contribution from these cell types to the

total TNF-a levels.

Human NK cells are known to be a major source of early IFN-c
(modeled in Eq. S15 in Supporting Information S1) upon M.tb

stimulation in vitro [38]. In addition, prior estimates have

indicated that CD137 inhibits cytokine production by NK cells

[47]. On the other hand, macrophages were found to produce

small levels of IFN-c during M.tb responses [48]. Therefore, prior

estimates indicated that activated APC produced a small amount

Figure 2. Diagram of CD56bright NK cell dynamics in the in vitro culture. Five different NK subpopulations are described: resting (N0),
activated (Na), activated and signaling through CD137 (Ns), activated, signaling and blocked by anti-CD137 mAb (Ns_Ab) and activated and blocked
(NAb). Rows indicate possible mechanisms for each subpopulation. The loss of N0 is modeled as NK activation (rate k(N0,Na)A) and death (mN0). N0

activation (Na) requires IL12 (indirectly modeled as activated APC), activated APC and M.tb. The model includes activation and signaling in two steps.
Therefore, Na dynamics includes CD137 signaling by APC or NK cells, natural death, TNF-a induced-apoptosis and proliferation. Ns dynamics includes
IFN-c/TNFa induction by CD137 (IcN, IaN). NAb is defined by equations similar to Na, but with the receptor bound to anti-CD137 blocking mAb. Ns_Ab

behaves as Ns, but the receptor is also blocked. We assume that all activated NK cells produce IFN-c, but only a fraction produce TNF-a and expresse
ligand/receptor pair.
doi:10.1371/journal.pone.0055987.g002
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of IFN-c [49]. Once adaptive immunity has been fully developed,

IFN-c is mainly secreted by activated lymphocytes (cTS) [39].

CD137 enhances cytokine production by TL [50–51], thus, prior

estimates for the receptor blockage were biased to values less than

one.

When present, the antigen was modeled as being degraded with

a rate constant of mAg (Eq S17 in Supporting Information S1).

Tritiated Thymidine incorporation was calculated as the integral

of all cell type proliferations that occurred for the last 16 h (Eq.

R16). A scaling parameter wTym related this integral to the

measured Thymidine incorporation in cpm.

Posterior Likelihood Calculations
Prior probability of the tested parameters was calculated using

normalized residuals analogous to the ones defined in Eq 1. The

normalized residual corresponding to the jth parameter, ebj, was

calculated by taking the difference between the log or logit

transformed jth parameter bj and the expected value of the log or

logit transformed prior bj and dividing that value by the standard

deviation sbj of the log or logit transformed prior:

ebj bð Þ~
bj{bj
sbj

ð7Þ

The square sum of the normalized parameter residuals

definition is straightforward:

SSparam bð Þ~
Xk
j

ebj bð Þ
� �2

ð8Þ

It was used to calculate the logarithm of the prior probability of

the tested vector b:

Figure 3. Diagram of TL dynamics in the in vitro culture. Four different TL subpopulations are described: non-specific-antigen-T cells (Tns),
specific-antigen naı̈ve T cells (T0), activated and CD137 co-stimulated cells (Ts); and activated T cells with blocked CD137 (Tb). Rows indicate possible
mechanisms for each subpopulation. Tn population only proliferates and dies. T0 dynamics also includes proliferation and natural death at the same
rate as Tn, and can undergo activation/differentiation (and became Ts or Tb) dependent on the presence of activated APC (Aa, As, As_Ab and AAb).
During activation, T cells express the receptor and, depending on the concentration of anti-CD137 mAb in the media, a portion of them can become
blocked. Prior estimates indicate that CD137 signals delivered by agonistic antibodies or by overexpressed ligands can augment T-cell activation or
survival. CD137 is not expressed on resting T cells, but rather is induced with antigen (Ag)-receptor signaling. Ts dynamics account for the
differentiation of naı̈ve LT0, proliferation, natural death and TNF-a induced apoptosis. Tbl dynamics incorporates apoptosis induced by CD137
blockage, inhibition and proliferation of IFN-c and TNF-a production. The model assumes that all activated TL express the receptor.
doi:10.1371/journal.pone.0055987.g003
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logPrior bð Þ~{
1

2
:SSparam bð Þ{ 1

2
:
Xk
j

log 2:p:sbj
2

� �
ð9Þ

The logarithm of the posterior Likelihood function (logPostLik)

results from taking the sum of the logPrior (Eq. 9) and the logLik

(Eq. 2):

logPostLik bð Þ

~{
1

2
: SSparam bð ÞzSSdata bð Þz

Xk
j

log 2:p:sbj
2

� � 

z
Xn
i

log 2:p:si
2

� �!
ð10Þ

Levenberg-Marquardt Algorithm and Maximum
a Posteriori Likelihood

As only the square sums depend on the parameter vector, any

parameter vector that locally minimizes the total squares sum

(SStot = SSparam+SSdata) maximizes the a posteriori likelihood. Thus,

we implemented in C++ a multivariate nonlinear least squares

method, the Levenberg-Marquardt algorithm (LMA), to find MAP

candidates. At each step of the algorithm, a new value of the

transformed parameters’ vector, bnew, was calculated

bnew~boldz JT:W:Jzl:diag JT:W:J
� �� �{1: J:eð Þ ð11Þ

where J and W are the Jacobian and weights matrices; e is the

residual vector and l is the damping parameter. The elements of

the Jacobian matrix are the partial derivatives of the k transformed

parameters and of the n predictions measurements vector:

Jij bð Þ~

1 0viƒk, i~j

0 0viƒk, i=j

d{1: yð i0 b1,,bjzd,,bk

� �
{yi0 b1,,bj ,,bk

� �� 0vi0ƒn,i0~i{k

8>>>>><
>>>>>:

ð12Þ

A value of 1027 was used for the incremental coefficient d.

Elements of the weight matrix, Wij, and elements of the residual

vector, ei, are defined using equations 1 and 7:

Wij~

0 i=j

sbi
{2 0viƒk,i~j

syi0
{2 0vi0ƒn,i0~i{k

8>><
>>:
ei~

eb i 0viƒk

ey i0 0vi0ƒn,i0~i{k

( ð13Þ

Initially, the damping parameter l was set to 1000. At each

LMA iteration (Eq. 11) the square sum for the new parameter

vector was tested: when it diminished, l was reduced by a factor of

v (a value of 10 was used) and the new parameter vector was

accepted; otherwise v was enlarged by the same factor and the old

parameter vector was kept. The algorithm was run until either the

change in Square Sum was less than 1029 or 5000 iterations were

reached.

At the vicinity of each local minimum, the gradient should be

close to zero:

Vi?
LlogPostLik

Lbi
bMAPð Þ

~{
1

2

L SSdatazSSparameters

� �
Lbi

bMAPð Þ

~0

ð14Þ

A small value in both l and in the gradient (found by the matrix

multiplication J:e) indicates that a local minimum and not a saddle

point was found.

We chose different initial parameter vectors sampled from their

prior distribution. Using the 2nd order Taylor expansion we obtain

an expression that approximates the logPostLik around its

maximum.

logPostLik bð Þ~logPostLik bMAPð Þ

z
1

2
b{bMAPð ÞTH b{bMAPð Þ

ð15Þ

where, H is the Hessian matrix, the second order derivatives of the

logPosteriorLik:

Hij bð Þ~ LlogPostLik
L log bið ÞL log bj

� � bð Þ ð16Þ

Using eqs 10, 8, 7, 3 and 1, applying the chain rule, and neglecting

the 2nd order derivative we obtain the following approximation for

the Hessian:

Hij bð Þ&
Xn
i0

1

syi0
2

Lyi0
:L log bið Þ bð Þ: Lyi0

L log bj
� � bð Þzdij

1

sbi
2

ð17Þ

where dij equals one when i = j and zero otherwise. This Hessian

approximation can be also expressed in terms of the Jacobian and

weight matrices (eq 11 and 12):

H&JT:W:J ð18Þ

The inverse of the Hessian matrix approximates the covariance of

the posterior distribution of the parameters, S
post
b ~H{1.

The probability of finding the global MAP increases with the

number of LMA runs.

bMAP~ argmaxPosteriorLikelihood bð Þ ð19Þ

We performed 5000 different optimizations starting each one on

a different initial value for the parameter to be fitted. The initial

conditions were chosen using random samples from the prior

distribution.
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Sampling the Posterior Distribution using Metropolis
Monte Carlo Markov Chain

By using Metropolis Monte Carlo Markov Chain method we

obtained a series of samples from the posterior likelihood, we then

estimated the credible intervals (CI) of the parameters and by

running simulations on the sampled parameters we obtained the

predictive posterior intervals (PPI) of the simulated data. CI and

PPI are analogous to the confidence intervals of frequentist

statistics. For example, in an experiment that determines the

uncertainty distribution of parameter p, if the probability that lies

between ‘a’ and ‘b’ is 0.95, then a,p,b is a 0.95 CI or PPI.

Metropolis MCMC method intends to sample from a target

distribution by performing a random walk over the entire space of

parameters. This random walk is governed by a Markov Chain

where the ratio of the transition probabilities between points in the

parameters space has to be equal to the ratio of the parameters’

probabilities. By setting proper transition probabilities we guar-

antee that, in the long run, we are sampling from the target

distribution. Metropolis MCMC set the transition probability to be

equal to the composition of an arbitrary symmetric jumping

distribution and an acceptance probability that contains the actual

information about the target distribution. However, the velocity of

the convergence of the random walk is dependent on an

appropriate selection of the jumping distribution.

We used a multivariate normal as the jumping distribution. The

covariance of this distribution was set to be equal to the inverse of

the Hessian approximation at the MAP multiplied by a constant

factor. This factor was empirically adjusted so the acceptance ratio

was roughly 20%. A factor of 0.02 was found to comply. To avoid

excessive sample correlation we stored one every 231 MCMC

steps (3 times the number of parameters).

Calculating the Evidence and Bayes Factors
The use of Bayes factor for model comparison remains valid

under less stringent conditions than other commonly used

comparison tools like the likelihood ratio test (LRT), which rests

on the assumption that the error in the parameter’s estimation

follows a normal distribution. Bayes factors integrate prior

information (which has to be stated on the prior distribution of

the parameters) and place a penalty for placing too much model

structure, in this way it guards against over-fitting. However, they

are difficult to calculate, since marginalization involves integrating

the posterior likelihood over the multidimensional space of

parameters values. Bayesian model comparison depends on

estimating the model Evidence, which is defined as the probability

of obtaining the data given that the model is true and given the

prior information available about the parameters of the model.

Formally, we marginalize the parameters b of the model Mi:

Evidence(Mi)~P DDMið Þ

~

ð
b

P DDb,Mið Þ:P bDMið Þ:db

~

ð
b

PostLik bð Þ:db

ð20Þ

The model evidence can be used to compare the support the

data gives to alternative models through the calculation of Bayes

factors, which is the ratio of the evidences of the different models:

BayesFactor0,1~
Evidence M0ð Þ
Evidence M1ð Þ ð21Þ

The value of the Evidence provides an absolute measure of the

capability of the model to predict that data, irrespective of the

number of parameters but depending on the prior information

about them. To numerically approximate this integral we used

a MCMC based method, Thermodynamic Integration [52], which

builds a continuous and differentiable path of un-normalized

distributions, qa, between the prior and the un-normalized

posterior (the posterior likelihood):

qa bð Þ~ P DDb,Mið Þð Þa:P bDMið Þ ð22Þ

At a= 0, qa is the prior; at a= 1, qa is the posterior likelihood.

The logarithm of the Evidence can be obtained by taking the

expected value of the logLikelihood sampled along this path (see

deduction in [52])

logEvidence~

ð1
0

Ea logLik bDMið Þ½ �da ð23Þ

where Ea is the expectancy under qa distribution. This integral can

be numerically solved by dividing the a path in N sections, a= (1/

N, 2/N,… N/N) and running a Metropolis MCMC for the qaj
distribution (eq. 22) at each aj value. Each MCMC run started at

the last sample of the previous run. MCMC settings were the same

as above except for the covariance of the jumping distribution. We

used the product of the same constant factor (0.05) and the inverse

of the Hessian approximation of the corresponding qa,

Hij bð Þa&a:
Xn
i0

1

syi0
2

Lyi0
:L log bið Þ bð Þ: Lyi0

L log bj
� � bð Þzdij

1

sbi
2

ð24Þ

At a= 1, Eq 18 reduces to Eq. 17.

Results

BCM Adequately Fits All Experimental Data
We fed the BCM with an experimental series acquired during

an already published study [53], with the addition of some

unreported data. We also fed the BCM with the prior distribution

of the parameters. Then, we took 5000 samples of the prior

distribution and started a LMA from each one. Three times, after

287–807 iterations, LMA reached a value of 60.67 for SStotal, the

minimum value we reached, corresponding to SSdata 35.17 and

SSparam 25.50, with a gradient norm of 0.02–0.002 and a l value

of 0.02 or lower. The difference in the parameters values was less

than 1 in 3000, indicating that the same minimum was reached

the three times. To check the validity of the Euler method we

solved the ODE system with the forth order Runge Kutta method

for this minimum. Both methods differed less than 0.36% in the

prediction of data. We only use Euler method from this point on.

Afterwards, we started 10 Metropolis MCMC runs at this

minimum, taking 10000 samples of the posterior distribution of

the model parameters at each run. The posterior distribution of

the predicted data, which we will describe in the following sections,
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is shown in Figures 4, 5, 6 and the posterior distribution of the

parameters in Figure 7 and Figures S1, S2, S3, S4, S5, S6, S7, S8,

S9, S10.

We solved the ODE system with both the Euler method and the

forth order Runge Kutta method for this minimum. We found that

the predictions of the model using Runge Katta differed less than

0.36% from the predictions of the Euler method; therefore we

decided to only use the latter for from this point.

Expression Profile of CD137 in Innate and Adaptive
Immune Cells

The timing of CD137:CD137L interactions and their effects on

the immune cells may depend on the availability and induction of

the ligand and receptor during the immune response [14].

Therefore, we studied the CD137 expression profile in the innate

and adaptive immune cells during in vitro responses against

tuberculosis. We measured the receptor expression in CD14+

monocytes, CD56bright NK cells and CD3+ T cells using flow

cytometry at different times after M.tb antigen stimulation.

Minimal CD137 levels were measured on the surface of the three

types of cells without stimulation. Overnight M.tb antigen

stimulation induced CD137 expression on CD14+ cells

(Figure 4A). Moreover, significant levels of CD137 were still

detected on monocytes after 5 days. BCM simulation was able to

fit this pattern and predicted a very distinctive profile. It predicted

that CD137 takes 11 h to double its basal expression but only 4 h

more to double it again. The expression was predicted to peak 30–

35 h after the stimulus and gradually declined, taking 47 more

hours to reach half the peak levels. After 120 h, the expression

levels were still double the basal levels.

Flow cytometry also detected significant percentages of CD137

on CD56bright NK cells at 24h of M.tb Ag stimulation, while only

basal receptor levels were detected at 120 h. Data from the BCM

simulation predicted that the peak occurred at 28 h, almost at the

measurement time (Figure 4B). Simulations demonstrated an even

longer delay than in APC, taking 17 h to double the basal levels

and approximately 3 h to duplicate them again. In contrast, APC

cells were predicted to return quickly to the basal levels, taking

only 21 h to reduce the expression to two times the basal levels;

fifteen hours later, the expression was only 10% higher than the

basal levels, denoting an early role for these cells during in vitro

immune response to M.tb.

The dynamics of CD137 expression was opposite in T

lymphocytes (Figure 4C). Cytometry measurements displayed no

significant increases in CD137 at 16 or 24 hours. However, after

120 h of stimulation with M.tb Ag, a 10-fold increase from the

basal CD137 expression levels was measured in T lymphocytes. In

the simulation, it takes`57 hours to double the basal levels, which

thereafter continue augmenting until 120 h.

Role of CD137 Pathway in Cytokine Modulation
Cytokines display a crucial role during the host immune

response against M.tb. Thus, we investigated the role of CD137

pathway on cytokine modulation. These experimental results were

previously published in [15]. Briefly, the results demonstrated that

blocking CD137:CD137L pathway significantly augmented TNF-

a production in tuberculosis patients at 16, 48 and 120 hours.

BCM simulations could also successfully fit this pattern.

Predicted TNF-a levels in media during ‘‘M.tb treatment’’

(Figure 5A) present a delayed growth initiation followed by an

exponential growth. Because the initial levels were set as zero, they

could not be compared, so we compared the predicted cytokine

levels at paired time points with or without M.tb stimulation (M.tb

treatment and media treatment, respectively). After 9 hours of M.tb

stimulation, the simulated TNF-a levels were doubled compared

to the levels obtained with media treatment. Subsequently, TNF-

a levels doubled 4 times during the following 9 hours. Predicted

TNF-a levels reached a peak 22 hours after the stimulation.

However, the levels diminished to approximately 50% of the

maximal peak value by the end of the experiment.

Simulations predicted that blocking CD137 reduced the delay

in TNF-a production. Accordingly, it predicted it only takes 3 h

during the blocking treatment to double the TNF-a levels obtained

with media treatment, doubling 5 more times in the 11 h

thereafter. The levels peaked at 18 h, gradually diminishing

thereafter to 50% of the peak value at the end of the experiment.

Additionally, we modeled IFN-c production in PBMC. In line

with our previous data, simulations demonstrated that blocking the

Figure 4. Fitting of the model (CD137/CD137L expression) to the data. A, Expression of CD137/CD137L in APC. B, Expression of CD137/
CD137L on NK. C, Expression of CD137 on TL. Curves represent the best fit of our mathematical model to the data. The median and the 50% of the
predictive posterior interval are shown. Means of experimental data are shown by triangles, error bars indicate the SEM from each group (7
individuals). Experimental data were obtained from PBMC of tuberculosis patients stimulated with M.tb Ag for 0, 16 and 120 h (A), 0, 24 and 120 h (B)
or 0, 16, 24 and 120 h (C). CD137 expression was determined by flow cytometry. The cytometric analysis was performed by first gating on monocytes
by light scatter and then gating on CD14+ cells (A), or by first gating on lymphocytes by light scatter and then on CD32CD56bright for NK cells (B) or
on CD3+ for T lymphocytes (C). Predictions were made according to the following equations (Supporting Information S1): A: R4, B: R8, C: R10.
doi:10.1371/journal.pone.0055987.g004
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Figure 5. Role of CD137:CD137L pathway in the cytokine microenvironment during human tuberculosis. A,B; Fitting of the data model
(cytokines in media). Curves represent the best fit of our mathematical model to the data. The median and the 50% of the predictive posterior interval
are shown. Means of experimental data are shown by triangles 6 SEM from each group (7 individuals). Experimental data were obtained from PBMC
of tuberculosis patients stimulated with or withoutM.tb Ag in the presence or absence of CD137 blocking mAb. After 16 h (ON), 2 days or 5 days, cell-
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CD137 pathway significantly augmented IFN-c production after

16 h (ON) of M.tb stimulation (Figure 5B). However, the blockage

of CD137 decreased IFN-c secretion after 2 and 5 days of antigen

stimulation (Figure 5B). With Ag treatment, IFN-c levels were

predicted to increase to double the levels without stimulus at 3 h.

Figure 5C prediction reveals that blocking CD137 results in

accelerated an TNF-a production rate in APC, denoting a role of

CD137 in changing the timing of the TNF-a response to M.tb.

These curves share with those of TNF-a levels in media an initial

exponential growth. Simulations demonstrated that neither NK

nor TL produced significant levels of TNF-a. Figure 5D shows the

NK and TL kinetics of the IFN- c production rate. In line with the

literature, our model predicts that IFN- c is produced early by NK

cells, with T cells acting as the major producers of this cytokine

after the initial 26–35 h. APC were not observed to produce

significant IFN-c levels.

To validate the model, we measured TNF-a and IFN-c
production by PBMC stimulated with M.tb for 24 hours with or

without anti-CD137 blocking antibodies, New experimental data

presented no contradiction with the simulations (Fig. 5C).

Intracellular Expression of Cytokines, Role of CD137
Our previous results [53] indicated that CD137:CD137L

interactions might induce distinct effects on cytokine secretion in

different cell types during the initial and later phases of the

immune response. As shown in Figure 4A and 4B, CD137

blockade strikingly augmented the percentage of specific

CD14+TNF-a+ and CD14+IFN-c+ cells in ON responses to

M.tb. Here, we provided previously unpublished results showing

that CD137 blockade enhanced CD14+TNF-a+ and CD14+IFN-c
percentages at 5 days of M.tb treatment. Furthermore, BCM

simulation once again fit the experimental results.

Additionally, CD137:CD137L pathway blockage augmented

the number of CD32CD56bright TNF-a+ and CD32CD56bright

IFN-c+ NK cells in response to M.tb (Figure 6C and 6D).

Simulation also predicted that the percentages of NK+TNF-a+ and

NK+IFN-c+ peak early during CD137 blockade.

Next, we investigated whether CD137:CD137L interactions

regulated the percentage of IFN-c and/or TNF-a producing

lymphocytes. As shown in Figure 6E and 6F, CD137 blockade

strikingly diminished the percentage of specific IFN-c/TNF-

a producing lymphocytes. Simulations predicted a slow exponen-

tial growth of the cytokine producing cells during the experimental

time course.

Additional Fitted Data
We included additional data related to the effect of CD137

blockage in our BCM analysis. M.tb Ag-stimulated PBMC

proliferation ([3H]TdR incorporation) was decreased by CD137

blockage. Our BCM fit the measured [3H]TdR incorporation on

all treatments. For media treatment the values compared were

2356–4675 cpm (0.25–0.75 confidence interval of the experimen-

tal data) vs. 3933–4914 cpm (0.25–0.75 posterior predictive

interval obtained from simulations); for M.tb treatment: 12600–

15700 cpm (experimental) vs. 11710–13331 cpm (simulations),

blocking treatment [M.tb+anti-CD137 mAb]: 1414–9976cpm

(experimental) vs. 374–11105 cpm (simulations). The effect of

the blockage on the percentage of TL apoptosis (measured by

cytometry) was also adequately fit: (media treatment: 11.3–21.8%

CD3+ Annexin V+ [experimental] vs. 11.3–15.0% CD3+ Annexin

V+ [simulations]; M.tb treatment: 24.3–30.9% CD3+ Annexin V+

[experimental] vs. 28.3–31.5% CD3+ Annexin V+ [simulations];

blocking treatment: 38.2–48.1% CD3+ Annexin V+ [experimen-

tal] vs. 36.7–42.1% CD3+ Annexin V+ [simulations]). A rough

estimate of the cell number (5.00E5–1.50E6 cells for all times and

treatments,) was also included in the BCM: (simulated data in

media treatment: 24 h 7.30E5–8.85E6cells; 120 h: 7.38E5–

9.82E6 cells; in M.tb treatment: 24 h: 7.28E5–8.81E6 cells

120 h: 8.85E5–1.17E6 cells; in blocking treatment 24 h;

7.25E5–8.78E6 cells 120 h; 7.88E5–1.04E6 cells).

Reduction in Model Parameters Uncertainty
BCM analysis of the experimental data reduced the uncertainty

in the model parameters’ values (Figures 7, S1, S2, S3, S4, S5, S6,

S7, S8, S9, S10). The total prior distribution volume (measured as

the logarithm of the covariance matrix determinant) was 16.4 dB.

The posterior distribution volume was reduced to 2962 dB, an

average reduction of 12.5 dB per parameter. The average

reduction in the variance of each parameter was of 6.91 dB, the

difference between both reductions indicating a sizeable correla-

tion between the parameters. Therefore, on average, the

logarithmic range of each parameter was reduced by a factor

2.21 (3.46 dB). This reduction was not homogeneous: no changes

occurred in 7 parameters, negligible reduction (less than 1 dB) in

21 parameters, moderate reduction (between 1 and 5 dB) occurred

in 31 parameters and, finally, substantial reduction (between 5 and

14 dB) was observed in 22 parameters.

A reduction in the parameter distribution range indicates that

the BCM successfully extracted from the data information that was

not present in the prior. For certain parameters, it would be

possible to extract the experimental information without this

sophisticated model. For instance, the parameter rRLN0 (which

suffered a reduction of 10 dB in its uncertainty) can be directly

obtained from the Receptor/Ligand measurement in resting NK

cells; a similar procedure could be applied to all ratios of resting

cells. However, in most other cases (k(AxN), aIAa, kIT), the

parameter depends on the data in a very complicated manner,

requiring the application of BCM (or an equivalent approach) to

extract the values.

An absence of range reduction is indicative of a poorly defined

parameter, which is not surprising given that there are more

parameters than data. A negligible reduction indicates that the

experimental data contained little information about the param-

eter range. In certain cases (e.g., aN0, aNa, cAa), the data

contained no information about the parameters because the

parameter influence on the data was negligible or because the

effect on the data was confounded by other parameters. In other

cases (e.g., cIN, rA, tAp), the parameter effect was sizeable but as

free supernatants were collected and assayed for TNF-a (A) and IFN-c (B) production by ELISA. The mean 6 SEM (15 individuals) of IFN-c and TNF-
a secretion levels is shown for each time. C, Predicted kinetic profile of instantaneous TNF-a production rate by total APC according to the BCM; the
median and the 50% of the predictive posterior interval are shown. D, Simulation kinetics profile of instantaneous IFN-c production rate by total NK
and total TL; the median and the 50% of the predictive posterior interval are shown. Predictions were made according to the following equations
(Supporting Information S1): A: S16 in Supporting Information S1, B: S15 in Supporting Information S1, C: S159 in Supporting Information S1, D: S1699
in Supporting Information S1 and S16999 in Supporting Information S1. New experimental data was included to validate the model. Levels of TNF-
a and IFN-c produced by PBMC stimulated with M.tb6 a-CD137 for 16 and 24 hours were measured by ELISA. IFN-c and TNF-a levels of the new data
was normalized as following: Normalized data = new data* old mean of M.tb treatment at 16 h/new mean of M. tb treatment at 16 h. Normalized
data is shown by bold triangles.
doi:10.1371/journal.pone.0055987.g005
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there was substantial prior knowledge, the new data provided little

additional information.

Those parameters that showed no reduction in the posterior

range might be unidentifiable and they can be removed from the

model without sizeable consequences. It is interesting to note that

we were able to defer the responsibility of choosing the minimum

set of parameters to the Bayesian Computational Model. We

consider that this is an advantage of the BCM approach: in case of

doubt one can incorporate a parameter to the model and still be

able to predict the data and draw meaningful conclusions,

although with the cost of a possibly quadratic increase in the

computational time.

Insight into the Response Dynamics and CD137
Mechanism

The effect of CD137 on cytokine production, proliferation and

apoptosis rates is described by 9 parameters. Prior and posterior

distributions of these parameters are shown in figure 7. In three

cases (cIA,cIN and aIN) there is a close match between the prior

and posterior distribution, indicating that the experimental series

provides negligible information about the existence of these

mechanisms. Using the Bayesian confidence interval method we

calculated the probability that each one of the remaining

parameters is greater or smaller than one (a value that indicates

no CD137 effect). In the case of T cells, the regulation of IFN-c
production was found to be based more on the effect of CD137 on

the survival of T cells (p(mIT,1),0.00001 and

Figure 6. Effect of CD137:CD137L pathway on the immune cell cytokine production in tuberculosis. Different curves represent the best
fit of our mathematical model to the data, the median and the 50% of the predictive posterior interval are shown. The mean of the experimental data
is shown by triangles. Experimental data were obtained from PBMC of tuberculosis patients stimulated with M.tb Ag in the presence or absence of
blocking anti-CD137 mAb. A–B; After 16 and 120 h, the intracellular expression of TNF-a (A) and IFN-c (B) was determined by flow cytometry, by first
gating on monocytes by light scatterand then by gating on CD14+ cells. Each represents the mean 6 SEM of the percentage of CD14+cytokine+ cells
for each group (11 individuals). C–D; PBMC were stimulated with M.tb Ag for 24 h in the presence or absence of blocking anti-CD137 mAb and
intracellular TNF-a (C) and IFN-c (D) expression on CD56bright NK cells was determined by flow cytometry by first gating on lymphocytes by light
scatter, then by gating on CD32 cells and finally gating on CD56bright NK cells. Each triangle represents the mean 6 SEM (10 individuals). E–F; PBMC
were stimulated with M.tb Ag for 4 days in the presence or absence of anti-CD137 blocking mAb. Intracellular TNF-a (E) and IFN-c (F) expression was
determined by flow cytometry in T cells. Each triangles represents the mean 6 SEM (16 individuals). Predictions were made according to the
following equations (Supporting Information S1): A: R3, B: R2, C: R7, D: R6, E: R12, F: R11.
doi:10.1371/journal.pone.0055987.g006

Figure 7. Reduction in the uncertainty of model parameters that describe the CD137 induction on cytokine production,
proliferation and apoptosis rates. Bayesian analysis on the experimental data reduced the uncertainty of the BCM parameter values. Light gray
areas represent the prior parameter distribution. Black areas represent the posterior parameter distribution. cIA (Induction factor of IFN-c production
by CD137::CD137L of APC), aIA (Induction factor of TNF-a production by CD137::CD137L of APC), mIA (Induction of death by CD137::CD137L of APC),
cIN (Induction factor of IFN-c production by CD137::CD137L of NK), aIN (Induction factor of TNF-a production by CD137::CD137L of NK), cIT
(Induction of IFN-c production by CD137), aIT (Induction of TNF-a production by CD137), mIT (Induction of apoptosis rate by CD137), kIT (Induction of
proliferation rate by CD137).
doi:10.1371/journal.pone.0055987.g007
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p(kIT.1),0.00001) than on IFN-c induction (cIT). There was

a huge reduction in the uncertainty of this last parameter, but with

the posterior distribution centered on an induction value of one.

On the other hand, the effect of CD137 on TNF-a levels appeared

to be related to a direct inhibitory effect on TNF-a production by

APC (p(mIA .1),0.005 ) and, perhaps, to APC survival

(p(mIA,1),0.06).

Comparing Models using Thermodynamic Integration
In our BCM, we modeled a direct CD137signaling effect in T

cells. However, an alternative mechanism that also explains the

late increase in IFN-c through an indirect effect is possible. As

blockage of the CD137/CD137L pathway increases TNF-a pro-

duction by in vitro cultures of PBMC stimulated with M.tb Ag, it is

possible that these higher TNF-a levels promote T cell apoptosis

and, in consequence, diminish cell proliferation and cytokine

secretion to a greater degree when compared to a direct CD137

blockade in T cells. To determine which of the competing

mechanism is supported by the data, we compared the original

model (‘‘direct model’’) with a new model where direct T cell

signaling was absent (‘‘indirect model’’). This new BMC, of 73

parameters, was able to fit most of the experimental data, although

not as precisely as the direct model, but it could not fit the CD137

blockade effects on IFN-c production (Figure 8) and T cells

survival. For this model, simulations predicted, for the percentages

of T cells undergoing apoptosis, the following values: Mt.b

treatment: 28.90–37.58%CD3+ Annexin V+, blocking treatment:

24.40–35.85%CD3+ Annexin V+. For. [3H]TdR incorporation:

Mt.b treatment: 10855.7–15341.1 cpm, blocking treatment:

9527.9–14729.4 cpm.

The SStotal of the indirect model global minimum for 5000

starting points was 84.79, 24.12 units more than the SStotal of the

direct model. We therefore calculated the Evidence of both models

by Thermodynamic Integration. The evidence of the direct model

was 228461.68, while the indirect model evidence was

2294.1060.68. The difference between both evidences, 10.07,

corresponded to a Bayes factor of 43.7 dB, which indicates

decisive evidence in favor of the direct signaling of CD137 over T

cells.

Discussion

Mathematical models have been used to formulate hypotheses

and theories and make predictions regarding both the immune

response and M.tb infection that have previously posed a challenge

with traditional experimental methods [54,55]. In this paper, we

set a different aim: to integrate the information contained in

a particular experimental series with the previous knowledge by

applying a Bayesian analysis. For this purpose, we developed

a Bayesian Computational Model that simulated a set of previous

experimental data to analyze the effect of CD137 signaling

pathway during the human immune response against M.tb [15].

This BCM successfully fitted all the measured data and provided

new information about many relevant biological parameters and

complete kinetic profiles of the experimental variables. Moreover,

the simulation results allowed us to postulate a mechanism

responsible for the cytokine modulation by CD137.

BCM is made of two sets of equations: 1) a list of differential

equations describing the initial state and the evolution of the

underlying model, 2) a list of equations relating the state of the

model with observable quantities. At the same time, BCM receives

two kinds of inputs: 1) the prior distribution of parameters of those

equations and 2) a set of experimental observations with their error

rates. Finally, it produces three outputs: 1) the posterior

distribution of the parameters, 2) probability distribution of the

possible outcomes of observed and unobserved variables and 3) the

evidence of the model.

FrequentistAs long as we avoid logical contradictions in the

statement of the hypothesis and use proper priors, application of

Bayes rule leads to valid conclusions irrespective of the sample size

[19]There are many benefits provided by the BCM approach.

First, it uses the prior knowledge present in the literature to

interpret the experimental results analyzed. Also, it computes the

Figure 8. Predictions of the alternative model with indirect regulation over TL. A, CD137 expression on T cells; B, IFN-c levels in media; C,
TL intracelulIar IFN-c expression. Curves represent the best fit of our mathematical model to the data. The median and the 50% of the predictive
posterior interval are shown. Means of experimental data are shown by triangles 6 SEM for each group (A, 7 individuals; B, 15 individuals; C, 16
individuals).
doi:10.1371/journal.pone.0055987.g008
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information present in the results that was not present in the prior

and, finally, it allows calculating the Bayes factors to assess the

odds of alternative models. The resulting distribution of param-

eters can be used as priors for the analysis of new experimental

results. In addition, the BCM allows incorporating new mechan-

isms: in this case, the data has to be re-analyzed under the new

mechanism and one should run a new MCMC to obtain the

evidence of the new model to compare it with alternative models.

Finally, MCMC explores extensively the posterior distribution of

the parameters for building the credible intervals of the parameters

and the posterior predictive intervals of the data. In this way,

spurious predictions that arise because of overfitting are averaged

out. Methods like MAP or Maximum Likelihood, which are

simpler and computationally cheaper, do not share this quality.

Other approaches share some but not all these possibilities. A

classical ODE stability analysis might be complementary to the

BCM approach as it would help to explain at least part of the

reduction in range that happens in the distribution of the posterior

parameters. However, this analysis is not designed to fit and

extract information from experimental data. This task would be

achieved by a classical non-linear least square fitting. Yet, this

method does not incorporate prior information in a clear way, nor

does it tolerate models with a smaller number of data than

parameters. Finally, without the initial estimate of the covariance

at or near the MAP, the MCMC method would not be able to

approximate the posterior distribution in a feasible time. This

estimate is a natural output of the MAP algorithm.

The system of ODE equations of the BMC is explicit and easy

to solve by the Euler method. Euler method is known to be

unstable when the time step duration is long enough for changes in

the state variables to be significant in a single step. Given the

nature of the simulated biological processes, we do not expect that

to be the case for the chosen time step (6 seconds), and therefore

expect the Euler method to be adequate. This expectation was

corroborated by the small difference found for this time step

between Euler and the fourth order Runge-Kutta methods.

LMA is a powerful technique that converges to a local

minimum or a saddle point. Local minimum can be identified

by having small values of both the gradient norm and the

parameter l. By starting at random points within the prior

distribution of the parameters we allow the possibility of starting at

the basin of attraction of the global minimum. By increasing the

number of random starting points we increase the probability of

finding the global minimum. Of 5000 random starts, 3 of them

ended up with a Sum of Squares that was smaller than any other

case, all the 3 with the same parameters values.

Our BCM is based on a large system of 17 coupled differential

equations with 77 parameters. A large number of parameters and

equations might be detrimental to the credibility of the model

since the possibility of a spurious fit increases. Conversely, a small

number of parameters and equations might not be enough to

appropriately describe the system. In this paper, we used a small

set of equations that describes the fundamental biological process

necessary to explain the results. Every equation and the prior

distribution of each parameter were based on the literature and

theoretical considerations. The system of differential equations was

built with the idea of reproducing the biological process that

generates the data. Therefore, we did not avoid intricate

dependencies between the APC, NK and T cells and cytokine

levels that would make more difficult to fit the data. Moreover, as

the values of parameters are constrained by their prior distribu-

tion, in principle there was no guarantee that a combination of

parameters values would fit the experimental data. In fact just by

fixing 4 parameters (the ones that describe CD137 direct signaling

on T cells) the system fails to attain a complete fit of the data.

Consequently, the sizeable number of equations and parameters

compared to the analyzed experimental data was not an

impediment for achieving valid results. Bayesian statistics is able

to reach conclusions that are valid within its theoretical framework

even in a suboptimal situation like the one we have dealt in this

work. Orthodox statistics, on the other hand, cannot deal with

small values of n. Such cases are simply passed over; since its focus

is on large n. But small n is frequently the only information

available. Fortunately, Bayesian analysis can deal with this

situation: if we avoid logical contradictions in the statement of

a problem and use proper priors, we can reach valid solutions [19].

Nevertheless, as the BCM is not based on the description of direct

measurements of molecular interactions, the validity of the

conclusions we reach about them are highly dependent on the

validity of the model assumptions.

In our study we analyzed how CD137:CD137L interactions

regulate cytokine secretion in different cell populations. Our

previous experimental data demonstrated that CD137 blockage

significantly augmented TNF-a production in PBMC at different

times [15]. In line with those results, the posterior distribution of

the parameters revealed that CD137 signaling in APC inhibited

TNF-a production and enhanced apoptosis.

In agreement with the previous data, simulations demonstrated

that blocking the CD137 pathway early significantly augmented

IFN-c production, while blocking this pathway late resulted in

decreased cytokine secretion. We have previously hypothesized

that CD137 signaling diminished IFN-c production in NK cells at

the early time points of M.tb Ag-stimulation and, later during the

immune response augmented IFN-c levels and T cell effector

functions through the interaction between T cells and APC. Our

simulations support this hypothesis. The posterior distribution of

the parameters reveals that the mechanism for regulating TL

cytokine production is based on the survival effect of the pathway

more than on the inhibition of IFN-c production. A simplified

model that excluded direct TL could not fit the data on CD137

blockade effects on IFN-c production and survival of T cells. Bayes

Factor indicated decisive evidence for including the direct CD137

signaling in T cells. We therefore propose that the CD137

pathway regulates the mhomeostasis of cytokine levels required by

the host to combat M.tb infection at different stages of the immune

response.

Anti-CD137 antibodies are powerful immune modulators and

have demonstrated promise in the therapeutic mouse models of

cancer, viral disease, and autoimmunity. Moreover, phase I and II

clinical trials using anti-CD137 therapy for advanced cancers are

underway [56]. By performing Bayesian analysis of experimental

data that included blocking mAbs, we obtained details about of the

role CD137/CD137L pathway in regulating the immune response

during active tuberculosis. We hope that this work will contribute

to show how systems biology can be applied with experimental

data in the design of pathways signaling and of therapeutics.

Moreover, the results of our work may be used to design and

evaluate animal knock out models of CD137 signaling and

therapy. Nonetheless, caution must be used when designing ways

to manipulate CD137 in human therapy, given that the agonistic

anti-CD137 antibodies can cause severe immune system abnor-

malities [13,56] and taking into consideration the fact that the

CD137:CD137L pathway may operate differently in distinct cells

during the innate and adaptive immune response.
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Supporting Information

Figure S1 Reduction in the uncertainty of model
parameters that describe proliferation rates of each
cell. Bayesian analysis on the experimental data reduced the

uncertainty of the BCM parameter values. Gray areas represent

ranges containing 50% of the prior parameter distribution. Black

areas represent ranges containing 50% of the posterior parameter

distribution. For a description of parameters see table S1 in

Supporting Information S1.

(PDF)

Figure S2 Reduction in the uncertainty of model
parameters that describe death of each cell. Bayesian

analysis on the experimental data reduced the uncertainty of the

BCM parameter values. Gray areas represent ranges containing

50% of the prior parameter distribution. Black areas represent

ranges containing 50% of the posterior parameter distribution. For

a description of parameters see table S1 in Supporting Information

S1.

(PDF)

Figure S3 Reduction in the uncertainty of model
parameters that describe cytokine production rate by
each cell. Bayesian analysis on the experimental data reduced

the uncertainty of the BCM parameter values. Gray areas

represent ranges containing 50% of the prior parameter

distribution. Black areas represent ranges containing 50% of the

posterior parameter distribution. For a description of parameters

see table S1 in Supporting Information S1.

(PDF)

Figure S4 Reduction in the uncertainty of model
parameters that describe ratios of cytokine producing
cells. Bayesian analysis on the experimental data reduced the

uncertainty of the BCM parameter values. Gray areas represent

ranges containing 50% of the prior parameter distribution. Black

areas represent ranges containing 50% of the posterior parameter

distribution. For a description of parameters see table S1 in

Supporting Information S1.

(PDF)

Figure S5 Reduction in the uncertainty of model
parameters that describe ratios of receptor/ligand
expressing cells. Bayesian analysis on the experimental data

reduced the uncertainty of the BCM parameter values. Gray areas

represent ranges containing 50% of the prior parameter

distribution. Black areas represent ranges containing 50% of the

posterior parameter distribution. For a description of parameters

see table S1 in Supporting Information S1.

(PDF)

Figure S6 Reduction in the uncertainty of model
parameters that describe ratios of cell populations.
Bayesian analysis on the experimental data reduced the un-

certainty of the BCM parameter values. Gray areas represent

ranges containing 50% of the prior parameter distribution. Black

areas represent ranges containing 50% of the posterior parameter

distribution. For a description of parameters see table S1 in

Supporting Information S1.

(PDF)

Figure S7 Reduction in the uncertainty of model
parameters that describe antigen or antibody bindings.
Bayesian analysis on the experimental data reduced the un-

certainty of the BCM parameter values. Gray areas represent

ranges containing 50% of the prior parameter distribution. Black

areas represent ranges containing 50% of the posterior parameter

distribution. For a description of parameters see table S1 in

Supporting Information S1.

(PDF)

Figure S8 Reduction in the uncertainty of model
parameters that describe saturation constants. Bayesian

analysis on the experimental data reduced the uncertainty of the

BCM parameter values. Gray areas represent ranges containing

50% of the prior parameter distribution. Black areas represent

ranges containing 50% of the posterior parameter distribution. For

a description of parameters see table S1 in Supporting Information

S1.

(PDF)

Figure S9 Reduction in the uncertainty of model
parameters that describe cell association. Bayesian

analysis on the experimental data reduced the uncertainty of the

BCM parameter values. Gray areas represent ranges containing

50% of the prior parameter distribution. Black areas represent

ranges containing 50% of the posterior parameter distribution. For

a description of parameters see table S1 in Supporting Information

S1.

(PDF)

Figure S10 Reduction in the uncertainty of other model
parameters. Bayesian analysis on the experimental data

reduced the uncertainty of the BCM parameter values. Gray

areas represent ranges containing 50% of the prior parameter

distribution. Black areas represent ranges containing 50% of the

posterior parameter distribution. For a description of parameters

see table S1 in Supporting Information S1.

(PDF)

Supporting Information S1 Equations and table that
describe the model and the model parameters. Equations

S1–S5, S6–10 and S10–S14 describe the dynamics of APC, NK

and T cells respectively. Additional equations are used to relate the

system variables with the expected value for each experimental

data: the percentage of receptor/ligand expression for the included

types of cells, the levels of IFN-c and TNF-a in the media culture,

the percentage of IFN-c and or TNF-a-secreting cells, the

apoptosis for T-cells and the rate of [3H]TdR incorporation by

PBMC. Table S1 in Supporting Information S1 include a list of

the parameter names, descriptions, units and prior and posterior

parameters distribution. Parameters distributions are presented in

ranges.

(DOCX)
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We thank José Hodak (Buenos Aires) and two anonymous reviewers for

their helpful comments on the manuscript. We gratefully acknowledge the

computational resources provided by the University of Michigan Center

for the Study of Complex Systems (CSCS) Computer lab for carrying out

the MCMC computations. We thank Dr. Néstor Kirchner and Dr.
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