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Regulation of alternative splicing is coupled to transcription 
quality, the polymerase elongation rate being an important factor 
in modulating splicing choices. In a recently published work,  
we provide evidence that intragenic histone acetylation patterns 
can be affected by neural cell excitation in order to regu-
late alternative splicing of the neural cell adhesion molecule 
(NCAM) mRNA. This example illustrates how an extracellular 
stimulus can influence transcription-coupled alternative splicing, 
strengthening the link between chromatin structure, transcrip-
tional elongation and mRNA processing.

Alternative splicing is known to be the main contributor to 
the expansion of proteome expression potentials in metazoans.1 
The number of protein variants generated by alternative splicing is 
particularly high in the nervous system, affecting proteins such as 
ion channels, cell adhesion molecules, components of the cytoskel-
eton, proteins involved in signaling and trafficking, transcription 
factors and even splicing regulators.2-4 The alternative variants have 
usually different functions and regulatory features, which in some 
cases may even be antagonistic. Furthermore, since the process is 
tightly regulated, alternative splicing provides a whole new level 
for fine control of gene expression, in addition to the extensively 
studied regulation of transcription initiation. The cellular func-
tions where this mechanism plays a role in neurons include nearly 
all the aspects of both developing and mature cells.

Cellular components of the nervous system require complex 
functional regulation, with responses varying in different neuronal 
types, during development and in response to different stimuli. 
Given the expansion of functions of alternative splicing in neuronal 
cells, the precise control of the splicing choices is expected to be of 
crucial importance for proper cellular functionality. Combinatorial 
control, including additive and cooperative interactions between 
different regulatory components, is believed to be responsible for 
such fine tuning of alternative splicing.4,5 It implies that a change 
in the activity of a single splicing regulator can affect splicing of 
specific mRNAs to different degrees in the same cell or influence 
alternative splicing of one mRNA in one cell type and not in 
others, depending on the action of other regulatory elements.6,7 
In extreme cases, malfunction of the complex network of alterna-
tive splicing regulation, and the consequent alterations in splicing 
patterns, is associated with severe neurological disorders such as 
ataxia, frontotemporal dementia, myotonic dystrophy and spinal 
muscular atrophy.8

Transcription and mRNA processing are part of a growing list 
of nuclear and cytoplasmic mRNA-protein biogenesis steps that 
need to be taken into account in order to describe gene expres-
sion in an integrative way.4,9 Most importantly, these steps are 
usually coupled, influence each other and can be co-regulated 
in a concerted way to achieve specific cellular responses.10-12 
In particular, the notion that eukaryotic mRNAs are first fully 
transcribed and then processed is now abandoned, since most 
mRNA processing steps are known to occur co-transcriptionally 
in vivo.10,13,14

In a recent report,15 we characterized how a dynamical modula-
tion of transcription quality can regulate alternative splicing of an 
endogenous gene in response to an external cue, such as neural cell 
excitation. We determined that exon 18 of the gene coding for the 
neural cell adhesion molecule (NCAM) is preferentially included 
in the mature mRNA when a slow RNA polymerase II (pol II) 
mutant is used to drive transcription. This exon is also regulated 
in response to excitation of neuroblastoma cells and hippocampal 
neurons: upon cell membrane depolarization a switch is detected 
from the NCAM 180 isoform mRNA (typical of mature neurons 
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and stable synapses) to the NCAM 140 isoform (typical of 
developing neurons).15 The dynamic balance between these 
two isoforms seems to be important for synapses building and 
remodeling in response to transient activity.16,17 But perhaps the 
most interesting finding of this work is that the regulatory mecha-
nism involves an excitation-induced modulation of intragenic 
chromatin, which increases pol II processivity and favors exon 
18 skipping.15 Using ChIP and chromatin accessibility assays,  
we found increased levels of H3K9 acetylation and a concomitant 
relaxation of the chromatin in the region comprised between exons 
17 and the 3' end of the gene. Surprisingly, none of these changes 
affect the gene promoter region, suggesting that transcription 
initiation is not affected. Finally, the effect of depolarization on 
splicing can be both enhanced and mimicked using the HDAC 
inhibitor trichostatin A, further implicating histone acetylation in 
the regulation of this alternative splicing event.15

Our group has been investigating for over a decade the coupling 
between transcription and alternative splicing regulation, since 
the discovery that different promoters specify different alterna-
tive splicing patterns, and that this phenomenon is related more 
to transcription quality than quantity.18 Traditionally, alternative 
splicing events are thought to be subjected to the influence of 
neighboring elements that regulate splicing choices, typically short 
cis-acting sequences which can be in the exons or adjacent introns. 
These sequences serve as docking sites for trans-acting regulatory 
proteins that help or obstruct splice site recognition and bridging.19 
In addition, the pre-mRNA secondary structure might play impor-
tant roles, hiding or helping to present splice sites and regulatory 
sequences to the nuclear processing machinery.20 The work of 
our group and others has resulted in a large body of evidence 
that supports a very intuitive notion that complements this view:  
the rate of transcriptional elongation along the usually long meta-
zoan genes contributes to alternative splicing regulation.21,22

Since pre-mRNA is synthesized roughly at the same time as it 
is being recognized by the processing machinery, the function of 
all the mentioned regulatory elements can be affected by the “tran-
scriptional speed”. First, recognition of weak splice sites would be 
favored if the transcription of competing ones is delayed. Also, the 
timing of transcription of splicing enhancers or silencers could 
determine their effective influence on splicing regulation.  
The same would be true for relevant RNA secondary structures. 
Finally, since many splicing regulatory proteins are thought to be 
recruited by the pol II machinery itself, the quality of transcription 
would affect the action of these trans-acting regulators as well.

The NCAM model, shown in Figure 1, illustrates one of the 
ways in which transcription quality can be modulated in vivo, 
namely modifying the chromatin structure of the transcription 
template. An alternative way to achieve this would be the modi-
fication of the pol II machinery itself. In agreement with the first 
option, it has been reported that in certain conditions chromatin 
remodeling complexes can create roadblocks to transcription that 
also modulate alternative splicing in the CD44 gene.23 Alteration 
of different features of chromatin structure is a perfect way for inte-
grating several pathways in the transcriptional regulation, a matter 
whose importance is widely established for the nervous system.24,25 

In particular, histone acetylation is known to be crucial for many 
processes that rely on neuronal excitation, learning being a clear 
example, with a well supported role of histone acetyl-transferases 
(HATs) like CBP.26,27 The molecular mechanism that mediates 
the acetylation changes observed in the NCAM regulation remains 
to be deciphered. Balance between HAT and HDAC activities 
will affect the acetylation patterns observed, but how they can be 
recruited differentially to intragenic region is a matter that has not 
been explored in detail yet.

Evidence indicating that both of these activities can be asso-
ciated with the RNA pol II can provide a clue.28 Since histone 
modifications posed by the transcription machinery recruits 
splicing factors,29 and alternative splicing factors such as the 
SR protein SC35 can regulate pol II elongation,30 the elucida-
tion of the interplay between chromatin, elongation and mRNA 
processing seems a complex and exciting task to be undertaken. 
In this direction, the regulation of intragenic histone acetylation 
patterns is claiming for attention as an actor in this play.
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