Artículo

Onia, O.B.; Alcoba, D.R.; Massaccesi, G.E.; Torre, A.; Lain, L.; Melo, J.I.; Oliva-Enrich, J.M.; Peralta, J.E. "Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands" (2019) Inorganic Chemistry. 58(4):2550-2557
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we present a computational analysis of a new family of magnetic Co(II) single-ion complexes with large magnetic anisotropy based on icosahedral and octahedral carborane ligands. In particular, we extend our previous computational work on mononuclear Co(II) complexes with 1,2-(HS) 2 -1,2-C 2 B 10 H 10 and 9,12-(HS) 2 -1,2-C 2 B 10 H 10 icosahedral o-carborane ligands to a larger set of complexes where the Co(II) ion is doubly chelated by those ligands and by other two positional isomers belonging to the 1,2-dicarba-closo-dodecaborane family. We also describe Co(II) complexes with octahedral ligands derived from 1,2-dicarba-closo-hexaborane and study the effects of replacing a thiol group by a hydroxy group in both polyhedral geometries, as well as the influence of the position of the carbon atoms. On analysis of the results for a total of 20 complexes, our results show that carborane-based Co(II) single-ion compounds present a distorted-tetrahedral geometry, high-spin ground states, and high values for the magnetic anisotropy parameters. We point out which of these would be suitable candidates to be synthesized and used as molecular magnets. © 2019 American Chemical Society.

Registro:

Documento: Artículo
Título:Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands
Autor:Onia, O.B.; Alcoba, D.R.; Massaccesi, G.E.; Torre, A.; Lain, L.; Melo, J.I.; Oliva-Enrich, J.M.; Peralta, J.E.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428, Argentina
Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Química Física, Facultad de Ciencia y Tecnologiá, Universidad Del País Vasco, Apdo. 644, Bilbao, E-48080, Spain
Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
Department of Physics, Central Michigan University, Mount Pleasant, MI 48859, United States
Año:2019
Volumen:58
Número:4
Página de inicio:2550
Página de fin:2557
DOI: http://dx.doi.org/10.1021/acs.inorgchem.8b03156
Título revista:Inorganic Chemistry
Título revista abreviado:Inorg. Chem.
ISSN:00201669
CODEN:INOCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00201669_v58_n4_p2550_Onia

Referencias:

  • Kahn, O., (1993) Molecular Magnetism, , 1 st ed. VCH: New York
  • Wernsdorfer, W., Sessoli, R., Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters (1999) Science, 284, pp. 133-135
  • Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S., Kaizu, Y., Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level (2003) J. Am. Chem. Soc., 125, pp. 8694-8695
  • Miller, J.S., Magnetically Ordered Molecule-based Materials (2011) Chem. Soc. Rev., 40, pp. 3266-3296
  • Sugawara, T., Matsushita, M.M., Spintronics in Organic α-electronic Systems (2009) J. Mater. Chem., 19, pp. 1738-1753
  • Ratera, I., Veciana, J., Playing with Organic Radicals as Building Blocks for Functional Molecular Materials (2012) Chem. Soc. Rev., 41, pp. 303-349
  • Ganzhorn, M., Wernsdorfer, W., Bartolome, J., Luis, F., Fernandez, J., (2014) Molecular Magnets, , Springer: Berlin
  • Atanasov, M., Aravena, D., Suturina, E., Bill, E., Maganas, D., Neese, F., First Principles Approach to the Electronic Structure, Magnetic Anisotropy and Spin Relaxation in Mononuclear 3d-transition Metal Single Molecule Magnets (2015) Coord. Chem. Rev., 289-290, pp. 177-214
  • Sessoli, R., Gatteschi, D., Caneschi, A., Novak, M.A., Magnetic Bistability in a Metal-ion Cluster (1993) Nature, 365, pp. 141-143
  • Gatteschi, D., Sessoli, R., Villain, J., (2006) Molecular Nanomagnets, , Oxford University Press: New York
  • Christou, G., Gatteschi, D., Hendrickson, D.N., Sessoli, R., Single-Molecule Magnets (2000) MRS Bull., 25, pp. 66-71
  • Neese, F., Pantazis, D.A., What is not required to make a single molecule magnet (2011) Faraday Discuss., 148, pp. 229-238
  • Maganas, D., Sottini, S., Kyritsis, P., Groenen, E.J.J., Neese, F., Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S 4 Complexes, Using Density Functional Theory and Correlated ab initio Methods (2011) Inorg. Chem., 50, pp. 8741-8754
  • Fataftah, M.S., Zadrozny, J.M., Rogers, D.M., Freedman, D.E., A Mononuclear Transition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment (2014) Inorg. Chem., 53, pp. 10716-10721
  • King, B.T., Noll, B.C., McKinley, A.J., Michl, J., Dodecamethylcarba-closo-dodecaboranyl (CB 11 Me 12 · ), a Stable Free Radical (1996) J. Am. Chem. Soc., 118, pp. 10902-10903
  • Hnyk, D., McKee, M., Boron: The Fifth Element (2015) Challenges and Advances in Computational Chemistry and Physics 20, , Springer: Dordrecht
  • Grimes, R.N., (2016) Carboranes, , 3 rd ed. Academic Press: New York
  • Oliva, J.M., Alcoba, D.R., Lain, L., Torre, A., Electronic Structure Studies of Diradicals Derived from Closo-Carboranes (2013) Theor. Chem. Acc., 132, p. 1329
  • Oliva, J.M., Alcoba, D.R., Onìa, O.B., Torre, A., Lain, L., Michl, J., Toward (Car)Borane-based Molecular Magnets (2015) Theor. Chem. Acc., 134, p. 9
  • Alcoba, D.R., Onìa, O.B., Massaccesi, G.E., Torre, A., Lain, L., Notario, R., Oliva, J.M., Molecular Magnetism in Closo-azadodecaborane Supericosahedrons (2016) Mol. Phys., 114, pp. 400-406
  • Onìa, O.B., Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oliva-Enrich, J.M., Determination of Exchange Coupling Constants in Linear Polyradicals by means of Local Spins (2017) Theor. Chem. Acc., 136, p. 35
  • Tu, D., Shao, D., Yan, H., Lu, C., A Carborane-Incorporated Mononuclear Co(ii) Complex Showing Zero-Field Slow Magnetic Relaxation (2016) Chem. Commun., 52, pp. 14326-14329
  • Alcoba, D.R., Onìa, O.B., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., Peralta, J.E., Oliva-Enrich, J.M., Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands (2018) Inorg. Chem., 57, pp. 7763-7769
  • Vaidya, S., Tewary, S., Singh, S.K., Langley, S.K., Murray, K.S., Lan, Y., Wernsdorfer, W., Shanmugam, M., What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? (2016) Inorg. Chem., 55, pp. 9564-9578
  • Suturina, E.A., Maganas, D., Bill, E., Atanasov, M., Neese, F., Magneto-Structural Correlations in a Series of Pseudotetrahedral [Co II (XR) 4 ] 2- Single Molecule Magnets: An ab Initio Ligand Field Study (2015) Inorg. Chem., 54, pp. 9948-9961
  • Sottini, S., Poneti, G., Ciattini, S., Levesanos, N., Ferentinos, E., Krzystek, J., Sorace, L., Kyritsis, P., Magnetic Anisotropy of Tetrahedral Co II Single-Ion Magnets: Solid-State Effects (2016) Inorg. Chem., 55, pp. 9537-9548
  • Plešek, J., Heřmánek, S., Experimental evaluation of charge distribution on particular skeletal atoms in icosahedral carboranes by means of HS-derivatives (1979) Collect. Czech. Chem. Commun., 44, pp. 24-33
  • Plešek, J., Heřánek, S., Synthesis and properties of some icosahedral carborane B,B'-dithiols (1980) Collect. Czech. Chem. Commun., 45, pp. 1775-1779
  • Zakharkin, L., Pisareva, I., Synthesis of 9,12-o- A nd 9,10-m-carboranyl-dithiols and-diselenols from S 2 Cl 2 or Se 2 Cl 2 and o- A nd m-carboranes (1984) J. Organomet. Chem., 267, pp. 73-79
  • Ohta, K., Goto, T., Yamazaki, H., Pichierri, F., Endo, Y., Facile and Efficient Synthesis of C-Hydroxycarboranes and C,C-Dihydroxycarboranes (2007) Inorg. Chem., 46, pp. 3966-3970
  • Oliva, J.M., Serrano-Andrés, L., A computational study of the lowest singlet and triplet states of neutral and dianionic 1,2-substituted icosahedral and octahedral o-carboranes (2006) J. Comput. Chem., 27, pp. 524-535
  • Novikov, V.V., Pavlov, A.A., Nelyubina, Y.V., Boulon, M.-E., Varzatskii, O.A., Voloshin, Y.Z., Winpenny, R.E.P., A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior (2015) J. Am. Chem. Soc., 137, pp. 9792-9795
  • Postnikov, A.V., Kortus, J., Pederson, M.R., Density functional studies of molecular magnets (2006) Phys. Status Solidi B, 243, pp. 2533-2572
  • Cumby, J., Attfield, J.P., Ellipsoidal Analysis of Coordination Polyhedra (2017) Nat. Commun., 8, p. 14235
  • Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 33, pp. 8822-8824
  • Becke, A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior (1988) Phys. Rev. A: At., Mol., Opt. Phys., 38, pp. 3098-3100
  • Schäfer, A., Horn, H., Ahlrichs, R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr (1992) J. Chem. Phys., 97, pp. 2571-2577
  • Vahtras, O., Almlöf, J., Feyereisen, M., Integral Approximations for LCAO-SCF Calculations (1993) Chem. Phys. Lett., 213, pp. 514-518
  • Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
  • Angeli, C., Cimiraglia, R., Malrieu, J.-P., N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant (2001) Chem. Phys. Lett., 350, pp. 297-305
  • Angeli, C., Cimiraglia, R., Evangelisti, S., Leininger, T., Malrieu, J.-P., Introduction of n-electron valence states for multireference perturbation theory (2001) J. Chem. Phys., 114, pp. 10252-10264
  • Angeli, C., Cimiraglia, R., Malrieu, J.-P., N-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants (2002) J. Chem. Phys., 117, pp. 9138-9153
  • Pierloot, K., Phung, Q.M., Domingo, A., Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory (2017) J. Chem. Theory Comput., 13, pp. 537-553
  • Neese, F., The ORCA program system (2012) Wiley Interdisciplinary Reviews: Comput. Mol. Sci., 2, pp. 73-78
  • Rechkemmer, Y., Breitgoff, F.D., Van Der Meer, M., Atanasov, M., Hakl, M., Orlita, M., Neugebauer, P., Van Slageren, J., A Four-Coordinate Cobalt(II) Single-ion Magnet with Coercivity and a Very High Energy Barrier (2016) Nat. Commun., 7, p. 10467
  • Chibotaru, L.F., Gao, S., (2014) Molecular Nanomagnets and Related Phenomena, pp. 185-230. , Springer International: Chapter 4
  • Todd, M.J., Yildirim, E.A., On Khachiyan's Algorithm for the Computation of Minimum-volume Enclosing Ellipsoids (2007) Discrete Appl. Math., 155, pp. 1731-1744

Citas:

---------- APA ----------
Onia, O.B., Alcoba, D.R., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., Oliva-Enrich, J.M.,..., Peralta, J.E. (2019) . Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands. Inorganic Chemistry, 58(4), 2550-2557.
http://dx.doi.org/10.1021/acs.inorgchem.8b03156
---------- CHICAGO ----------
Onia, O.B., Alcoba, D.R., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. "Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands" . Inorganic Chemistry 58, no. 4 (2019) : 2550-2557.
http://dx.doi.org/10.1021/acs.inorgchem.8b03156
---------- MLA ----------
Onia, O.B., Alcoba, D.R., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. "Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands" . Inorganic Chemistry, vol. 58, no. 4, 2019, pp. 2550-2557.
http://dx.doi.org/10.1021/acs.inorgchem.8b03156
---------- VANCOUVER ----------
Onia, O.B., Alcoba, D.R., Massaccesi, G.E., Torre, A., Lain, L., Melo, J.I., et al. Magnetic Properties of Co(II) Complexes with Polyhedral Carborane Ligands. Inorg. Chem. 2019;58(4):2550-2557.
http://dx.doi.org/10.1021/acs.inorgchem.8b03156