Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The conditions of extrusion process for food packaging are determinant on their morphology and, as consequence, on their functionality. The effect of the screw speed of a starch-glycerol system extruded at the same temperature profile was evaluated. The process at 80 rpm led to a material with the starch completely gelatinized, while the systems fabricated at 40 rpm and 120 rpm presented broken starch grains. The morphology and density of the broken grains depended on the screw speed. The material at 120 rpm showed broken grains with smaller size and lower concentration than that observed in the system at 40 rpm. After pressing at 120 rpm, the film formed (TPS120) resulted similar than that at 80 rpm (TPS80), while the film at 40 rpm (TPS40) kept some broken grains. TGA of the material obtained at 40 rpm showed more than one degradation process of the glycerol due to the inhomogeneous glycerol dispersion. DRX revealed more cristallinity in TPS40, being TPS120 the most amorphous. TPS80 had the highest strain at break while the others the higher modulus and stress at break. Water vapor permeability of TPS80 and TPS120 showed similar results and lower than TPS40. © 2017

Registro:

Documento: Artículo
Título:Influence of extrusion process conditions on starch film morphology
Autor:González-Seligra, P.; Guz, L.; Ochoa-Yepes, O.; Goyanes, S.; Famá, L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LPM&C), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (1428), Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, CONICET, Universidad Nacional de San Martín, 25 de Mayo y Francia (1650), San Martín, Provincia de Buenos Aires, Argentina
Palabras clave:Extrusion process conditions; Morphology; Physicochemical properties; Screw speed; Starch; Dispersions; Glycerol; Morphology; Screws; Starch; Degradation process; Extrusion process; Food packaging; Physicochemical property; Screw speed; Strain at break; Temperature profiles; Water vapor permeability; Extrusion
Año:2017
Volumen:84
Página de inicio:520
Página de fin:528
DOI: http://dx.doi.org/10.1016/j.lwt.2017.06.027
Título revista:LWT
Título revista abreviado:LWT
ISSN:00236438
CODEN:LBWTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v84_n_p520_GonzalezSeligra

Referencias:

  • Alam, M.S., Pathania, S., Sharma, A., Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings (2016) LWT-Food Science and Technology, 74, pp. 135-144
  • Bashir, K., Swer, T.L., Prakash, K.S., Aggarwal, M., Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch (2017) LWT-Food Science and Technology, 76, pp. 131-139
  • Borries-Medrano, E., Jaime-Fonseca, M.R., Aguilar-Mendez, M.A., Starch-guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion (2016) Food Chemistry, 194, pp. 891-899
  • Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity (1995) LWT-Food Science and Technology, 28 (1), pp. 25-30
  • Campos-Requena, V.H., Rivas, B.L., Pérez, M.A., Garrido-Miranda, K.A., Pereira, E.D., Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release (2015) European Polymer Journal, 71, pp. 461-475
  • Chaudhary, A.L., Miler, M., Torley, P.J., Sopade, P.A., Halley, P.J., Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize (2008) Carbohydrate Polymers, 74 (4), pp. 907-913
  • Deng, J., Li, K., Harkin-Jones, E., Price, M., Karnachi, N., Kelly, A., Energy monitoring and quality control of a single screw extruder (2014) Applied Energy, 113, pp. 1775-1785
  • Famá, L., Bittante, A.M.B., Sobral, P.J., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30 (6), pp. 853-859
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydrate Polymers, 70, pp. 265-273
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydrate Polymers, 83 (3), pp. 1226-1231
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT-food Science and Technology, 38 (6), pp. 631-639
  • Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
  • Farhat, I., Blanshard, J., Mitchell, J., The retrogradation of waxy maize starch extrudates: Effects of storage temperature and water content (2000) Biopolymers, 53 (5), pp. 411-422
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
  • García, N., Famá, L., D'Accorso, N., Goyanes, S., Biodegradable starch nanocomposites (2015) Eco-friendly polymer nanocomposites, pp. 17-77. , V.K. Thakur M.K. Thakur Springer India
  • Ghanbarzadeh, B., Almasi, H., Biodegradable polymers (2013) Biodegradation – life of science, pp. 141-186. , R. Chamy F. Rosenkranz InTech Publications Croatia
  • Gilfillan, W.N., Moghaddam, L., Bartley, J., Doherty, W.O.S., Thermal extrusion of starch film with alcohol (2016) Journal of Food Engineering, 170, pp. 92-99
  • Godavarti, S., Karwe, M., Determination of specific mechanical energy distribution on a twin-screw extruder (1997) Journal of Agricultural Engineering Research, 67 (4), pp. 277-287
  • González-Seligra, P., Eloy-Moura, L., Famá, L., Druzian, J.I., Goyanes, S., Influence of incorporation of starch nanoparticles in PBAT/TPS composite films (2016) Polymer International, 65, pp. 938-945
  • Goudarzi, V., Shahabi-Ghahfarrokhi, I., Babaei-Ghazvini, A., Preparation of ecofriendly UV-protective food packaging material by starch/TiO 2 bio-nanocomposite: Characterization (2017) International Journal of Biological Macromolecules, 95, pp. 306-313
  • Graaf, R.A., Karman, A.P., Janssen, L.P., Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing (2003) Starch-Stärke, 55 (2), pp. 80-86
  • Gutiérrez, T.J., Morales, N.J., Pérez, E., Tapia, M.S., Famá, L., Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches (2015) Food Packaging and Shelf Life, 3, pp. 1-8
  • Hietala, M., Mathew, A.P., Oksman, K., Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion (2013) European Polymer Journal, 49 (4), pp. 950-956
  • Homayouni, H., Kavoosi, G., Nassiri, S.M., Physicochemical, antioxidant and antibacterial properties of dispersion made from tapioca and gelatinized tapioca starch incorporated with carvacrol (2017) LWT-Food Science and Technology, 77, pp. 503-509
  • Hu, G., Chen, J., Gao, J., Preparation and characteristics of oxidized potato starch films (2009) Carbohydrate Polymers, 76 (2), pp. 291-298
  • Jaramillo, C.M., Gutiérrez, T.J., Goyanes, S., Bernal, C., Famá, L., Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films (2016) Carbohydrate Polymers, 151, pp. 150-159
  • Kelly, A.L., Brown, E.C., Coates, P.D., The effect of screw geometry on melt temperature profile in single screw extrusion (2006) Polymer Engineering & Science, 46 (12), pp. 1706-1714
  • Kibar, E.A.A., Us, F., Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films (2013) Journal of Food Engineering, 114 (1), pp. 123-131
  • Kruiskamp, P., Smits, A., Van Soest, J., Vliegenthart, J., The influence of plasticiser on molecular organisation in dry amylopectin measured by differential scanning calorimetry and solid state nuclear magnetic resonance spectroscopy (2001) Journal of Industrial Microbiology and Biotechnology, 26 (1-2), pp. 90-93
  • Lai, L., Kokini, J., The effect of extrusion operating conditions on the on-line apparent viscosity of 98% Amylopectin (Amioca) and 70% Amylose (Hylon 7) corn starches during extrusion (1990) Journal of Rheology, 34 (8), pp. 1245-1266
  • Lai, L., Kokini, J., Physicochemical changes and rheological properties of starch during extrusion. (A review) (1991) Biotechnology Progress, 7 (3), pp. 251-266
  • Lara, S.C., Salcedo, F., Gelatinization and retrogradation phenomena in starch/montmorillonite nanocomposites plasticized with different glycerol/water ratios (2016) Carbohydrate Polymers, 151, pp. 206-212
  • Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., Extrusion processing and characterization of edible starch films with different amylose contents (2011) Journal of Food Engineering, 106 (1), pp. 95-101
  • Liu, H., Xie, F., Yu, L., Chen, L., Li, L., Thermal processing of starch-based polymers (2009) Progress in Polymer Science, 34 (12), pp. 1348-1368
  • Madrigal, L., Sandoval, A.J., Müller, A.J., Effects of corn oil on glass transition temperatures of cassava starch (2011) Carbohydrate Polymers, 85 (4), pp. 875-884
  • Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A., Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemon grass oil (2007) Journal of Food Science, 72 (6), pp. 324-330
  • Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299
  • Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., Chiralt, A., Physical and bioactive properties of corn starch–Buttermilk edible films (2014) Journal of Food Engineering, 141, pp. 27-36
  • Oniszczuk, T., Wójtowicz, A., Oniszczuk, A., Mitrus, M., Combrzyński, M., Kręcisz, M., Effect of processing conditions on selected properties of starch-based biopolymers (2015) Agriculture and Agricultural Science Procedia, 7, pp. 192-197
  • Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S., Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging (2017) Food Hydrocolloids, 63, pp. 488-495
  • Rodríguez-Castellanos, W., Martínez-Bustos, F., Rodrigue, D., Trujillo-Barragán, M., Extrusion blow molding of a starch–gelatin polymer matrix reinforced with cellulose (2015) European Polymer Journal, 73, pp. 335-343
  • Rosa, D., Carvalho, C., Gaboardi, F., Rezende, M., Tavares, M., Petro, M., Evaluation of enzymatic degradation based on the quantification of glucose in thermoplastic starch and its characterization by mechanical and morphological properties and NMR measurements (2008) Polymer Testing, 27 (7), pp. 827-834
  • Saiah, R., Sreekumar, P.A., Gopalakrishnan, P., Leblanc, N., Gattin, R., Saiter, J.M., Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers (2009) Polymer Composites, 30 (11)
  • Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent (2016) Carbohydrate Polymers, 138, pp. 66-74
  • Van Soest, J.J., Hulleman, S., De Wit, D., Vliegenthart, J., Crystallinity in starch bioplastics (1996) Industrial Crops and Products, 5 (1), pp. 11-22
  • Wang, Y.Y., Ryu, G.-H., Physicochemical and antioxidant properties of extruded corn grits with corn fiber by CO2 injection extrusion process (2013) Journal of Cereal Science, 58 (1), pp. 110-116
  • Wang, K., Wang, W., Ye, R., Liu, A., Xiao, J., Liu, Y., Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations (2017) Food Chemistry, 216, pp. 209-216
  • Xie, M., Duan, Y., Li, F., Wang, X., Cui, X., Bacha, U., Preparation and characterization of modified and functional starch (hexadecyl corboxymethyl starch) ether using reactive extrusion (2016) Starch-Stärke, 68, pp. 1-9
  • Xie, F., Flanagan, B.M., Li, M., Truss, R.W., Halley, P.J., Gidley, M.J., Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate (2015) Carbohydrate Polymers, 122, pp. 160-168
  • Zepon, K.M., Vieira, L.F., Soldi, V., Salmoria, G.V., Kanis, L.A., Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion (2013) Polymer Testing, 32 (6), pp. 1123-1127

Citas:

---------- APA ----------
González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S. & Famá, L. (2017) . Influence of extrusion process conditions on starch film morphology. LWT, 84, 520-528.
http://dx.doi.org/10.1016/j.lwt.2017.06.027
---------- CHICAGO ----------
González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., Famá, L. "Influence of extrusion process conditions on starch film morphology" . LWT 84 (2017) : 520-528.
http://dx.doi.org/10.1016/j.lwt.2017.06.027
---------- MLA ----------
González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., Famá, L. "Influence of extrusion process conditions on starch film morphology" . LWT, vol. 84, 2017, pp. 520-528.
http://dx.doi.org/10.1016/j.lwt.2017.06.027
---------- VANCOUVER ----------
González-Seligra, P., Guz, L., Ochoa-Yepes, O., Goyanes, S., Famá, L. Influence of extrusion process conditions on starch film morphology. LWT. 2017;84:520-528.
http://dx.doi.org/10.1016/j.lwt.2017.06.027