Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The three-electrode plasma reactor for the treatment of polluted gases combines a dielectric-barrier discharge with a remote third electrode, designed to enhance streamer propagation in a relatively large region. In this paper, experimental studies of the electrical magnitudes of the discharge for different electrode bias voltage configurations are presented. Also, the Laplacian electric field distribution in the interelectrode gap is calculated for each configuration. The degradation efficiency of NO in an N2 atmosphere for the different configurations is also reported. It is found that the discharge is generated only for that electrode bias configuration for which the external electric field promotes the streamer propagation across the electrode gap. Also, for a triggered discharge, the reactor efficiency for the removal of NO changes with the different electrode bias configurations. This result can be explained in terms of the electric field intensity. The configuration with higher external electric field improves the number of streamers propagating in the interelectrode gap so that more reactive species generated in the streamers are effectively entrained in the gas flow to be treated. © 1973-2012 IEEE.

Registro:

Documento: Artículo
Título:Operation of a Three-Electrode Reactor with Different Electrode Bias Potential Configurations
Autor:Gallego, J.L.; Minotti, F.; Grondona, D.
Filiación:Facultad de Ciencias Exactas y Naturales, Instituto de Física Del Plasma, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Palabras clave:Atmospheric-pressure plasmas; discharges (electric); plasma applications; Degradation; Dielectric materials; Efficiency; Electric fields; Electrodes; Flow of gases; Plasma applications; Degradation efficiency; Dielectric barrier discharges; Electric field distributions; Electric field intensities; External electric field; Interelectrode gaps; Reactor efficiency; Streamer propagation; Electric discharges
Año:2017
Volumen:45
Número:1
Página de inicio:54
Página de fin:59
DOI: http://dx.doi.org/10.1109/TPS.2016.2631408
Título revista:IEEE Transactions on Plasma Science
Título revista abreviado:IEEE Trans Plasma Sci
ISSN:00933813
CODEN:ITPSB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00933813_v45_n1_p54_Gallego

Referencias:

  • Masuda, S., Nakao, H., Control of NOx by positive and negative pulsed corona discharges (1990) IEEE Trans. Ind. Appl., 26 (2), pp. 374-383. , Mar./Apr
  • Shang, K., Zhuo, Y., Wu, Y., Simultaneous removal of SO2/NOx by corona disharge plasma (2009) Proc. ICEET, 3, pp. 106-109
  • Mizuno, A., Industrial applications of atmospheric non-thermal plasma in environmental remediation (2007) Plasma Phys. Control. Fusion, 49 A (5), pp. A1-A15
  • Khacef, A., Cormier, J.M., Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: Removal of SO2 and NOx (2006) J. Phys. D, Appl. Phys., 39 (6), pp. 1078-1083
  • Wang, T., Effect of reactor structure in DBD for nonthermal plasma processing of NO in N2 at ambient temperature (2012) Plasma Chem. Plasma Process., 32 (6), pp. 1189-1201
  • Pacheco, M., Removal of main exhaust gases of vehicles by a double dielectric barrier discharge (2012) J. Phys., Conf. Ser., 370 (1), p. 012023
  • Van Durme, J., Dewulf, J., Leys, C., Van Langenhove, H., Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review (2008) Appl. Catal. B, Environ., 78 (3-4), pp. 324-333. , Feb
  • Dors, M., Mizeraczyk, J., Nichipor, G.V., Mok, Y.S., The role of surface reactions in De-NOx processes in corona discharge-catalyst (or zeolite) hybrid systems (2005) J. Adv. Oxidation Technol., 8 (2), pp. 212-217
  • Yu, Q., Wang, H., Liu, T., Xiao, L., Jiang, X., Zheng, X., High-efficiency removal of NOx using a combined adsorptiondischarge plasma catalytic process (2012) Environ. Sci. Technol., 46 (4), pp. 2337-2344
  • Grondona, D., Allen, P., Kelly, H., Development of a coaxial-stacked trielectrode plasma curtain (2011) IEEE Trans. Plasma Sci., 39 (6), pp. 1466-1469. , Jun
  • Gallego, J.L., Minotti, F., Grondona, D., Experimental and theoretical study of the efficiency of a three-electrode reactor for the removal of NO (2014) J. Phys. D, Appl. Phys., 47 (20), p. 205202
  • Hernandes, J.A., Assis, A.K.T., Electric potential due to an infinite conducting cylinder with internal or external point charge (2005) J. Electrost., 63 (12), pp. 1115-1131
  • Liang, C.H., Li, L., Zhai, H.Q., Asymptotic closed form for the capacitance of an arbitrarily shaped conducting plate (2004) IEE Proc. Microw., Antennas Propag., 151 (3), pp. 217-220. , Jun
  • Raizer, Y.P., Spark and corona discharges (1991) Gas Discharge Physics, p. 355. , J. E. Allen, Ed., Oxford, U.K.: Springer

Citas:

---------- APA ----------
Gallego, J.L., Minotti, F. & Grondona, D. (2017) . Operation of a Three-Electrode Reactor with Different Electrode Bias Potential Configurations. IEEE Transactions on Plasma Science, 45(1), 54-59.
http://dx.doi.org/10.1109/TPS.2016.2631408
---------- CHICAGO ----------
Gallego, J.L., Minotti, F., Grondona, D. "Operation of a Three-Electrode Reactor with Different Electrode Bias Potential Configurations" . IEEE Transactions on Plasma Science 45, no. 1 (2017) : 54-59.
http://dx.doi.org/10.1109/TPS.2016.2631408
---------- MLA ----------
Gallego, J.L., Minotti, F., Grondona, D. "Operation of a Three-Electrode Reactor with Different Electrode Bias Potential Configurations" . IEEE Transactions on Plasma Science, vol. 45, no. 1, 2017, pp. 54-59.
http://dx.doi.org/10.1109/TPS.2016.2631408
---------- VANCOUVER ----------
Gallego, J.L., Minotti, F., Grondona, D. Operation of a Three-Electrode Reactor with Different Electrode Bias Potential Configurations. IEEE Trans Plasma Sci. 2017;45(1):54-59.
http://dx.doi.org/10.1109/TPS.2016.2631408