Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The partitioning of water sorption isotherms into different zones, according to the strength of water interactions with solids has very important practical applications. However, the dynamic properties of water play an important role in complementing the information provided by water sorption isotherms. One of the most successful techniques used to prove the dynamic behavior of water in foods systems is pulsed NMR. The aim of this study was to apply the concept of proton mobility in order to better define the water-related dynamic aspects of freeze-dried fruits. Different water mobility populations were defined through 1H NMR transversal relaxation times, obtained after the application of several pulses sequences. The water content limits at which proton populations with different mobility appeared, allowed a more complete and precise description of water behavior at the different sorption stages than the parameters obtained by the application of sorption mathematical models. © 2013 Published by Elsevier Ltd.

Registro:

Documento: Artículo
Título:Proton mobility for the description of dynamic aspects of freeze-dried fruits
Autor:Agudelo-Laverde, L.M.; Schebor, C.; Buera, M.D.P.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
Palabras clave:Freeze-dried; GAB; Generalized D'Arcy and Watt equation; Low field 1H NMR; Water sorption isotherms; Freeze-dried; GAB; Generalized D'Arcy and Watt equation; Low field; Water sorption isotherms; Adsorption isotherms; Fruits; Mathematical models; Protons
Año:2014
Volumen:125
Número:1
Página de inicio:44
Página de fin:50
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2013.10.029
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v125_n1_p44_AgudeloLaverde

Referencias:

  • Acevedo, N.C., Briones, V., Buera, P., Aguilera, J.M., Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs (2008) Journal of Food Engineering, 85 (2), pp. 222-231. , DOI 10.1016/j.jfoodeng.2007.06.037, PII S0260877407003743
  • Adamson, A.W., (1963) Physical Chemistry of Surfaces, , Wiley Wiley
  • Agudelo-Laverde, L.M., Acevedo, N., Schebor, C., Buera, M.P., Integrated approach for interpreting browning rate dependence with relative humidity in dehydrated fruits (2011) LWT Food Science and Technology, 44, pp. 963-968
  • Bolin, H.R., Relation of moisture to water activity in prunes and raisins (1980) Journal of Food Science, 45, pp. 1190-1192
  • Brunauer, S., Emmet, P., Teller, E., Adsorption of gases in multimolecular layers (1938) Journal of the American Chemical Society, 60, pp. 309-319
  • Brunauer, S., Demming, L., Demming, W., Teller, E., On a theory of the Van der Waals adsorption of gases (1940) Journal of the American Chemical Society, 62, pp. 1723-1732
  • Carr, H.Y., Purcell, E.M., Effects of diffusion on free precession in Nuclear Magnetic Resonance Experiments (1954) Physical Review, 94, pp. 630-638
  • Cohen, S., Tzuri, G., Harel-Beja, R., Itkin, M., Portnoy, V., Sa'Ar, U., Lev, S., Tadmor, Y., Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.) (2012) Theoretical and Applied Genetics, 125, pp. 343-353
  • D'Arcy, R.L., Watt, I.C., Analysis of sorption isotherms of nonhomogeneous sorbents (1970) Transaction Faraday Society, 66, pp. 1236-1240
  • Delgado, A.E., Rubiolo, A.C., Microstructural changes in strawberry after freezing and thawing processes (2005) LWT - Food Science and Technology, 38 (2), pp. 135-142. , DOI 10.1016/j.lwt.2004.04.015, PII S0023643804001306
  • Fennema, O., Water and ice (1996) Food Chemistry, , S. Damodaran, K. Parkin, O. Fennema, CRC Press New York
  • Fennema, O., Water: The star of biomanipulators obscured in a cloud of superficial familiarity (1999) Water Management in the Design and Distribution of Quality Foods: ISOPOW 7, , Y.H. Roos, R.B. Leslie, P.J. Lillford, Technomic Publishing Company, Inc. Pennsylvania, USA
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , F.W. Wehrli, VCH Publishers New York
  • Furmaniak, S., Terzyk, A.P., Gauden, P.A., The general mechanism of water sorption on foodstuffs - Importance of the multitemperature fitting of data and the hierarchy of models (2007) Journal of Food Engineering, 82 (4), pp. 528-535. , DOI 10.1016/j.jfoodeng.2007.03.012, PII S026087740700180X
  • Furmaniak, S., Terzyk, A.P., Gauden, P.A., Rychlicki, G., Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs (2007) Journal of Food Engineering, 79 (2), pp. 718-723. , DOI 10.1016/j.jfoodeng.2006.02.036, PII S0260877406002251
  • Furmaniak, S., Terzyk, A.P., Gołembiewski, R., Gauden, P.A., Czepirski, L., Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity (2009) Food Research International, 42, pp. 1203-1214
  • Furmaniak, S., Terzyk, A.P., Gauden, P.A., Some remarks on the classification of water vapor sorption isotherms and Blahovec and Yanniotis isotherm equation (2011) Drying Technology, 29, pp. 984-991
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Institute of Standards and Technology, 8, pp. 89-96
  • Guiné, R., Castro, J., Experimental determination and computer fitting of desorption isotherms of D. Joaquina pears (2002) Institutions of Chemical Engineers, 80, pp. 149-154
  • Hahn, E.L., Spin echoes (1950) Physical Review, 80 (4), pp. 580-594
  • Haque, E., Bhandari, B.R., Gidley, M.J., Deeth, H.C., Moller, S.M., Whittaker, A.K., Protein conformational modifications and kinetics of water-protein interactions in milk protein concentrate powder upon aging: Effect on solubility (2010) Journal of Agricultural and Food Chemistry, 58, pp. 7748-7755
  • Harnkarnsujarit, N., Charoenrein, S., Effect of water activity on sugar crystallization and b-carotene stability of freeze-dried mango powder (2011) Journal of Food Engineering, 105, pp. 592-598
  • Hills, B.P., NMR studies of water mobility in foods (1999) Water Management in the Design and Distribution of Quality Foods: ISOPOW 7, , Y.H. Roos, R.B. Leslie, P.J. Lillford, Technomic Publishing Company, Inc. Pennsylvania, USA
  • Hills, B.P., Remigereau, B., NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing (1997) International Journal of Food Science and Technology, 32 (1), pp. 51-61
  • Kaya, A., Fahrettin, G., Medeni, M., Moisture sorption isotherms of grape pestil and foamed grape pestil (2002) Nahrung - Food, 46 (2), pp. 73-75. , DOI 10.1002/1521-3803(20020301)46:2<73::AID-FOOD73>3.0.CO;2-N
  • Khalloufi, S., Ratti, C., Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure (2003) Journal of Food Science, 68 (3), pp. 892-903
  • Kou, Y., Molitor, P.F., Schmidt, S.J., Mobility and stability characterization of model food systems using NMR, DSC, and conidia germination techniques (1999) Journal of Food Science, 64 (6), pp. 950-959
  • Labuza, T., Sorption phenomena in foods (1968) Food Technology, 24, pp. 543-550
  • Labuza, T.P., Enthalpy/entropy compensation in food reactions (1980) Food Technology, 2, pp. 67-77
  • Labuza, T., Tannenbaum, S., Karel, M., Water content and stability of low-moisture and intermediate moisture foods (1970) Food Technology, 24 (12), pp. 543-550
  • Le Meste, M., Voilley, A., Colas, B., 1991. Influence of water on the mobility of small molecules dispersed in a polymeric system. In: Levine, H., Slade, L. (Eds.), Water Relationship in Foods Advances in the 1980s and Trend for the 1990s, New York, pp. 123-138; Leinen, K.M., Labuza, T.P., Crystallization inhibition of an amorphous sucrose system using raffinose (2006) Journal of Zhejiang University Science B, 7 (2), pp. 85-89
  • Meiboom, S., Gill, D., Modified spin-echo method for measuring nuclear magnetic relaxation times (1958) Review of Scientific Instruments, 29, pp. 688-691
  • Moraga, G., Talens, P., Moraga, M.J., Martínez-Navarrete, N., Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices (2011) Journal of Food Engineering, 106, pp. 212-219
  • Pancoast, H.M., Junk, W., (1980) Handbook of Sugars, , AVI Pub. Co. Westport Conn. (USA) p. 598
  • Pitombo, R.N.M., Lima, G.A.M.R., Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish (2003) Journal of Food Engineering, 58, pp. 59-66
  • Richardson, S.J., Baianu, I.C., Steinberg, M.P., Mobility of water in starch powders determined by nuclear magnetic resonance (1987) Starch, 39 (6), pp. 198-203
  • Schebor, C., Chirife, J., Buera, M.P., 2002. Amorphous-crystalline transitions and water sorption behavior in raffinose systems. In: Bottini, S., Pereda, S. (Eds.), Proceedings IV Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design (in CD), EQ 98, p. 10; Schmidt, S.J., 2004. Water and solid mobility in foods. In: Taylor, S.L. (Ed.), Advance in Food and, Nutrition Research, vol. 48. Nebraska; Silalai, N., Roos, Y.H., Roles of water and solids composition in the control of glass transition and stickiness of milk powders (2010) Journal of Food Science, 75 (5), pp. 285-296
  • Simatos, D., Karel, M., 1988. Characterization of the condition of water in foods: physico-chemical aspects. In: Seow, C. (Ed.), Food Preservation by Moisture Control, vol. 24-30. New York; Timmermann, E.O., Multilayer sorption parameters: BET or GAB values? (2003) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 220 (1-3), pp. 235-260. , DOI 10.1016/S0927-7757(03)00059-1
  • Timmermann Ernesto, O., Chirife Jorge, Physical state of water sorbed at high activities in starch in terms of the GAB sorption equation (1991) Journal of Food Engineering, 13 (3), pp. 171-179. , DOI 10.1016/0260-8774(91)90025-N
  • Tolaba, M.P., Peltzer, M., Enriquez, N., Pollio, M.L., Grain sorption equilibria of quinoa grains (2004) Journal of Food Engineering, 61, pp. 365-371
  • Tóth-Markus, M., Bánáti, D., Adányi, N., Boross, F., Konrád-Németh, C., Szabó, Z., Soltész, M., Nyéki, J., Composition and storage of pear cultivars from Nagykanizsa (2011) International Journal of Horticultural Science, 17 (12), pp. 63-68
  • Van den Berg, C., Bruin, S., 1981. Water activity and its estimation in foods systems: theoretical aspects. In: Rockland, L.B., Stewart, G.F. (Eds.), Water Activity: Influences on Food Quality, New York, pp. 1-61; Viganó, J., Azuara, E., Telis, V.R.N., Beristain, C.I., Jiménez, M., Telis-Romero, J., Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods (2012) Thermochimica Acta, 528, pp. 63-71

Citas:

---------- APA ----------
Agudelo-Laverde, L.M., Schebor, C. & Buera, M.D.P. (2014) . Proton mobility for the description of dynamic aspects of freeze-dried fruits. Journal of Food Engineering, 125(1), 44-50.
http://dx.doi.org/10.1016/j.jfoodeng.2013.10.029
---------- CHICAGO ----------
Agudelo-Laverde, L.M., Schebor, C., Buera, M.D.P. "Proton mobility for the description of dynamic aspects of freeze-dried fruits" . Journal of Food Engineering 125, no. 1 (2014) : 44-50.
http://dx.doi.org/10.1016/j.jfoodeng.2013.10.029
---------- MLA ----------
Agudelo-Laverde, L.M., Schebor, C., Buera, M.D.P. "Proton mobility for the description of dynamic aspects of freeze-dried fruits" . Journal of Food Engineering, vol. 125, no. 1, 2014, pp. 44-50.
http://dx.doi.org/10.1016/j.jfoodeng.2013.10.029
---------- VANCOUVER ----------
Agudelo-Laverde, L.M., Schebor, C., Buera, M.D.P. Proton mobility for the description of dynamic aspects of freeze-dried fruits. J Food Eng. 2014;125(1):44-50.
http://dx.doi.org/10.1016/j.jfoodeng.2013.10.029