Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interfacial properties at the air-water (A/W) of each individual whey proteins (β-lactoglobulin, β-lg; α-lactalbumin, α-la; bovin serum albumin, BSA), and their mixtures with a surface-active polysaccharide, hydroxypropylmethylcellulose (HPMC) were studied at pH 3 or 6. The interfacial films were studied by measurement surface pressure (π) isotherms and dynamics of adsorption. At equilibrium proteins surface activity was affected by pH only at low concentrations (below 1·10-2%wt/wt), due to their pH-dependent conformational changes. HPMC resulted less surface active at pH 3 (below 1·10-4%wt/wt concentration) that at pH 6. On kinetic studies (π-t), the behavior of β-lg, HPMC and BSA did not change with pH but α-la presented a higher surface activity at pH 3 than 6, even on saturating bulk concentrations. Mixtures of β-lg or BSA with HPMC showed a behavior in between that of single components revealing a net competence for the interface but the mixture α-la and HPMC at pH 6 showed an enhance adsorption. Rheological studies (surface dilatational elastic, Ed, over time) presented the major differences for pHs evaluated. The α-la formed extremely viscoelastic films at pH 6.0, while at pH 3 has the lowest Ed value. β-lg and HPMC films were more viscoelastic at pH 6, being Ed protein film higher. Finally, BSA presented the lowest viscoelastic films without differences between both pHs. For mixtures: i) at pH 6 β-lg/HPMC mixture Ed was dominated by HPMC; at pH 3.0, Ed begins dominated by HPMC, reaching an intermediate value; ii) α-la/HPMC mixture formed more viscoelastic films at pH 6.0 with an intermediate Ed value, while at pH 3.0 the Ed is dominated by protein; iii) BSA/HPMC mixture presented a similar trend in Ed behavior at both pHs. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH
Autor:Jara, F.L.; Carrera Sánchez, C.; Rodríguez Patino, J.M.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Intendente Güiraldes s/n, Universidad de Buenos Aires, 1428Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina (CONICET), Argentina
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/ Prof. García González s/n, 41012 Sevilla, Spain
Palabras clave:α-Lactalbumin; β-Lactoglobulin; Air/water interface; Bovin serum albumin; Hydroxypropylmethylcellulose; PH-dependence
Año:2014
Volumen:35
Página de inicio:189
Página de fin:197
DOI: http://dx.doi.org/10.1016/j.foodhyd.2013.05.013
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v35_n_p189_Jara

Referencias:

  • Álvarez Gómez, J.M., Rodríguez Patino, J.M., Formulation engineering of food model foams containing diglycerol esters and β-lactoglobulin (2006) Industrial and Engineering Chemistry Research, 45 (22), pp. 7510-7519
  • Baeza, R.I., Carrera Sánchez, C., Pilosof, A.M.R., Rodríguez Patino, J.M., Interactions of polysaccharides with β-lactoglobulin spread monolayers at the air-water interface (2004) Food Hydrocolloids, 18, pp. 959-966
  • Baeza, R., Carrera Sánchez, C., Pilosof, A.M.R., Rodríguez Patino, J.M., Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air-water interface (2005) Food Hydrocolloids, 19 (2), pp. 239-248
  • Benjamins, J., Lyklema, J., Lucassen-Reynders, E.H., Compression/expansion rheology of oil/water interfaces with adsorbed proteins. Comparison with the air/water surface (2006) Langmuir, 22 (14), pp. 6181-6188
  • Camino, N.A., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Hydroxypropylmethylcellulose at the oil-water interface. Part I. Bulk behaviour and dynamic adsorption as affected by pH (2011) Food Hydrocolloids, 25, pp. 1-11
  • Camino, N.A., Pérez, O.E., Pilosof, A.M.R., Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound (2009) Food Hydrocolloids, 23, pp. 1089-1095
  • Cascão Pereira, L.G., Théodoly, O., Blanch, H.W., Radke, C.J., Dilatational rheology of BSA conformers at the air/water interface (2003) Langmuir, 19, pp. 2349-2356
  • Cornec, M., Dennis, A.K., Narsimhan, G., Adsorption dynamics and interfacial properties of α-lactalbumin in native and molten globule state conformation at air-water interface (2001) Food Hydrocolloids, 15, pp. 303-313
  • Damodaran, S., Song, K.B., Kinetics of adsorption of proteins at interfaces: role of protein conformation in diffusional adsorption (1988) Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 954, pp. 253-264
  • Dickinson, E., (1992) Protein at liquid interfaces. An introduction to food colloids, , Oxford University Press, Oxford
  • Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems (2003) Food Hydrocolloids, 17 (1), pp. 25-39
  • Foster, J.F., (1977) Albumin structure, function and uses, pp. 53-84. , Pergamon, Oxford, V.M. Rosenoer, M. Oratz, M.A. Rothschild (Eds.)
  • Gottschalk, M., Nilsson, H., Roos, H., Halle, B., Protein self-association in solution: the bovine β-lactoglobulin dimer and octamer (2003) Protein Science, 12, pp. 2404-2411
  • Graham, D.E., Philips, M.C., Proteins at liquid interfaces: II. Adsorption isotherms (1979) Journal of Colloid and Interface Science, 70, pp. 415-426
  • Graham, D.E., Phillips, M.C., Proteins at liquid interfaces: I. Kinetics of adsorption and surface denaturation (1979) Journal of Colloid and Interface Science, 70 (3), pp. 403-414
  • Jara, F.L., Pilosof, A.M.R., Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation (2009) Thermochimica Acta, 487, pp. 65-73
  • Kontopidis, G., Holt, C., Sawyer, L., β-lactoglobulin: binding properties, structure, and function (2004) Journal of Dairy Science, 87, pp. 785-796
  • Kronman, M.J., Metal-ion binding and the molecular conformational properties of alpha lactalbumin (1989) Critical Reviews in Biochemistry and Molecular Biology, 24 (6), pp. 565-667
  • Lankfeld, J.M.G., Lyklema, J., Adsorption of polyvinyl alcohol on the paraffin-water interface. I. Interfacial tension as a function of time and concentration (1972) Journal of Colloid and Interface Science, 41, pp. 454-465
  • Lucassen, J., Van Den Tempel, M., Dynamic measurements of dilational properties of a liquid interface (1972) Chemical Engineering Science, 27 (6), pp. 1283-1291
  • Martínez, K.D., Carrera Sánchez, C., Pizones Ruiz-Henestrosa, V., Rodríguez Patino, J.M., Pilosof, A.M.R., Soy protein-polysaccharides interactions at the air-water interface (2007) Food Hydrocolloids, 21, pp. 804-812
  • Martínez, M.J., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and β-lactoglobulin mixed systems (2009) Colloids and Surfaces B: Biointerfaces, 68, pp. 39-47
  • Murray, B.S., Interfacial rheology of food emulsifiers and proteins (2002) Current Opinion in Colloid & Interface Science, 7 (5-6), pp. 426-431
  • Ochoa-Machiste, E., Buckton, G., Dynamic surface tension studies of hydroxypropylmethycellulose film-coating solutions (1996) International Journal of Pharmaceutics, 145, pp. 197-201
  • Pérez, O.E., Carrera Sánchez, C., Pilosof, A.M.R., Rodríguez Patino, J.M., Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface (2009) Journal of Colloid and Interface Science, 336, pp. 485-496
  • Pérez, O.E., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Thermodynamic and dynamic characterization of hydroxypropylmethylcellulose adsorbed films at the air water interface (2006) Biomacromolecules, 7, pp. 388-393
  • Pérez, O.E., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Adsorption dynamics and surface activity at equilibrium of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface (2007) Food Hydrocolloids, 21, pp. 794-803
  • Pérez, O.E., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Dynamics of adsorption of hydroxypropyl methylcellulose at the air-water interface (2008) Food Hydrocolloids, 22, pp. 387-402
  • Pérez, O.E., Wargon, V., Pilosof, A.M.R., Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures (2006) Food Hydrocolloids, 20 (7), pp. 966-974
  • Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, M.N., Baker, E.N., Jameson, G.B., Structural basis of the Tanford transition of bovine β-lactoglobulin (1998) Biochemistry, 37, pp. 14014-14023
  • Razumovsky, L., Damodaran, S., Surface activity-compressibility relationship of proteins at the air-water interface (1999) Langmuir, 15, pp. 1392-1399
  • Rodríguez Niño, M.R., Rodríguez Patino, J.M., Surface tension of protein and insoluble lipids at the air-aqueous phase interface (1998) Journal American Oil Chemistry Society, 75, pp. 1233-1239
  • Rodríguez Niño, M.R., Rodríguez Patino, J.M., Effect of the aqueous phase composition on the adsorption of bovine serum albumin to the air-water interface (2002) Industrial and Engineering Chemistry Research, 41, pp. 1489-1495
  • Rodríguez Patino, J.M., Carrera Sánchez, C., Rodríguez Niño, M.R., Physico-chemical properties of surfactant and protein films (2008) Current Opinion in Colloid & Interface Science, 12, pp. 187-195
  • Rodríguez Patino, J.M., Pilosof, A.M.R., Protein-polysaccharide interactions at fluid interfaces (2011) Food Hydrocolloids, 25 (8), pp. 1925-1937
  • Rodríguez Patino, J.M., Rodríguez Niño, M.R., Carrera Sánchez, C., Adsorption of whey protein isolate at the air-water interface as a function of processing conditions: a rheokinetic study (1999) Journal of Agricultural and Food Chemistry, 47, pp. 2241-2248
  • Sakurai, K., Goto, Y., Principal component analysis of the pH-dependent conformational transitions of bovine β-lactoglobulin monitored by heteronuclear NMR (2007) Proceedings of the National Academy of Sciences, 104 (39), pp. 15346-15351
  • Sakurai, K., Konuma, T., Yagi, M., Goto, Y., Structural dynamics and folding of β-lactoglobulin probed by heteronuclear NMR (2009) Biochimica et Biophysica Acta, 1790 (6), pp. 527-537
  • Swaisgood, H.E., Developments in dairy chemistry (1982) Developments in dairy chemistry, pp. 132-147. , Elsevier Applied Science Publishers, London, U.K. P.F. Fox (Ed.)
  • Tanford, C., Bunville, L.G., Nozaki, Y., The reversible transformation of β-lactoglobulin at pH 7.5 (1959) Journal of the American Chemical Society, 81, pp. 4032-4036
  • Taulier, N., Chalikian, T.V., Characterization of pH-induced transitions of β-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies (2001) Journal of Molecular Biology, 314, pp. 873-889
  • Touhani, A., Dutcher, J.R., PH-induced changes in adsorbed β-lactoglobulin molecules measured using atomic force microscopy (2009) Soft Matter, 5, pp. 220-227
  • Uhrínová, S., Smith, M.H., Jameson, G.B., Uhrín, D., Sawyer, L., Barlow, P.N., Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer (2000) Biochemistry, 39, pp. 3565-3574
  • Waniska, R.D., Kinsella, J.E., Surface properties of beta-lactoglobulin: adsorption and rearrangement during film formation (1985) Journal of Agricultural and Food Chemistry, 33 (6), pp. 1143-1148
  • Wollenweber, C.A.V., Makievski, R., Daniels, R., Adsorption of hydroxypropylmethylcellulose at the liquid/liquid interface and the effect of the emulsion stability (2000) Colloids and Surface A, 172, pp. 91-101
  • Wüstneck, R., Moser, B., Muschiolik, G., Interfacial dilational behaviour of adsorbed β-lactoglobulin layers at the different fluid interfaces (1999) Colloids and Surfaces B: Biointerfaces, 15, pp. 263-273

Citas:

---------- APA ----------
Jara, F.L., Carrera Sánchez, C., Rodríguez Patino, J.M. & Pilosof, A.M.R. (2014) . Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocolloids, 35, 189-197.
http://dx.doi.org/10.1016/j.foodhyd.2013.05.013
---------- CHICAGO ----------
Jara, F.L., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R. "Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH" . Food Hydrocolloids 35 (2014) : 189-197.
http://dx.doi.org/10.1016/j.foodhyd.2013.05.013
---------- MLA ----------
Jara, F.L., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R. "Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH" . Food Hydrocolloids, vol. 35, 2014, pp. 189-197.
http://dx.doi.org/10.1016/j.foodhyd.2013.05.013
---------- VANCOUVER ----------
Jara, F.L., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R. Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocolloids. 2014;35:189-197.
http://dx.doi.org/10.1016/j.foodhyd.2013.05.013