Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Synthesis of noble metal nanoparticles using natural products and living organisms has drawn a lot of interest owing to economic prospects and potential applicability in different fields. For this work we used the exudate of the soil fungus Macrophomina phaseolina for a low-cost method of green synthesis to obtain stable silver-silver chloride nanoparticles (Ag/AgCl-NPs). Reaction parameters including media and AgNO3 concentration were further optimized for NPs production. Spectral analysis revealed a peak at 420 nm that corresponds to the surface plasmon resonance of silver NPs. Scanning electron microscopy (SEM) analysis unveiled NPs spherical morphology with a size range of 5–30 nm. The crystalline nature of the synthesized NPs was examined by X-ray diffraction (XRD) analysis. The green synthesized NPs showed activity against gram-positive and gram-negative bacteria. No effect in fungi or yeast cells was detected, though a high inhibitory effect was observed on bacteria growth kinetics. Interaction of bacteria with Ag/AgCl-NPs led to cell membrane damage as observed by SEM, followed by an increase in oxidative stress, being this the possible mechanism behind the strong bactericidal activity depicted. In order to test its possible applicability as a seed protection agent the effect of Ag/AgCl-NPs dosage on soybean (Glycine max L.) seed's germination was also examined. Interestingly, not only the germination process was not affected by the NPs dosage or time of seeds incubation, but also no oxidative damage was detected in seeds after exposure to the biogenic nanoparticles. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina
Autor:Spagnoletti, F.N.; Spedalieri, C.; Kronberg, F.; Giacometti, R.
Filiación:INBA-Instituto de Investigaciones en Biociencias Agrícolas y Ambientales / CONICET-Consejo Nacional de Investigaciones Científicas, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Marín 4453, Buenos Aires, C1417DSE, Argentina
INQUIMAE-Instituto de Química Física de los Materiales, Medio Ambiente y Energía, y DQIAQF-Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Crop protection; Glycine max; Macrophomina phaseolina; Nanotechnology; Phytopathogen control; Silver-silver chloride nanoparticles; nanoparticle; silver chloride; silver nanoparticle; antibiotics; biological control; biotechnology; fungus; nanoparticle; nanotechnology; oxidative stress; pathogen; silver; soybean; spectral analysis; yeast; antibacterial activity; Article; bacterial growth; bactericidal activity; biosynthesis; cell membrane; crop protection; exudate; germination; Gram negative bacterium; Gram positive bacterium; green chemistry; Macrophomina phaseolina; membrane damage; particle size; process optimization; scanning electron microscopy; soybean; surface plasmon resonance; X ray diffraction; zone of inhibition; Fungi; Glycine max; Macrophomina phaseolina; Negibacteria; Posibacteria
Año:2019
Volumen:231
Página de inicio:457
Página de fin:466
DOI: http://dx.doi.org/10.1016/j.jenvman.2018.10.081
Título revista:Journal of Environmental Management
Título revista abreviado:J. Environ. Manage.
ISSN:03014797
CODEN:JEVMA
CAS:silver chloride, 7783-90-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03014797_v231_n_p457_Spagnoletti

Referencias:

  • Agarwal, D.K., Macrophomina: taxonomy, ecology, diseases and their management (2010) Taxon. Ecol. Indian Fungi, 59
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum (2003) Colloids Surf. B, 28, pp. 313-318
  • Arakha, M., Pal, S., Samantarrai, D., Panigrahi, T.K., Mallick, B.C., Pramanik, K., Mallick, B., Jha, S., Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface (2015) Sci. Rep., 5, p. 14813
  • Arora, S., Jain, J., Rajwade, J.M., Paknikar, K.M., Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells (2009) Toxicol. Appl. Pharmacol., 236, pp. 310-318
  • Baker, S., Satish, S., Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim (2015) Acta Mol. Biomol. Spectrosc., 150, pp. 691-695
  • Birla, S., Gaikwad, S., Gade, A., Rai, M., Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions (2013) Sci. World J., 1-12
  • Bulet, P., Dinamarq, J.L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Dorsselaer, A.V., Hoffmann, J.A., A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution (1993) J. Biol. Chem., 268, pp. 14893-14897
  • Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species (2008) J. Phys. Chem. B, 112, pp. 13608-13619
  • Cho, U.H., Seo, N.H., Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation (2005) Plant Sci., 168, pp. 113-120
  • Chowdhury, S., Basu, A., Kundu, S., Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria (2014) Nanoscale Res. Lett., 9 (1), p. 365
  • Christensen, F.M., Johnston, H.J., Stone, V., Aitken, R.J., Hankin, S., Peters, S., Aschberger, K., Nano-silver - feasibility and challenges for human health risk assessment based on open literature (2010) Nanotoxicology, 4, pp. 284-295
  • Das, S., Wolfson, B.P., Tetard, L., Tharkur, J., Bazata, J., Santra, S., Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies (2015) Environ. Sci. Nano, 2, pp. 203-212
  • Deepak, V., Kalishwaralal, K., Pandian, S.R.K., Gurunathan, S., An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up (2011) Metal Nanoparticles in Microbiology, pp. 17-35. , M. Rai N. Duran Springer-Verlag. Berlin
  • Devi, T.B., Ahmaruzzaman, M., Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase (2016) Environ. Sci. Pollut. Res., 23, pp. 17702-17714
  • Dimkpa, C.O., Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? (2014) J. Basic Microbiol., 54, pp. 889-904
  • Dong, X., Ji, X., Wu, H., Zhao, L., Li, J., Yang, W., Shape control of silver nanoparticles by stepwise citrate reduction (2009) J. Phys. Chem. C, 113, pp. 6573-6576
  • Durán, N., Marcato, P.D., Alves, O.L., Souza, G.I., Esposito, E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains (2005) J. Nanobiotechnol., 3, p. 8
  • Durán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants (2011) Appl. Microbiol. Biotechnol., 90, pp. 1609-1624
  • Durán, N., Cuevas, R., Cordi, L., Rubilar, O., Diez, M.C., Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@ AgCl) produced by laccase from Trametes versicolor (2014) SpringerPlus, 3 (1), p. 645
  • Durán, N., Nakazato, G., Seabra, A.B., Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments (2016) Appl. Microbiol. Biotechnol., 100, pp. 6555-6570
  • Fernández, J.G., Fernández-Baldo, M.A., Berni, E., Camí, G., Durán, N., Raba, J., Sanz, M.I., Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi (2016) Process Biochem., 51, pp. 1306-1313
  • Forget, P., The bacterial nitrate reductases (1974) FEBS J., 42, pp. 325-332
  • Fraceto, L.F., Grillo, R., de Medeiros, G.A., Scognamiglio, V., Rea, G., Bartolucci, C., Nanotechnology in agriculture: which innovation potential does it have? (2016) Front. Environ. Sci., 4, p. 20
  • Guzmán, M.G., Dille, J., Godet, S., Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity (2009) Int. J. Chem. Biomol. Eng., 2, pp. 104-111
  • Han, S.H., Liu, H.M., Sun, C.C., Jin, P.J., Chen, Y., Photocatalytic performance of AgCl@ Ag core–shell nanocubes for the hexavalent chromium reduction (2018) J. Mater. Sci., 53, pp. 12030-12039
  • Harley, S.M., Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants (1993) Am. Biol. Teach., 55, pp. 161-164
  • Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J., Panwar, J., Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective (2011) Nanoscale, 3, pp. 635-641
  • Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., Park, Y.H., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli (2008) Appl. Environ. Microbiol., 74, pp. 2171-2178
  • Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., Gurunathan, S., Biosynthesis of silver nanocrystals by Bacillus licheniformis (2008) Colloids Surf. B, 65, pp. 150-153
  • Karbasian, M., Atyabi, S.M., Siadat, S.D., Momen, S.B., Norouzian, D., Optimizing nano-silver formation by Fusarium oxysporum ptcc 5115 employing response surface methodology (2008) Am. J. Agric. Biol. Sci., 3, pp. 433-437
  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Cho, M.H., Antimicrobial effects of silver nanoparticles (2007) Nanomedicine, 3, pp. 95-101
  • Kirby-Bauer, A., Antimicrobial sensitivity testing by agar diffusion method (1996) J. Clin. Pathol., 44, p. 493
  • Klasen, H.J., Historical review of the use of silver in the treatment of burns. I. Early uses (2000) Burns, 26, pp. 117-130
  • Kou, J., Varma, R.S., Beet juice‐induced green fabrication of plasmonic AgCl/Ag nanoparticles (2012) Chem. Sus. Chem., 5, pp. 2435-2441
  • Kumar, C.G., Poornachandra, Y., Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles (2015) Colloids Surf. B, 125, pp. 110-119
  • Kumar, D.A., Palanichamy, V., Roopan, S.M., Photocatalytic action of AgCl nanoparticles and its antibacterial activity (2014) J. Photochem. Photobiol. B, 138, pp. 302-306
  • Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jämting, Å.K., McClure, S., Naidu, R., Vasilev, K., Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge (2013) Environ. Pollut., 176, pp. 193-197
  • Marambio-Jones, C., Hoek, E.V., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment (2010) J. Nanoparticle Res., 12, pp. 1531-1551
  • Maynard, A.D., Michelson, E., The Nanotechnology Consumer Product Inventory (2006), http://nanotechnproject.org/44, (Accessed 29 June 2018); Moreau, J.W., Weber, P.K., Martin, M.C., Gilbert, B., Hutcheon, I.D., Banfield, J.F., Extracellular proteins limit the dispersal of biogenic nanoparticles (2007) Science, 316, pp. 1600-1603
  • Narayanan, K.B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv. Colloid Interface Sci., 156, pp. 1-13
  • Pantidos, N., Horsfall, L.E., Biological synthesis of metallic nanoparticles by bacteria, fungi and plants (2014) J. Nanomed. Nanotechnol., 5 (5), p. 1
  • Pharmaceutical Microbiology Manual, U.S. FDA, Office of Regulatory Affairs ORA.007 (2014), http://www.fda.gov/downloads/ScienceResearch/FieldScience/UCM397228.pdf, (Accessed 2 July 2018) 1.2 2015; Picoli, S.U., Durán, M., Andrade, P.F., Duran, N., Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL) (2016) Front. Nanosci. Nanotechnol., 2, pp. 107-110
  • Prabhu, S., Poulose, E.K., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects (2012) Int. Nano Lett., 2 (1), p. 32
  • Rai, M., Yadav, A., Gade, A., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol. Adv., 27, pp. 76-83
  • Rasulov, B.A., Pattaeva, M.A., Li, W.J., Controlled biosynthesis of AgCl nanoparticles by a thermotolerant Aspergillus terreus in the L-Tryptophan supplemented media: characterization and antimicrobial activity (2017) Microbiology, 86, pp. 517-523
  • Sadowski, Z., Maliszewska, I.H., Grochowalska, B., Polowczyk, I., Ozlecki, T., Synthesis of silver nanoparticles using microorganisms (2008) Mater. Sci. Poland, 26, pp. 419-424
  • Saifuddin, N., Wong, C.W., Nur Yasumira, A.A., Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation (2009) E J. Chem., 6, pp. 61-70
  • Sajjad, S., Sajjad, A.K.L., Ryma, N.A., Farooqi, S.A., Jabeen, N., Majeed, S., Farooq, I., Advancements in nanoparticle fabrication by hazard free eco-friendly green routes (2016) Appl. Mater. Today, 5, pp. 150-199
  • Seljeskog, E., Hervig, T., Mansoor, M.A., A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit (2006) Clin. Biochem., 39, pp. 947-954
  • Sharma, V.K., Yngard, R.A., Lin, Y., Silver nanoparticles: green synthesis and their antimicrobial activities (2009) Adv. Colloid Interface Sci., 145, pp. 83-96
  • Sillen, W.M., Thijs, S., Abbamondi, G.R., Janssen, J., Weyens, N., White, J.C., Vangronsveld, J., Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere (2015) Soil Biol. Biochem., 91, pp. 14-22
  • Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A., Mathew, J., Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus (2014) Bioinorg. Chem. Appl., 1-8
  • Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria (2004) J. Colloid Interface Sci., 275, pp. 177-182
  • Su, H.L., Chou, C.C., Hung, D.J., Lin, S.H., Pao, I.C., Lin, J.H., Huang, F.L., Lin, J.J., The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay (2009) Biomaterials, 30, pp. 5979-5987
  • Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Gurunathan, S., Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity (2010) Colloids Surf. B, 75, pp. 1335-1341
  • Velmurugan, P., Sivakumar, S., Young-Chae, S., Seong-Ho, J., Pyoung-In, Y., Sung-Chul, H., Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity (2015) J. Ind. Eng. Chem., 31, pp. 51-54
  • Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., Whangbo, M.H., Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 7931-7933

Citas:

---------- APA ----------
Spagnoletti, F.N., Spedalieri, C., Kronberg, F. & Giacometti, R. (2019) . Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. Journal of Environmental Management, 231, 457-466.
http://dx.doi.org/10.1016/j.jenvman.2018.10.081
---------- CHICAGO ----------
Spagnoletti, F.N., Spedalieri, C., Kronberg, F., Giacometti, R. "Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina" . Journal of Environmental Management 231 (2019) : 457-466.
http://dx.doi.org/10.1016/j.jenvman.2018.10.081
---------- MLA ----------
Spagnoletti, F.N., Spedalieri, C., Kronberg, F., Giacometti, R. "Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina" . Journal of Environmental Management, vol. 231, 2019, pp. 457-466.
http://dx.doi.org/10.1016/j.jenvman.2018.10.081
---------- VANCOUVER ----------
Spagnoletti, F.N., Spedalieri, C., Kronberg, F., Giacometti, R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manage. 2019;231:457-466.
http://dx.doi.org/10.1016/j.jenvman.2018.10.081