Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Photofragmentation electronic spectra of isolated single-isomeric N-protonated quinoline (quinolinium) and isoquinoline (isoquinolinium) ions have been measured at a temperature of ∼40 K using a mass-selective, 10 cm-1 spectral resolution, photodissociation spectrometer. Additionally, ab initio adiabatic transition energies calculated using the RI-ADC(2) method have been employed to assist in the assignment of the spectra. Three electronic transitions having ππ∗ character were clearly evidenced for both protonated ions within the UV and deep-UV spectral ranges. The corresponding spectra at room temperature were previously reported by Hansen et al., together with TD-DFT calculations and a careful analysis of the possible fragmentation mechanisms. This information will be complemented in the present study by appending better resolved spectra, characteristic of cold ions, in which well-defined vibrational progressions associated with the S1 ← S0 and S3 ← S0 transitions exhibit clear 0-0 bands at hν0-0 = 27868 and 42230 cm-1, for protonated quinoline, and at hν0-0 = 28043 and 41988 cm-1, for protonated isoquinoline. Active vibrations in the spectra were assigned with the help of calculated normal modes, looking very similar to those of the structurally related protonated naphthalene. Finally, we have observed that the bandwidths associated with the deep-UV S3 ← S0 transition denote a lifetime for the S3 excited state in the subpicosecond time scale, in contrast with that of S1. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase
Autor:Féraud, G.; Domenianni, L.; Marceca, E.; Dedonder-Lardeux, C.; Jouvet, C.
Filiación:CNRS, Aix-Marseille Université, PIIM UMR 7365, Avenue Escadrille Normandie-Niémen, Marseille Cedex 20, 13397, France
Facultad de Ciencias Exactas y Naturales, DQIAF, Universidad de Buenos Aires, Ciudad Universitaria, 1er piso, Pab. II, Buenos Aires, C1428EGA, Argentina
Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, CONICET-UBA, Ciudad Universitaria, 3er piso, Pab. II, Buenos Aires, C1428EGA, Argentina
UPMC, Pierre and Marie Curie University, Paris 6, 4 Place Jussieu, Paris, 75005, France
Palabras clave:Calculations; Chemical reactions; Excited states; Ions; Naphthalene; Photodissociation; Adiabatic transition energies; Electronic spectrum; Electronic transition; Fragmentation mechanism; Photofragmentation; Subpicosecond time scale; Td-dft calculations; Vibrational progressions; Protonation
Año:2017
Volumen:121
Número:13
Página de inicio:2580
Página de fin:2587
DOI: http://dx.doi.org/10.1021/acs.jpca.7b01301
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v121_n13_p2580_Feraud

Referencias:

  • Kozin, I.S., Larsen, O.F.A., De Voogt, P., Gooijer, C., Velthorst, N.H., Isomer-Specific Detection of Azaarenes in Environmental Samples by Shpol'skii Luminescence Spectroscopy (1997) Anal. Chim. Acta, 354, pp. 181-187
  • Blumer, M., Dorsey, T., Sass, J., Azaarenes in Recent Marine Sediments (1977) Science, 195, pp. 283-285
  • Pereira, W.E., Rostad, C.E., Garbarino, J.R., Hult, M.F., Groundwater Contamination by Organic Bases Derived from Coal-Tar Wastes (1983) Environ. Toxicol. Chem., 2, pp. 283-294
  • Bleeker, E.A., Wiegman, S., De Voogt, P., Kraak, M., Leslie, H.A., De Haas, E., Admiraal, W., Toxicity of Azaarenes (2002) Rev. Environ. Contam. Toxicol., 173, pp. 39-83
  • Tucker, S.A., Acree, W.E., Jr., Upton, C., Polycyclic Aromatic Nitrogen Heterocycles. Part V: Fluorescence Emission Behavior of Select Tetraaza- and Diazaarenes in Nonelectrolyte Solvents (1993) Appl. Spectrosc., 47, pp. 201-206
  • Ricca, A., Bauschlicher, C.W., Rosi, M., Mechanism for the Incorporation of a Nitrogen Atom into Polycyclic Aromatic Hydrocarbon Cations (2001) Chem. Phys. Lett., 347, pp. 473-480
  • Bernstein, M.P., Mattioda, A.L., Sandford, S.A., Hudgins, D.M., Laboratory Infrared Spectra of Polycyclic Aromatic Nitrogen Heterocycles: Quinoline and Phenanthridine in Solid Argon and H2O (2005) Astrophys. J., 626, pp. 909-918
  • Hudgins, D.M., Bauschlicher, C.W., Jr., Allamandola, L.J., Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population (2005) Astrophys. J., 632, pp. 316-332
  • Van Der Zwet, G.P., Allamandola, L.J., Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands (1985) Astron. Astrophys., 146, pp. 76-80
  • Léger, A., D'Hendecourt, L., Are Polycyclic Aromatic Hydrocarbons the Carriers of the Diffuse Interstellar Bands in the Visible? (1985) Astron. Astrophys., 146, pp. 81-85
  • Crawford, M.K., Tielens, A.G.G.M., Allamandola, L.J., Ionized Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands (1985) Astrophys. J., 293, pp. L45-L48
  • Allamandola, L.J., Tielens, A.G.G.M., Barker, J.R., Interstellar Polycyclic Aromatic Hydrocarbons - The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications (1989) Astrophys. J., Suppl. Ser., 71, pp. 733-775
  • Tielens, A.G.G.M., Interstellar Polycyclic Aromatic Hydrocarbon Molecules (2008) Annu. Rev. Astron. Astrophys., 46, pp. 289-337
  • Mattioda, A.L., Rutter, L., Parkhill, J., Head-Gordon, M., Lee, T.J., Allamandola, L.J., Near-Infrared Spectroscopy of Nitrogenated Polycyclic Aromatic Hydrocarbon Cations from 0.7 to 2.5 μm (2008) Astrophys. J., 680, pp. 1243-1255
  • Alvaro Galué, H., Pirali, O., Oomens, J., Gas-phase Infrared Spectra of Cationized Nitrogen-Substituted Polycyclic Aromatic Hydrocarbons (2010) Astron. Astrophys., 517, p. A15
  • Boersma, C., Bregman, J.D., Allamandola, L.J., Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. I. PAH Size, Charge, Composition, and Structure Distribution (2013) Astrophys. J., 769, p. 117
  • Dryza, V., Sanelli, J.A., Robertson, E.G., Bieske, E.J., Electronic Spectra of Gas-Phase Polycyclic Aromatic Nitrogen Heterocycle Cations: Isoquinoline+ and Quinoline+ (2012) J. Phys. Chem. A, 116, pp. 4323-4329
  • Noble, J.A., Dedonder, C., Jouvet, C., The Electronic Spectra of Protonated PANH Molecules (2015) Astron. Astrophys., 577, p. A79
  • Wanna, J., Bernstein, E.R., Van der Waals Clusters of Pyridazine and Isoquinoline: The Effect of Solvation on Chromophore Electronic Structure (1987) J. Chem. Phys., 86, pp. 6707-6716
  • Hiraya, A., Achiba, Y., Kimura, K., Lim, E.C., Identification of the Lowest Energy nπ∗ States in Gas-Phase Polycyclic Monoazines: Quinoline and Isoquinoline (1984) J. Chem. Phys., 81, pp. 3345-3347
  • Hiraya, A., Achiba, Y., Kimura, K., Lim, E.C., Multiphoton Ionization Photoelectron Spectroscopy of Molecular Excited States in Supersonic Jet: Low-Lying Electronic States of Isoquinoline (1991) Chem. Phys. Lett., 185, pp. 303-309
  • Bouwman, J., Sztáray, B., Oomens, J., Hemberger, P., Bodi, A., Dissociative Photoionization of Quinoline and Isoquinoline (2015) J. Phys. Chem. A, 119, pp. 1127-1136
  • Klærke, B., Holm, A.I.S., Andersen, L.H., UV Action Spectroscopy of Protonated PAH Derivatives. Methyl Substituted Quinolines (2011) Astron. Astrophys., 532, p. A132
  • Hansen, C.S., Blanksby, S.J., Trevitt, A.J., Ultraviolet Photodissociation Action Spectroscopy of Gas-Phase Protonated Quinoline and Isoquinoline Cations (2015) Phys. Chem. Chem. Phys., 17, pp. 25882-25890
  • Féraud, G., Dedonder, C., Jouvet, C., Inokuchi, Y., Haino, T., Sekiya, R., Ebata, T., Development of Ultraviolet-Ultraviolet Hole-Burning Spectroscopy for Cold Gas-Phase Ions (2014) J. Phys. Chem. Lett., 5, pp. 1236-1240
  • Alata, I., Omidyan, R., Broquier, M., Dedonder, C., Dopfer, O., Jouvet, C., Effect of Protonation on the Electronic Structure of Aromatic Molecules: NaphthaleneH+ (2010) Phys. Chem. Chem. Phys., 12, pp. 14456-14458
  • Alata, I., Dedonder, C., Broquier, M., Marceca, E., Jouvet, C., Role of the Charge-Transfer State in the Electronic Absorption of Protonated Hydrocarbon Molecules (2010) J. Am. Chem. Soc., 132, pp. 17483-17489
  • Alata, I., Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., Soorkia, S., Jouvet, C., Electronic Spectra of the Protonated Indole Chromophore in the Gas Phase (2013) J. Phys. Chem. A, 117, pp. 4420-4427
  • Kang, H., Féraud, G., Dedonder-Lardeux, C., Jouvet, C., New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer (2014) J. Phys. Chem. Lett., 5, pp. 2760-2764
  • Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C., Electronic Structure Calculations on Workstation Computers: The Program System Turbomole (1989) Chem. Phys. Lett., 162, pp. 165-169
  • Trofimov, B., Stelter, G., Schirmer, J., Electron Excitation Energies Using a Consistent Third-Order Propagator Approach: Comparison with Full Configuration interaction and Coupled Cluster Results (2002) J. Chem. Phys., 117, pp. 6402-6410
  • Taccone, M.I., Féraud, G., Berdakin, M., Dedonder-Lardeux, C., Jouvet, C., Pino, G.A., Communication: UV Photoionization of Cytosine Catalyzed by Ag+ (2015) J. Chem. Phys., 143, p. 041103
  • Féraud, G., Berdakin, M., Dedonder, C., Jouvet, C., Pino, G.A., Excited States of Proton-Bound DNA/RNA Base Homodimers: Pyrimidines (2015) J. Phys. Chem. B, 119, pp. 2219-2228
  • Féraud, G., Esteves-López, N., Dedonder-Lardeux, C., Jouvet, C., UV Spectroscopy of Cold Ions as a Probe of the Protonation Site (2015) Phys. Chem. Chem. Phys., 17, pp. 25755-25760
  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Aoshima, K., MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences (2010) J. Mass Spectrom., 45, pp. 703-714
  • Freiser, B.S., Beauchamp, J.L., Acid-Base Properties of Molecules in Excited Electronic States Utilizing Ion Cyclotron Resonance Spectroscopy (1977) J. Am. Chem. Soc., 99, pp. 3214-3225
  • Zhong, D., Diau, E.W.-G., Bernhardt, T.M., De Feyter, S., Roberts, J.D., Zewail, A.H., Femtosecond Dynamics of Valence-Bond Isomers of Azines: Transition States and Conical Intersections (1998) Chem. Phys. Lett., 298, pp. 129-140
  • Chachisvilis, M., Zewail, A.H., Femtosecond Dynamics of Pyridine in the Condensed Phase: Valence Isomerization by Conical Intersections (1999) J. Phys. Chem. A, 103, pp. 7408-7418
  • Srinivasan, R., Feenstra, J.S., Park, S., Xu, T.S., Zewail, A.H., Dark Structures in Molecular Radiationless Transitions Determined by Ultrafast Diffraction (2005) Science, 307, pp. 558-563
  • Kudoh, S., Takayanagi, M., Nakata, M., Dewar Pyridine Studied by Matrix Isolation Infrared Spectroscopy and DFT Calculations (1999) J. Photochem. Photobiol., A, 123, pp. 25-30

Citas:

---------- APA ----------
Féraud, G., Domenianni, L., Marceca, E., Dedonder-Lardeux, C. & Jouvet, C. (2017) . Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase. Journal of Physical Chemistry A, 121(13), 2580-2587.
http://dx.doi.org/10.1021/acs.jpca.7b01301
---------- CHICAGO ----------
Féraud, G., Domenianni, L., Marceca, E., Dedonder-Lardeux, C., Jouvet, C. "Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase" . Journal of Physical Chemistry A 121, no. 13 (2017) : 2580-2587.
http://dx.doi.org/10.1021/acs.jpca.7b01301
---------- MLA ----------
Féraud, G., Domenianni, L., Marceca, E., Dedonder-Lardeux, C., Jouvet, C. "Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase" . Journal of Physical Chemistry A, vol. 121, no. 13, 2017, pp. 2580-2587.
http://dx.doi.org/10.1021/acs.jpca.7b01301
---------- VANCOUVER ----------
Féraud, G., Domenianni, L., Marceca, E., Dedonder-Lardeux, C., Jouvet, C. Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase. J Phys Chem A. 2017;121(13):2580-2587.
http://dx.doi.org/10.1021/acs.jpca.7b01301