Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC)15s 3-(4,5-dimethyl-thiazol-2- yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at≥ 10-1 lM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC15) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved.

Registro:

Documento: Artículo
Título:Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides
Autor:Romero, D.M.; Berardino, B.G.; Wolansky, M.J.; Kotler, M.L.
Filiación:Laboratorio de Toxicología de Mezclas Químicas, Universidad de Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
IQUIBICEN-Argentina National Research Council (CONICET), Argentina
Laboratorio de Neuroepigenética;, Argentina
Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Argentina
Institut du Fer á Moulin, INSERM UMRS 839, Paris, France
Sorbonne Universités, UniversitéPierre et Marie Curie, Paris, France
Palabras clave:C6 cells; Cell death; Cellular damage; Pyrethroids; 3 (4,5 dimethyl 2 thiazolyl) 2,5 diphenyltetrazolium bromide; bifenthrin; cypermethrin; deltamethrin; pyrethroid; tefluthrin; unclassified drug; insecticide; pyrethroid; animal cell; Article; astrocytoma cell; cell nucleus; cell viability; controlled study; drug cytotoxicity; glia cell; lysosome; mitochondrion; MTT assay; neurotoxicity; nonhuman; rat; animal; astrocytoma; cell fractionation; dose response; fluorescence microscopy; metabolism; pathology; tumor cell line; Animals; Astrocytoma; Cell Line, Tumor; Dose-Response Relationship, Drug; Insecticides; Microscopy, Fluorescence; Pyrethrins; Rats; Subcellular Fractions
Año:2017
Volumen:155
Número:1
Página de inicio:196
Página de fin:212
DOI: http://dx.doi.org/10.1093/toxsci/kfw188
Título revista:Toxicological Sciences
Título revista abreviado:Toxicol. Sci.
ISSN:10966080
CODEN:TOSCF
CAS:3 (4,5 dimethyl 2 thiazolyl) 2,5 diphenyltetrazolium bromide, 298-93-1; bifenthrin, 82657-04-3; cypermethrin, 52315-07-8, 65731-84-2, 66841-24-5, 67375-30-8; deltamethrin, 52918-63-5; Insecticides; Pyrethrins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10966080_v155_n1_p196_Romero

Referencias:

  • Abdel-Rahman, A., Shetty, A.K., Abou-Donia, M.B., Subchronic dermal application of N, N-diethyl m-toluamide (DEET) and permethrin to adult rats, alone or in combination, causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and the hippocampus, and Purkinje neuron loss in the cerebellum (2001) Exp. Neurol, 172, pp. 153-171
  • Alaimo, A., Gorojod, R.M., Beauquis, J., Munoz, M.J., Saravia, F., Kotler, M.L., Deregulation of mitochondriashaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis (2014) PLoS One, 9
  • Alaimo, A., Gorojod, R.M., Kotler, M.L., The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells (2011) Neurochem. Int, 59, pp. 297-308
  • Aschner, M., Interactions between pesticides and glia: An unexplored experimental field (2000) Neurotoxicology, 21, pp. 175-180
  • Benda, P., Lightbody, J., Sato, G., Levine, L., Sweet, W., Differentiated rat glial strain in tissue culture (1968) Science, 161, pp. 370-371
  • Bereiter-Hahn, J., Vöth, M., Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria (1994) Microsc. Res. Tech, 27, pp. 198-219
  • Berembaum, M.C., The expected effect of a combination of agents: the general solution (1985) J. Theor. Biol, 114 (3), pp. 413-431
  • Bhunya, S.P., Pati, P.C., Effect of deltamethrin, a synthetic pyrethroid, on the induction of chromosome aberrations, micronuclei and sperm abnormalities in mice (1990) Mutagenesis, 5, pp. 229-232
  • Bolognesi, C., Creus, A., Ostrosky-Wegman, P., Marcos, R., Micronuclei and pesticide exposure (2011) Mutagenesis, 26, pp. 19-26
  • Braguini, W.L., Cadena, S.M., Carnieri, E.G., Rocha, M.E., de Oliveira, M.B., Effects of deltamethrin on functions of rat liver mitochondria and on native and synthetic model membranes (2004) Toxicol. Lett, 152, pp. 191-202
  • Breckenridge, C.B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D.M., Clark, J.M., Evidence for a separate mechanism of toxicity for the type I and the type II pyrethroids insecticides (2009) Neurotoxicology, 230, pp. S17-S31
  • Cao, Z., Cui, Y., Nguyen, H.M., Jenkins, D.P., Wulff, H., Pessah, I.N., Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity (2014) Mol. Pharmacol, 85, pp. 630-639
  • Cao, Z., Shafer, T.J., Crofton, K.M., Gennings, C., Murray, T., Additivity of pyrethroid actions on sodium influx in cerebro cortical neurons in primary culture (2011) Environ. Health Persp, 119, pp. 1239-1246
  • Carpy, S.A., Kobel, W., Doe, J., Health risk of low-dose pesticides mixtures: A review of the 1985-1998 literature on combination toxicology and health risk assessment (2000) J. Toxicol. Environ. Health B Crit. Rev, 3, pp. 1-25
  • Çelik, A., Mazmanci, B., Camlica, Y., Askin, A., Cömelekoglu, U., Induction of micronuclei by lambda-cyhalothrin in Wistar rat bone marrow and gut epithelial cells (2005) Mutagenesis, 20, pp. 125-129
  • (2015) Fourth National Report on Human Exposure to Environmental Chemicals, , http://www.cdc.gov/biomonitoring/pdf/fourthreport_updatedtables_feb2015.pdf, US Department of Health and Human Services
  • Chelli, B., Lena, A., Vanacore, R., Da Pozzo, E., Costa, B., Rossi, L., Peripheral benzodiazepine receptor ligands: Mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells (2004) Biochem. Pharmacol, 68, pp. 125-134
  • Cookson, M.R., Mead, C., Austwick, S.M., Pentreath, V.W., Use of the MTT assay for estimating toxicity in primary astrocyte and C6 glioma cell cultures (1995) Toxic. In Vitro, 9, pp. 39-48
  • Corcellas, C., Feo, M.L., Torres, J.P., Malm, O., Ocampo-Duque, W., Eljarrat, E., Barceló, D., Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation (2012) Environ. Int, 47, pp. 17-22
  • Crofton, K.M., Reiter, L.W., Effects of two pyrethroid insecticides on motor activity and the acoustic startle response in the rat (1984) Toxicol. Appl. Pharmacol, 75, pp. 318-328
  • Crofton, K.M., Reiter, L.W., Pyrethroid insecticides and the gamma-aminobutyric acid A receptor complex: Motor activity and the acoustic startle response in the rat (1987) J. Pharmacol. Exp. Ther, 243, pp. 946-954
  • Culliford, S.J., Borg, J.J., O'Brien, M.J., Kozlowski, R.Z., Differential effects of pyrethroids on volume-sensitive anion and organic osmolyte pathways (2004) Clin. Exp. Pharmacol. Physiol, 3, pp. 134-144
  • DeMicco, A., Cooper, K.R., Richardson, J.R., White, L.A., Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos (2010) Toxicol. Sci, 113, pp. 177-186
  • Du, G., Shen, O., Sun, H., Fei, J., Lu, C., Song, L., Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays (2010) Toxicol. Sci, 116, pp. 58-66
  • Eroglu, C., Barres, B.A., Stevens, B., Glia as active participants in the development and function of synapses (2008) In Structural and Functional Organization of the Synapse, pp. 683-714. , (J. W. Ehlers and M. D. Hell, Eds.). Springer, New York
  • Elstein, K.H., Zucker, R.M., Comparison of cellular and nuclear flow cytometric techniques for discriminating apoptotic subpopulations (1994) Exper. Cell Res, 211, pp. 322-331
  • Fenech, M., Chromosomal biomarkers of genomic instability relevant to cancer (2002) Drug Discov. Today, 15, pp. 1128-1137
  • Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells (2011) Mutagenesis, 26, pp. 125-132
  • (2015) Pesticide Residue Monitoring. Center for Food Safety and Applied Nutrition, , http://www.fda.gov/Food/FoodborneIllnessContaminants/Pesticides/UCM2006797.htm, US Department of Health and Human Services
  • Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., Dawson, T.M., Fulda, S., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death (2012) Cell Death Differ, 1, pp. 107-120
  • Go, V., Garey, J., Wolff, M.S., Pogo, B.G., Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line (1999) Environ. Health Persp, 107, pp. 173-177
  • Gómez, C., Bandez, M.J., Navarro, A., Pesticides and impairment of mitocondrial function in relation with the parkinsonian syndrome (2007) Front. Biosci, 12, pp. 1079-1093
  • Gonzalez, L.E., Juknat, A.A., Venosa, A.J., Verrengia, N., Kotler, M.L., Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family (2008) Neurochem. Int, 53, pp. 408-415
  • Gorojod, R.M., Alaimo, A., Porte Alcon, S., Pomilio, C., Saravia, F., Kotler, M.L., The autophagic-lysosomal pathway determines the fate of glial cells under manganese-induced oxidative stress conditions (2015) Free Radic. Biol. Med, 87, pp. 237-251
  • Guizzetti, M., Pathak, S., Giordano, G., Costa, L.G., Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation (2005) Toxicology, 215, pp. 182-190
  • Gupta, G., Chaitanya, R.K., Golla, M., Karnati, R., Allethrin toxicity on human corneal epithelial cells involves mitochondrial pathway mediated apoptosis (2013) Toxicol. In Vitro, 27, pp. 2242-2248
  • Hales, T.G., Tyndale, R.F., Few cell lines with GABAA mRNAs have functional receptors (1994) J. Neurosci, 14, pp. 5429-5436
  • Hernández, A.F., Parrón, T., Tsatsakis, A.M., Requena, M., Alarcón, R., López-Guarnido, O., Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health (2013) Toxicology, 307, pp. 136-145
  • Hughes, M.F., Ross, D.G., Starr, J.M., Scollon, E.J., Wolansky, M.J., Crofton, K.M., DeVito, M.J., Environmentally relevant pyrethroid mixtures: A study on the correlation of blood and brain concentrations of a mixture of pyrethroid insecticides to motor activity in the rat (2016) Toxicology, 359-360, pp. 19-28
  • Indo, H.P., Davidson, M., Yen, H.C., Suenaga, S., Tomita, K., Nishii, T., Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage (2007) Mitochondrion, 7, pp. 106-118
  • Izadi, H., Grundy, J.E., Bose, R., Evaluation of the benchmark dose for point of departure determination for a variety of chemical classes in applied regulatory settings (2012) Risk Anal, 32, pp. 830-835
  • Johnstone, A.F., Strickland, J.D., Crofton, K.M., Gennings, C., Shafer, T.J., Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays (2016) Neurotoxicology
  • Kim, Y.J., Sah, R.L., Doong, J.Y., Grodzinsky, A.J., Fluorometric assay of DNA in cartilage explants using Hoechst 33258 (1988) Anal. Biochem, 174, pp. 168-176
  • Kojima, H., Matsunaga, K., Kurokawa, E., Ogata, I., Nishimoto, I., Calcium influx: An intracelular message of the mitogenic action of insulin-like growth factor-I (1988) J. Biol. Chem, 263, pp. 16561-16567
  • Koureas, M., Tsakalof, A., Tsatsakis, A., Hadjichristodoulou, C., Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes (2012) Toxicol. Lett, 210, pp. 155-168
  • Krieger, R., (2010) Hayes' Handbook of Pesticide Toxicology, 1. , 3rd ed. Academic Press, London, UK
  • Labarca, C., Paigen, K., A simple, rapid, and sensitive DNA assay procedure (1980) Anal. Biochem, 102, pp. 344-352
  • Lee, H.S., Ghetti, A., Pinto-Duarte, A., Wang, X., Dziewczapolski, G., Galimi, F., Huitron-Resendiz, S., Verma, I.M., Astrocytes contribute to gamma oscillations and recognition memory (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. E3343-3352
  • Liu, H., Xu, L., Zhao, M., Liu, W., Zhang, C., Zhou, S., Enantiomer-specific, bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 cells (2009) Toxicology, 3, pp. 119-125
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DD C(T)) method (2001) Methods, 25, pp. 402-408
  • Malkiewicz, K., Koteras, M., Folkesson, R., Brzezinski, J., Winblad, B., Szutowski, M., Benedikz, E., Cypermethrin alters Glial Fibrillary Acidic Protein levels in the rat brain (2006) Environ. Toxicol. Pharmacol, 21, pp. 51-55
  • Marshall, S., Gennings, C., Teuschler, L.K., Stork, L.G., Tornero-Velez, R., Crofton, K.M., Rice, G.E., An empirical approach to sufficient similarity: combining exposure data and mixtures toxicology data (2013) Risk Anal, 33 (9), pp. 1582-1595
  • Martinou, J.C., Youle, R.J., Which came first, the cytochrome c release or the mitochondrial fission? (2006) Cell Death Differ, 13, pp. 1291-1295
  • Mattson, M.P., Kroemer, G., Mitochondria in cell death: Novel targets for neuroprotection and cardioprotection (2003) Trends Mol. Med, 9, pp. 196-205
  • Maurya, S.K., Mishra, J., Abbas, S., Bandyopadhyay, S., Cypermethrin stimulates GSK3b-dependent Ab and p-tau proteins and cognitive loss in young rats: Reduced HB-EGF signaling and downstream neuroinflammation as critical regulators (2016) Mol. Neurobiol, 53, pp. 968-982
  • Maurya, S.K., Rai, A., Rai, N.K., Deshpande, S., Jain, R., Mudiam, M.K., Cypermethrin induces astrocyte apoptosis by the disruption of the autocrine/paracrine mode of epidermal growth factor receptor signaling (2012) Toxicol. Sci, 125, pp. 473-487
  • McManus, I.C., Harrison, V., Mason, O., Neurobehavioral problems following low-level exposure to organophosphate pesticides: A systematic and metaanalytic review (2013) Crit. Rev. Toxicol, 43, pp. 21-44
  • Mense, S.M., Sengupta, A., Lan, C., Zhou, M., Bentsman, G., Volsky, D.J., The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes (2006) Toxicol. Sci, 93, pp. 125-135
  • Morgan, M.K., Children's exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States (2012) Int. J. Environ. Res. Public Health, 9, pp. 2964-2985
  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63
  • Munson, R., Jr., Westermark, B., Glaser, L., Tetrodotoxin-sensitive sodium channels in normal human fibroblasts and normal human glia-like cells (1979) Proc. Natl. Acad. Sci. U.S.A, 76, pp. 6425-6429
  • Narahashi, T., Neuroreceptors and ion channels as the basis for drug action: Past, present, and future (2000) J. Pharmacol. Exp. Ther, 294, pp. 1-26
  • Narahashi, T., Zhao, X., Ikeda, T., Nagata, K., Yeh, J.Z., Differential actions of insecticides on target sites: Basis for selective toxicity (2007) Hum. Exp. Toxicol, 26, pp. 361-366
  • Natarajan, A., Molnar, P., Sieverdes, K., Jamshidi, A., Hickman, J.J., Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity (2006) Toxicol. In Vitro, 20, pp. 375-381
  • Navarrete, M., Araque, A., The Cajalschool and the physiological role of astrocytes: A way of thinking (2014) Front. Neuroanat, 19, p. 33
  • Nishimoto, I., Hata, Y., Ogata, E., Kojima, I., Insulinlike growth factor I stimulates calcium influx in competent BALB/c 3T3 cells primed with epidermal growth factor (1987) J. Biol. Chem, 262, pp. 12120-12126
  • Nostrandt, A.C., Duncan, J.A., Padilla, S., A modified spectrophotometric method appropriate for measuring cholinesterase activity in tissue from carbaryl-treated animals (1993) Fundam. Appl. Toxicol, 2, pp. 196-203
  • Osimitz, T.G., Lake, B.G., Mode-of-action analysis for induction of rat liver tumors by pyrethrins: Relevance to human cancer risk (2009) Crit. Rev. Toxicol, 39, pp. 501-511
  • Patel, S., Pandey, A.K., Bajpayee, M., Parmar, D., Dhawan, A., Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the comet assay (2006) Mutat. Res, 607, pp. 176-183
  • Pendergrass, W., Wolf, N., Poot, M., Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues (2004) Cytometry A, 61, pp. 162-169
  • Pine, M.D., Hiney, J.K., Lee, B., Dees, W.L., The pyrethroid pesticide esfenvalerate suppresses the afternoon rise of luteinizing hormone and delays puberty in female rats (2008) Environ. Health Persp, 116, pp. 1243-1247
  • Poot, M., Gibson, L.L., Singer, V.L., Detection of apoptosis in live cells by MitoTracker Red CMXRos and SYTO dye flow cytometry (1997) Cytometry, 27, pp. 358-364
  • Posada-Duque, R.A., Palacio-Castaneda, V., Cardona-Gómez, G.P., CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1 (2015) Mol. Cell Neurosci, 68, pp. 151-166
  • Roma, G.C., Camargo-Mathias, M.I., de Oliveira, P.R., Furquim, K.C., Bechara, G.H., Neurotoxic action of permethrin in Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) female ticks. Morphological and cytochemical evaluation of the central nervous system (2013) Vet. Parasitol, 196, pp. 482-491
  • Romero, A., Ares, I., Ramos, E., Castellano, V., Martínez, M., Martínez-Larranaga, M.R., Anadón, A., Martínez, M.A., Evidence for dose-additive effects of a type II pyrethroid mixture. In vitro assessment (2015) Environ. Res, 138, pp. 58-66
  • Romero, A., Ramos, E., Castellano, V., Martínez, M.A., Ares, I., Martínez, M., Martínez-Larranaga, M.R., Anadón, A., Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants (2012) Toxicol. In Vitro, 26, pp. 823-830
  • Saftig, P., Lysosomes (2005) In History and Morphology of the Lysosome, pp. 1-16. , (R. Lü llmann-Rauch, Ed.). Landes Bioscience/Eurekah.com. Springer Science and Business Media, New York, NY
  • Shafer, T.J., Meyer, D.A., Effects of pyrethroids on voltage-sensitive calcium channels: A critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity (2004) Toxicol. Appl. Pharmacol, 196, pp. 303-318
  • Shafer, T.J., Rijal, S.O., Gross, G.W., Complete inhibition of spontaneous activity in neuronal networks in vitro by deltamethrin and permethrin (2008) Neurotoxicology, 29, pp. 203-212
  • Sheridan, C., Martin, S.J., Mitochondrial fission/fusion dynamics and apoptosis (2010) Mitochondrion, 6, pp. 640-648
  • Shiraishi, T., Black, K.L., Ikezaki, K., Becker, D.P., Peripheral benzodiazepine induces morphological changes and proliferation of mitochondria in glioma cells (1991) J. Neurosci. Res, 30, pp. 463-474
  • Simoniello, M.F., Gigena, F., Poletta, G., Loteste, A., Kleinsorge, E., Alkaline comet assay for genotoxic effect detection in neotropical fish Prochilodus lineatus (Pisces, Curimatidae) (2009) Bull. Environ. Contam. Toxicol, 83, pp. 155-158
  • Sims, K.D., Straff, D.J., Robinson, M.B., Expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase (2000) J. Biol. Chem, 275, pp. 5228-5237
  • Singh, A.K., Tiwari, M.N., Dixit, A., Upadhyay, G., Patel, D.K., Singh, D., Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration: Microglial activation-dependent and-independent regulations (2011) Toxicol. Sci, 122, pp. 526-538
  • Soderlund, D.M., Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances (2012) Arch. Toxicol, 2, pp. 165-181
  • Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Picirillo, V.J., Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment (2002) Toxicology, 171, pp. 3-59
  • Sofroniew, M.V., Vinters, H.V., Astrocytes: Biology and pathology (2010) Acta Neuropathol, 119, pp. 7-35
  • Sontheimer, H., Voltage-dependent ion channels in glial cells (1994) Glia, 11, pp. 156-172
  • Spencer, C.I., Yuill, K.H., Borg, J.J., Hancox, J.C., Kozlowski, R.Z., Actions of pyrethroid insecticides on sodium currents, action potentials and contractile rhythm in isolated mammalian ventricular myocytes and perfused hearts (2001) J. Pharmacol. Exp. Ther, 298, pp. 1067-1082
  • Srivastava, A.K., Srivastava, P.K., Al-Khedhairy, A.A., Musarrat, J., Shukla, Y., Allethrin-induced genotoxicity and oxidative stress in Swiss albino mice (2012) Mutat. Res, 747, pp. 22-28
  • Tabarean, I.V., Narahashi, T., Potent modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels by the type II pyrethroid deltamethrin (1998) J. Pharmacol. Exp. Ther, 284, pp. 958-965
  • Tayebati, S.K., Di Tullio, M.A., Ricci, A., Amenta, F., Influence of dermal exposure to the pyrethroid insecticide deltamethrin on rat brain microanatomy and cholinergic/dopaminergic neurochemistry (2009) Brain Res, 1301, pp. 180-188
  • Tsuji, R., Yamada, T., Kawamura, S., Mammal toxicology of synthetic pyrethroids (2012) Top. Curr. Chem, 314, pp. 83-111
  • Tulve, N.S., Jones, P.A., Nishioka, M.G., Fortmann, R.C., Croghan, C.W., Zhou, J.Y., Fraser, A., Friedman, W., Pesticidemeasurements from the First National Environmental Health Survey of child care centers using amulti-residue GC/MS analysis method (2006) Environ. Sci. Technol, 40, pp. 6269-6274
  • (2002) A review of the reference dose and reference concentration processes, , Risk Assessment Forum. EPA/630/P-02/002F, Final Report. Washington, DC
  • Wang, S., Castle, N.A., Wang, G.K., IdentificationofRBKl potassiumchannels in C6 astrocytoma cells (1992) Glia, 5, pp. 146-153
  • Wätjen, W., Haase, H., Biagioli, M., Beyersmann, D., Induction of apoptosis in mammalian cells by cadmium and zinc (2002) Environ. Health Persp, 110, pp. 865-867
  • Weiner, M.L., Nemec, M., Sheets, L., Sargent, D., Breckenridge, C., Comparativefunctional observational battery study of twelve commercial pyrethroid insecticides in male rats following acute oral exposure (2009) Neurotoxicology, 30, pp. S1-S16
  • (2010) The WHO recommended classification of pesticides by hazard, , http://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf?ua=1, Guidelines to Classification 2009. International Programme on Chemical Safety, World Health Organization, Geneve
  • Wielgomas, B., Nahorski, W., Czarnowski, W., Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland (2013) Intl. J. Hyg. Environ. Health, 216, pp. 295-300
  • Wolansky, M.J., Gennings, C., Crofton, K.M., Relative potencies for acute effects of pyrethroids on motor function in rats (2006) Toxicol. Sci, 89, pp. 271-277
  • Wolansky, M.J., Gennings, C., DeVito, M.J., Crofton, K.M., Evidence for dose additive effects of pyrethroids on motor activity in rats (2009) Environ. Health Persp, 117, pp. 1563-1570
  • Wolansky, M.J., Harrill, J.A., Neurobehavioral toxicology of pyrethroid insecticides: A critical review (2008) Neurotoxicol. Teratol, 30, pp. 55-78
  • Wolansky, M.J., McDaniel, K.L., Moser, V.C., Crofton, K.M., Influence of dosing volume on the neurotoxicity of bifenthrin (2007) Neurotoxicol. Teratol, 3, pp. 377-384
  • Zeidán-Chuliá, F., Salmina, A.B., Malinovskaya, N.A., Noda, M., Verkhratsky, A., Moreira, J.C., The glial perspective of autism spectrum disorders (2014) Neurosci. Biobehav. Rev, 38, pp. 160-172

Citas:

---------- APA ----------
Romero, D.M., Berardino, B.G., Wolansky, M.J. & Kotler, M.L. (2017) . Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides. Toxicological Sciences, 155(1), 196-212.
http://dx.doi.org/10.1093/toxsci/kfw188
---------- CHICAGO ----------
Romero, D.M., Berardino, B.G., Wolansky, M.J., Kotler, M.L. "Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides" . Toxicological Sciences 155, no. 1 (2017) : 196-212.
http://dx.doi.org/10.1093/toxsci/kfw188
---------- MLA ----------
Romero, D.M., Berardino, B.G., Wolansky, M.J., Kotler, M.L. "Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides" . Toxicological Sciences, vol. 155, no. 1, 2017, pp. 196-212.
http://dx.doi.org/10.1093/toxsci/kfw188
---------- VANCOUVER ----------
Romero, D.M., Berardino, B.G., Wolansky, M.J., Kotler, M.L. Vulnerability of C6 astrocytoma cells after single-compound and joint exposure to type I and type II pyrethroid insecticides. Toxicol. Sci. 2017;155(1):196-212.
http://dx.doi.org/10.1093/toxsci/kfw188