Artículo

Silveira, C.M.; Castro, M.A.; Dantas, J.M.; Salgueiro, C.; Murgida, D.H.; Todorovic, S. "Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase" (2017) Physical Chemistry Chemical Physics. 19(13):8908-8918
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Geobacter sulfurreducens cells have the ability to exchange electrons with conductive materials, and the periplasmic cytochrome PccH plays an essential role in the direct electrode-to-cell electron transfer in this bacterium. It has atypically low redox potential and unique structural features that differ from those observed in other c-type cytochromes. We report surface enhanced resonance Raman spectroscopic and electrochemical characterization of the immobilized PccH, together with molecular dynamics simulations that allow for the rationalization of experimental observations. Upon attachment to electrodes functionalized with partially or fully hydrophobic self-assembled monolayers, PccH displays a distribution of native and non-native heme spin configurations, similar to those observed in horse heart cytochrome c. The native structural and thermodynamic features of PccH are preserved upon attachment mixed hydrophobic (-CH 3 /-NH 2 ) surfaces, while pure -OH, -NH 2 and -COOH surfaces do not provide suitable platforms for its adsorption, indicating that its still unknown physiological redox partner might be membrane integrated. Neither of the employed immobilization strategies results in electrocatalytically active PccH capable of the reduction of hydrogen peroxide. Pseudoperoxidase activity is observed in immobilized microperoxidase, which is enzymatically produced from PccH and spectroscopically characterized. Further improvement of PccH microperoxidase stability is required for its application in electrochemical biosensing of hydrogen peroxide. © the Owner Societies.

Registro:

Documento: Artículo
Título:Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase
Autor:Silveira, C.M.; Castro, M.A.; Dantas, J.M.; Salgueiro, C.; Murgida, D.H.; Todorovic, S.
Filiación:Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Monte de Caparica, 2829-516, Portugal
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:bacterial protein; cytochrome c; peroxidase; adsorption; electrode; electron; Geobacter; metabolism; Raman spectrometry; thermodynamics; Adsorption; Bacterial Proteins; Cytochromes c; Electrodes; Electrons; Geobacter; Peroxidases; Spectrum Analysis, Raman; Thermodynamics
Año:2017
Volumen:19
Número:13
Página de inicio:8908
Página de fin:8918
DOI: http://dx.doi.org/10.1039/c6cp08361g
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CODEN:PPCPF
CAS:cytochrome c, 9007-43-6, 9064-84-0; peroxidase, 9003-99-0; Bacterial Proteins; Cytochromes c; microperoxidase; Peroxidases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v19_n13_p8908_Silveira

Referencias:

  • Lovley, D.R., (2012) Annu. Rev. Microbiol., 66, pp. 391-409
  • Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Nevin, K.P., (2011) Adv. Microb. Physiol., 59, pp. 1-100
  • Strycharz, S.M., Glaven, R.H., Coppi, M.V., Gannon, S.M., Perpetua, L.A., Liu, A., Nevin, K.P., Lovley, D.R., (2011) Bioelectrochemistry, 80, pp. 142-150
  • Dantas, J.M., Tomaz, D.M., Morgado, L., Salgueiro, C.A., (2013) FEBS Lett., 587, pp. 2662-2668
  • Dantas, J.M., Campelo, L.M., Duke, N.E., Salgueiro, C.A., Pokkuluri, P.R., (2015) FEBS J., 282, pp. 2215-2231
  • Logan, B.E., Rabaey, K., (2012) Science, 337, pp. 686-690
  • Lovley, D.R., (2011) Environ. Microbiol. Rep., 3, pp. 27-35
  • Rabaey, K., Rozendal, R.A., (2010) Nat. Rev. Microbiol., 8, pp. 706-716
  • Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., (2010) MBio, 1, pp. e00103-00110
  • Diederix, R.E.M., Ubbink, M., Canters, G.W., (2001) Eur. J. Biochem., 268, pp. 4207-4216
  • Everse, J., Liu, C.J.J., Coates, P.W., (2011) Biochim. Biophys. Acta, Mol. Basis Dis., 1812, pp. 1138-1145
  • Yagati, A.K., Lee, T., Min, J., Choi, J.-W., (2012) Colloids Surf., B, 92, pp. 161-167
  • Zhu, A., Tian, Y., Liu, H., Luo, Y., (2009) Biomaterials, 30, pp. 3183-3188
  • Ranieri, A., Millo, D., Di Rocco, G., Battistuzzi, G., Bortolotti, C.A., Borsari, M., Sola, M., (2015) J. Biol. Inorg. Chem., 20, pp. 531-540
  • Ranieri, A., Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Monari, S., Sola, M., (2012) Electrochem. Commun., 14, pp. 29-31
  • Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H., (2015) Bioelectrochemistry, 105, pp. 25-33
  • Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., Murgida, D.H., (2015) Biochemistry, 54, pp. 7491-7504
  • Wang, L., Waldeck, D.H., (2008) J. Phys. Chem. C, 112, pp. 1351-1356
  • Wang, Z.-H., Lin, Y.-W., Rosell, F.I., Ni, F.-Y., Lu, H.-J., Yang, P.-Y., Tan, X.-S., Mauk, A.G., (2007) ChemBioChem, 8, pp. 607-609
  • Santos, T.C., De Oliveira, A.R., Dantas, J.M., Salgueiro, C.A., Cordas, C.M., (2015) Biochim. Biophys. Acta, 1847, pp. 1113-1118
  • Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res., 37, pp. 854-861
  • Sezer, M., Millo, D., Weidinger, I.M., Zebger, I., Hildebrandt, P., (2012) IUBMB Life, 64, pp. 455-464
  • Todorovic, S., Jung, C., Hildebrandt, P., Murgida, D.H., (2006) J. Biol. Inorg. Chem., 11, pp. 119-127
  • Todorovic, S., Pereira, M.M., Bandeiras, T.M., Teixeira, M., Hildebrandt, P., Murgida, D.H., (2005) J. Am. Chem. Soc., 127, pp. 13561-13566
  • Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Döpner, S., Hildebrandt, P., Grant Mauk, A., Lenk, H., Stempfle, W., (1996) Spectrochim. Acta, Part A, 52, pp. 573-584
  • Hildebrandt, A.G., Roots, I., (1975) Arch. Biochem. Biophys., 171, pp. 385-397
  • Mandell, D.J., Coutsias, E.A., Kortemme, T., (2009) Nat. Methods, 6, pp. 551-552
  • Rai, B., Sathish, P., Malhotra, C.P., Ayappa, K.G., (2004) Langmuir, 20, pp. 3138-3144
  • Marmisollé, W.A., Capdevila, D.A., De La Llave, E., Williams, F.J., Murgida, D.H., (2013) Langmuir, 29, pp. 5351-5359
  • Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Woods, R.J., (2005) J. Comput. Chem., 26, pp. 1668-1688
  • Paggi, D.A., Martín, D.F., Kranich, A., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2009) Electrochim. Acta, 54, pp. 4963-4970
  • Park, S., Schulten, K., (2004) J. Chem. Phys., 120, pp. 5946-5961
  • Onufriev, A., Bashford, D., Case, D.A., (2004) Proteins: Struct., Funct., Bioinf., 55, pp. 383-394
  • Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Murgida, D.H., (2013) J. Phys. Chem. B, 117, pp. 6061-6068
  • Molinas, M.F., De Candia, A., Szajnman, S.H., Rodriguez, J.B., Marti, M., Pereira, M., Teixeira, M., Murgida, D.H., (2011) Phys. Chem. Chem. Phys., 13, pp. 18088-18098
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Siebert, F., Hildebrandt, P., (2008) Vibrational Spectroscopy in Life Science, pp. 227-282. , Wiley-VCH Verlag GmbH & Co. KGaA
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Todorovic, S., Verissimo, A., Wisitruangsakul, N., Zebger, I., Hildebrandt, P., Pereira, M.M., Teixeira, M., Murgida, D.H., (2008) J. Phys. Chem. B, 112, pp. 16952-16959
  • Ash, P.A., Vincent, K.A., (2012) Chem. Commun., 48, pp. 1400-1409
  • Murgida, D.H., Hildebrandt, P., (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784
  • Todorovic, S., Hildebrandt, P., Martins, L.O., (2015) Phys. Chem. Chem. Phys., 17, pp. 11954-11957
  • Khoa, H., Sezer, L.M., Wisitruangsakul, N., Feng, J.-J., Kranich, A., Millo, D., Weidinger, I.M., Hildebrandt, P., (2011) FEBS J., 278, pp. 1382-1390
  • Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, pp. 937-945
  • Murgida, D., Hildebrandt, P., (2006) Surface-Enhanced Raman Scattering: Physics and Applications, pp. 313-334. , ed. K. Kneipp, M. Moskovits and H. Kneipp, Springer, Berlin, Heidelberg
  • Sezer, M., Genebra, T., Mendes, S., Martins, L.O., Todorovic, S., (2012) Soft Matter, 8, pp. 10314-10321
  • Silveira, C.M., Quintas, P.O., Moura, I., Moura, J.J., Hildebrandt, P., Almeida, M.G., Todorovic, S., (2015) PLoS One, 10, p. e0129940
  • Hildebrandt, P., Stockburger, M., (1989) Biochemistry, 28, pp. 6710-6721
  • Smulevich, G., Spiro, T.G., (1985) J. Phys. Chem., 89, pp. 5168-5173
  • Monk, P., (2007) Fundamentals of Electroanalytical Chemistry, , John Wiley & Sons, Ltd, Chichester
  • Murgida, D.H., (2006) Top. Appl. Phys., 103, pp. 313-334
  • Battistuzzi, G., Borsari, M., Sola, M., Francia, F., (1997) Biochemistry, 36, pp. 16247-16258
  • Rivas, L., Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, pp. 4823-4830
  • Murgida, D.H., Hildebrandt, P., Wei, J., He, Y.F., Liu, H., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, pp. 2261-2269
  • Marques, H.M., (2007) Dalton Trans., pp. 4371-4385
  • Marques, H.M., Perry, C.B., (1999) J. Inorg. Biochem., 75, pp. 281-291
  • Hammack, B., Godbole, S., Bowler, B.E., (1998) J. Mol. Biol., 275, pp. 719-724
  • Suruga, K., Murakami, K., Taniyama, Y., Hama, T., Chida, H., Satoh, T., Yamada, S., Oku, T., (2004) Biochem. Biophys. Res. Commun., 315, pp. 815-822
  • Wackerbarth, H., Hildebrandt, P., (2003) ChemPhysChem, 4, pp. 714-724

Citas:

---------- APA ----------
Silveira, C.M., Castro, M.A., Dantas, J.M., Salgueiro, C., Murgida, D.H. & Todorovic, S. (2017) . Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase. Physical Chemistry Chemical Physics, 19(13), 8908-8918.
http://dx.doi.org/10.1039/c6cp08361g
---------- CHICAGO ----------
Silveira, C.M., Castro, M.A., Dantas, J.M., Salgueiro, C., Murgida, D.H., Todorovic, S. "Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase" . Physical Chemistry Chemical Physics 19, no. 13 (2017) : 8908-8918.
http://dx.doi.org/10.1039/c6cp08361g
---------- MLA ----------
Silveira, C.M., Castro, M.A., Dantas, J.M., Salgueiro, C., Murgida, D.H., Todorovic, S. "Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase" . Physical Chemistry Chemical Physics, vol. 19, no. 13, 2017, pp. 8908-8918.
http://dx.doi.org/10.1039/c6cp08361g
---------- VANCOUVER ----------
Silveira, C.M., Castro, M.A., Dantas, J.M., Salgueiro, C., Murgida, D.H., Todorovic, S. Structure, electrocatalysis and dynamics of immobilized cytochrome PccH and its microperoxidase. Phys. Chem. Chem. Phys. 2017;19(13):8908-8918.
http://dx.doi.org/10.1039/c6cp08361g