Artículo

Friend, D.M.; Devarakonda, K.; O'Neal, T.J.; Skirzewski, M.; Papazoglou, I.; Kaplan, A.R.; Liow, J.-S.; Guo, J.; Rane, S.G.; Rubinstein, M.; Alvarez, V.A.; Hall, K.D.; Kravitz, A.V. "Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity" (2017) Cell Metabolism. 25(2):312-321
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring Gi signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity. © 2017

Registro:

Documento: Artículo
Título:Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity
Autor:Friend, D.M.; Devarakonda, K.; O'Neal, T.J.; Skirzewski, M.; Papazoglou, I.; Kaplan, A.R.; Liow, J.-S.; Guo, J.; Rane, S.G.; Rubinstein, M.; Alvarez, V.A.; Hall, K.D.; Kravitz, A.V.
Filiación:National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
Section of Molecular Neurobiology, Eunice Shriver Kennedy National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, C1428ADN Buenos Aires, Argentina
Department of Physiology, Molecular and Cellular Biology, FCEN, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
Palabras clave:D2; dopamine; exercise; obese; obesity; physical activity; striatum; weight loss; dopamine; dopamine 2 receptor; protein binding; animal experiment; animal model; Article; basal ganglion; controlled study; corpus striatum; diet induced obesity; mouse; nerve cell; nonhuman; physical inactivity; priority journal; signal transduction; weight gain; action potential; adverse effects; animal; animal experiment; basal ganglion; C57BL mouse; lipid diet; male; metabolism; mouse mutant; movement (physiology); obesity; pathophysiology; physiology; Action Potentials; Animals; Basal Ganglia; Corpus Striatum; Diet, High-Fat; Male; Mice, Inbred C57BL; Mice, Obese; Movement; Neurons; Obesity; Physical Conditioning, Animal; Protein Binding; Receptors, Dopamine D2; Weight Gain
Año:2017
Volumen:25
Número:2
Página de inicio:312
Página de fin:321
DOI: http://dx.doi.org/10.1016/j.cmet.2016.12.001
Título revista:Cell Metabolism
Título revista abreviado:Cell Metab.
ISSN:15504131
CAS:dopamine, 51-61-6, 62-31-7; Receptors, Dopamine D2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15504131_v25_n2_p312_Friend

Referencias:

  • Adams, W.K., Sussman, J.L., Kaur, S., D'souza, A.M., Kieffer, T.J., Winstanley, C.A., Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling—two markers of addiction vulnerability (2015) Eur. J. Neurosci., 42, pp. 3095-3104
  • Alexander, G.E., Crutcher, M.D., Functional architecture of basal ganglia circuits: neural substrates of parallel processing (1990) Trends Neurosci., 13, pp. 266-271
  • Bauman, A.E., Reis, R.S., Sallis, J.F., Wells, J.C., Loos, R.J., Martin, B.W., Correlates of physical activity: why are some people physically active and others not? (2012) Lancet, 380, pp. 258-271
  • Beeler, J.A., Faust, R.P., Turkson, S., Ye, H., Zhuang, X., Low dopamine D2 receptor increases vulnerability to obesity via reduced physical activity not increased appetitive motivation (2015) Biol. Psychiatry, 79, pp. 887-897
  • Bello, E.P., Mateo, Y., Gelman, D.M., Noaín, D., Shin, J.H., Low, M.J., Alvarez, V.A., Rubinstein, M., Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors (2011) Nat. Neurosci., 14, pp. 1033-1038
  • Berglind, D., Willmer, M., Eriksson, U., Thorell, A., Sundbom, M., Uddén, J., Raoof, M., Rasmussen, F., Longitudinal assessment of physical activity in women undergoing Roux-en-Y gastric bypass (2015) Obes. Surg., 25, pp. 119-125
  • Berglind, D., Willmer, M., Tynelius, P., Ghaderi, A., Naslund, E., Rasmussen, F., Accelerometer-measured versus self-reported physical activity levels and sedentary behavior in women before and 9 months after roux-en-Y gastric bypass (2016) Obes. Surg., 26, pp. 1463-1470
  • Blum, K., Braverman, E.R., Wood, R.C., Gill, J., Li, C., Chen, T.J., Taub, M., Cull, J.G., Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report (1996) Pharmacogenetics, 6, pp. 297-305
  • Blum, K., Liu, Y., Shriner, R., Gold, M.S., Reward circuitry dopaminergic activation regulates food and drug craving behavior (2011) Curr. Pharm. Des., 17, pp. 1158-1167
  • Bond, D.S., Jakicic, J.M., Unick, J.L., Vithiananthan, S., Pohl, D., Roye, G.D., Ryder, B.A., Wing, R.R., Pre- to postoperative physical activity changes in bariatric surgery patients: self report vs. objective measures (2010) Obesity (Silver Spring), 18, pp. 2395-2397
  • Brownson, R.C., Boehmer, T.K., Luke, D.A., Declining rates of physical activity in the United States: what are the contributors? (2005) Annu. Rev. Public Health, 26, pp. 421-443
  • Caravaggio, F., Raitsin, S., Gerretsen, P., Nakajima, S., Wilson, A., Graff-Guerrero, A., Ventral striatum binding of a dopamine D2/3 receptor agonist but not antagonist predicts normal body mass index (2015) Biol. Psychiatry, 77, pp. 196-202
  • Carlin, J., Hill-Smith, T.E., Lucki, I., Reyes, T.M., Reversal of dopamine system dysfunction in response to high-fat diet (2013) Obesity (Silver Spring), 21, pp. 2513-2521
  • Carpenter, C.L., Wong, A.M., Li, Z., Noble, E.P., Heber, D., Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity (2013) Obesity (Silver Spring), 21, pp. E467-E473
  • Constantinescu, C.C., Coleman, R.A., Pan, M.L., Mukherjee, J., Striatal and extrastriatal microPET imaging of D2/D3 dopamine receptors in rat brain with [18F]fallypride and [18F]desmethoxyfallypride (2011) Synapse, 65, pp. 778-787
  • Cosgrove, K.P., Veldhuizen, M.G., Sandiego, C.M., Morris, E.D., Small, D.M., Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum (2015) Synapse, 69, pp. 195-202
  • Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., Costa, R.M., Concurrent activation of striatal direct and indirect pathways during action initiation (2013) Nature, 494, pp. 238-242
  • Davis, J.F., Tracy, A.L., Schurdak, J.D., Tschöp, M.H., Lipton, J.W., Clegg, D.J., Benoit, S.C., Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat (2008) Behav. Neurosci., 122, pp. 1257-1263
  • de Boer, J.O., van Es, A.J., Roovers, L.C., van Raaij, J.M., Hautvast, J.G., Adaptation of energy metabolism of overweight women to low-energy intake, studied with whole-body calorimeters (1986) Am. J. Clin. Nutr., 44, pp. 585-595
  • de Groot, L.C., van Es, A.J., van Raaij, J.M., Vogt, J.E., Hautvast, J.G., Adaptation of energy metabolism of overweight women to alternating and continuous low energy intake (1989) Am. J. Clin. Nutr., 50, pp. 1314-1323
  • de Rezende, L.F., Rey-López, J.P., Matsudo, V.K., do Carmo Luiz, O., Sedentary behavior and health outcomes among older adults: a systematic review (2014) BMC Public Health, 14, p. 333
  • de Weijer, B.A., van de Giessen, E., van Amelsvoort, T.A., Boot, E., Braak, B., Janssen, I.M., van de Laar, A., Booij, J., Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects (2011) EJNMMI Res., 1, p. 37
  • DeLong, M.R., Primate models of movement disorders of basal ganglia origin (1990) Trends Neurosci., 13, pp. 281-285
  • Dobbs, L.K., Kaplan, A.R., Lemos, J.C., Matsui, A., Rubinstein, M., Alvarez, V.A., Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine (2016) Neuron, 90, pp. 1100-1113
  • Dunn, J.P., Kessler, R.M., Feurer, I.D., Volkow, N.D., Patterson, B.W., Ansari, M.S., Li, R., Abumrad, N.N., Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity (2012) Diabetes Care, 35, pp. 1105-1111
  • Ekkekakis, P., Lind, E., Exercise does not feel the same when you are overweight: the impact of self-selected and imposed intensity on affect and exertion (2006) Int. J. Obes., 30, pp. 652-660
  • Ekkekakis, P., Vazou, S., Bixby, W.R., Georgiadis, E., The mysterious case of the public health guideline that is (almost) entirely ignored: call for a research agenda on the causes of the extreme avoidance of physical activity in obesity (2016) Obes. Rev., 17, pp. 313-329
  • Franklin, K.B.J., Paxinos, G., The Mouse Brain in Stereotaxic Coordinates (1997), Academic Press; Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr., Sibley, D.R., D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons (1990) Science, 250, pp. 1429-1432
  • Guo, J., Jou, W., Gavrilova, O., Hall, K.D., Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets (2009) PLoS One, 4, p. e5370
  • Guo, J., Simmons, W.K., Herscovitch, P., Martin, A., Hall, K.D., Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior (2014) Mol. Psychiatry, 19, pp. 1078-1084
  • Hajnal, A., Margas, W.M., Covasa, M., Altered dopamine D2 receptor function and binding in obese OLETF rat (2008) Brain Res. Bull., 75, pp. 70-76
  • Hornykiewicz, O., A brief history of levodopa (2010) J. Neurol., 257, pp. S249-S252
  • Horstmann, A., Fenske, W.K., Hankir, M.K., Argument for a non-linear relationship between severity of human obesity and dopaminergic tone (2015) Obes. Rev., 16, pp. 821-830
  • Huang, X.F., Zavitsanou, K., Huang, X., Yu, Y., Wang, H., Chen, F., Lawrence, A.J., Deng, C., Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity (2006) Behav. Brain Res., 175, pp. 415-419
  • Johnson, P.M., Kenny, P.J., Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats (2010) Nat. Neurosci., 13, pp. 635-641
  • Karlsson, H.K., Tuominen, L., Tuulari, J.J., Hirvonen, J., Parkkola, R., Helin, S., Salminen, P., Nummenmaa, L., Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain (2015) J. Neurosci., 35, pp. 3959-3965
  • Karlsson, H.K., Tuulari, J.J., Tuominen, L., Hirvonen, J., Honka, H., Parkkola, R., Helin, S., Nummenmaa, L., Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity (2016) Mol. Psychiatry, 21, pp. 1057-1062
  • Kenny, P.J., Reward mechanisms in obesity: new insights and future directions (2011) Neuron, 69, pp. 664-679
  • Kessler, R.M., Zald, D.H., Ansari, M.S., Li, R., Cowan, R.L., Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity (2014) Synapse, 68, pp. 317-320
  • Kilpatrick, I.C., Jones, M.W., Phillipson, O.T., A semiautomated analysis method for catecholamines, indoleamines, and some prominent metabolites in microdissected regions of the nervous system: an isocratic HPLC technique employing coulometric detection and minimal sample preparation (1986) J. Neurochem., 46, pp. 1865-1876
  • Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., Kreitzer, A.C., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry (2010) Nature, 466, pp. 622-626
  • Lammertsma, A.A., Hume, S.P., Simplified reference tissue model for PET receptor studies (1996) Neuroimage, 4, pp. 153-158
  • Le Moine, C., Bloch, B., D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum (1995) J. Comp. Neurol., 355, pp. 418-426
  • Lemos, J.C., Friend, D.M., Kaplan, A.R., Shin, J.H., Rubinstein, M., Kravitz, A.V., Alvarez, V.A., Enhanced GABA transmission drives bradykinesia following loss of dopamine D2 receptor signaling (2016) Neuron, 90, pp. 824-838
  • Levey, A.I., Hersch, S.M., Rye, D.B., Sunahara, R.K., Niznik, H.B., Kitt, C.A., Price, D.L., Ciliax, B.J., Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 8861-8865
  • Martin, C.K., Heilbronn, L.K., de Jonge, L., DeLany, J.P., Volaufova, J., Anton, S.D., Redman, L.M., Ravussin, E., Effect of calorie restriction on resting metabolic rate and spontaneous physical activity (2007) Obesity (Silver Spring), 15, pp. 2964-2973
  • Mathes, W.F., Nehrenberg, D.L., Gordon, R., Hua, K., Garland, T., Jr., Pomp, D., Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity (2010) Behav. Brain Res., 210, pp. 155-163
  • Michaelides, M., Thanos, P.K., Kim, R., Cho, J., Ananth, M., Wang, G.J., Volkow, N.D., PET imaging predicts future body weight and cocaine preference (2012) Neuroimage, 59, pp. 1508-1513
  • Murray, S., Tulloch, A., Gold, M.S., Avena, N.M., Hormonal and neural mechanisms of food reward, eating behaviour and obesity (2014) Nat. Rev. Endocrinol., 10, pp. 540-552
  • Narayanaswami, V., Thompson, A.C., Cassis, L.A., Bardo, M.T., Dwoskin, L.P., Diet-induced obesity: dopamine transporter function, impulsivity and motivation (2013) Int. J. Obes., 37, pp. 1095-1103
  • Noble, E.P., Blum, K., Ritchie, T., Montgomery, A., Sheridan, P.J., Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism (1991) Arch. Gen. Psychiatry, 48, pp. 648-654
  • Ramirez-Marrero, F.A., Miles, J., Joyner, M.J., Curry, T.B., Self-reported and objective physical activity in postgastric bypass surgery, obese and lean adults: association with body composition and cardiorespiratory fitness (2014) J. Phys. Act. Health, 11, pp. 145-151
  • Ravussin, Y., Gutman, R., LeDuc, C.A., Leibel, R.L., Estimating energy expenditure in mice using an energy balance technique (2013) Int. J. Obes., 37, pp. 399-403
  • Redman, L.M., Heilbronn, L.K., Martin, C.K., de Jonge, L., Williamson, D.A., Delany, J.P., Ravussin, E., Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss (2009) PLoS One, 4, p. e4377
  • Sharma, S., Merghani, A., Mont, L., Exercise and the heart: the good, the bad, and the ugly (2015) Eur. Heart J., 36, pp. 1445-1453
  • Steele, K.E., Prokopowicz, G.P., Schweitzer, M.A., Magunsuon, T.H., Lidor, A.O., Kuwabawa, H., Kumar, A., Wong, D.F., Alterations of central dopamine receptors before and after gastric bypass surgery (2010) Obes. Surg., 20, pp. 369-374
  • Stice, E., Spoor, S., Bohon, C., Small, D.M., Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele (2008) Science, 322, pp. 449-452
  • Thompson, J., Thomas, N., Singleton, A., Piggott, M., Lloyd, S., Perry, E.K., Morris, C.M., Court, J.A., D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele (1997) Pharmacogenetics, 7, pp. 479-484
  • Tuominen, L., Tuulari, J., Karlsson, H., Hirvonen, J., Helin, S., Salminen, P., Parkkola, R., Nummenmaa, L., Aberrant mesolimbic dopamine-opiate interaction in obesity (2015) Neuroimage, 122, pp. 80-86
  • van de Giessen, E., la Fleur, S.E., de Bruin, K., van den Brink, W., Booij, J., Free-choice and no-choice high-fat diets affect striatal dopamine D2/3 receptor availability, caloric intake, and adiposity (2012) Obesity (Silver Spring), 20, pp. 1738-1740
  • van de Giessen, E., la Fleur, S.E., Eggels, L., de Bruin, K., van den Brink, W., Booij, J., High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity (2013) Int. J. Obes., 37, pp. 754-757
  • Volkow, N.D., Wise, R.A., How can drug addiction help us understand obesity? (2005) Nat. Neurosci., 8, pp. 555-560
  • Volkow, N.D., Wang, G.J., Telang, F., Fowler, J.S., Thanos, P.K., Logan, J., Alexoff, D., Pradhan, K., Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors (2008) Neuroimage, 42, pp. 1537-1543
  • Volkow, N.D., Wang, G.J., Logan, J., Alexoff, D., Fowler, J.S., Thanos, P.K., Wong, C., Tomasi, D., Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain (2015) Transl. Psychiatry, 5, p. e549
  • Vucetic, Z., Carlin, J.L., Totoki, K., Reyes, T.M., Epigenetic dysregulation of the dopamine system in diet-induced obesity (2012) J. Neurochem., 120, pp. 891-898
  • Wang, G.J., Volkow, N.D., Logan, J., Pappas, N.R., Wong, C.T., Zhu, W., Netusil, N., Fowler, J.S., Brain dopamine and obesity (2001) Lancet, 357, pp. 354-357
  • Wang, G.J., Tomasi, D., Convit, A., Logan, J., Wong, C.T., Shumay, E., Fowler, J.S., Volkow, N.D., BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake (2014) PLoS One, 9, p. e101585
  • Westerterp, K.R., Obesity and physical activity (1999) Int. J. Obes. Relat. Metab. Disord., 23, pp. 59-64
  • Wiers, C.E., Shumay, E., Cabrera, E., Shokri-Kojori, E., Gladwin, T.E., Skarda, E., Cunningham, S.I., Tomasi, D., Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers (2016) Transl. Psychiatry, 6, p. e752
  • Zhang, C., Wei, N.L., Wang, Y., Wang, X., Zhang, J.G., Zhang, K., Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission (2015) Neurosci. Lett., 589, pp. 1-6

Citas:

---------- APA ----------
Friend, D.M., Devarakonda, K., O'Neal, T.J., Skirzewski, M., Papazoglou, I., Kaplan, A.R., Liow, J.-S.,..., Kravitz, A.V. (2017) . Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity. Cell Metabolism, 25(2), 312-321.
http://dx.doi.org/10.1016/j.cmet.2016.12.001
---------- CHICAGO ----------
Friend, D.M., Devarakonda, K., O'Neal, T.J., Skirzewski, M., Papazoglou, I., Kaplan, A.R., et al. "Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity" . Cell Metabolism 25, no. 2 (2017) : 312-321.
http://dx.doi.org/10.1016/j.cmet.2016.12.001
---------- MLA ----------
Friend, D.M., Devarakonda, K., O'Neal, T.J., Skirzewski, M., Papazoglou, I., Kaplan, A.R., et al. "Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity" . Cell Metabolism, vol. 25, no. 2, 2017, pp. 312-321.
http://dx.doi.org/10.1016/j.cmet.2016.12.001
---------- VANCOUVER ----------
Friend, D.M., Devarakonda, K., O'Neal, T.J., Skirzewski, M., Papazoglou, I., Kaplan, A.R., et al. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity. Cell Metab. 2017;25(2):312-321.
http://dx.doi.org/10.1016/j.cmet.2016.12.001