Artículo

Erlejman, A.G.; Lagadari, M.; Toneatto, J.; Piwien-Pilipuk, G.; Galigniana, M.D. "Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression" (2014) Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. 1839(2):71-87
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression
Autor:Erlejman, A.G.; Lagadari, M.; Toneatto, J.; Piwien-Pilipuk, G.; Galigniana, M.D.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/IQUIBICEN, Argentina
Laboratorio de Receptores Nucleares, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
Laboratorio de Arquitectura Nuclear, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
Palabras clave:HDAC6; Hsp90; Immunophilin; Pih1; SmyD; Tah1; chaperone; DNA; heat shock protein 90; histone deacetylase 6; immunophilin; protein; protein bcl 6; protein kinase; SmyD protein; unclassified drug; cancer therapy; epigenetics; gene expression; genetic stability; human; molecular evolution; nonhuman; priority journal; protein function; protein modification; review; transcription regulation; HDAC6; Hsp90; Immunophilin; Pih1; SmyD; Tah1; Animals; Gene Expression Regulation; HSP90 Heat-Shock Proteins; Humans; Models, Genetic; Molecular Chaperones; Protein Binding; Transcription Factors
Año:2014
Volumen:1839
Número:2
Página de inicio:71
Página de fin:87
DOI: http://dx.doi.org/10.1016/j.bbagrm.2013.12.006
Título revista:Biochimica et Biophysica Acta - Gene Regulatory Mechanisms
Título revista abreviado:Biochim. Biophys. Acta Gene Regul. Mech.
ISSN:18749399
CAS:DNA, 9007-49-2; protein, 67254-75-5; protein kinase, 9026-43-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18749399_v1839_n2_p71_Erlejman

Referencias:

  • Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J., Role of molecular chaperones in steroid receptor action (2004) Essays Biochem., 40, pp. 41-58
  • Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review (1998) Pharmacol. Ther., 79, pp. 129-168
  • Grad, I., Picard, D., The glucocorticoid responses are shaped by molecular chaperones (2007) Mol. Cell. Endocrinol., 275, pp. 2-12
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr. Rev., 18, pp. 306-360
  • Lindquist, S., Protein folding sculpting evolutionary change (2009) Cold Spring Harb. Symp. Quant. Biol., 74, pp. 103-108
  • Ritossa, F., A new puffing pattern induced by temperature shock and DNP in Drosophila (1962) Experientia, 18, pp. 571-573
  • Anckar, J., Sistonen, L., Regulation of HSF1 function in the heat stress response: implications in aging and disease (2011) Annu. Rev. Biochem., 80, pp. 1089-1115
  • Regan, P.L., Jacobs, J., Wang, G., Torres, J., Edo, R., Friedmann, J., Tang, X.X., Hsp90 inhibition increases p53 expression and destabilizes MYCN and MYC in neuroblastoma (2011) Int. J. Oncol., 38, pp. 105-112
  • Whitesell, L., Lin, N.U., HSP90 as a platform for the assembly of more effective cancer chemotherapy (2012) Biochim. Biophys. Acta, 1823, pp. 756-766
  • Trepel, J., Mollapour, M., Giaccone, G., Neckers, L., Targeting the dynamic HSP90 complex in cancer (2010) Nat. Rev. Cancer, 10, pp. 537-549
  • Rutherford, S.L., Lindquist, S., Hsp90 as a capacitor for morphological evolution (1998) Nature, 396, pp. 336-342
  • Jarosz, D.F., Lindquist, S., Hsp90 and environmental stress transform the adaptive value of natural genetic variation (2010) Science, 330, pp. 1820-1824
  • Taipale, M., Jarosz, D.F., Lindquist, S., HSP90 at the hub of protein homeostasis: emerging mechanistic insights (2010) Nat. Rev. Mol. Cell Biol., 11, pp. 515-528
  • Pigliucci, M., Epigenetics is back! Hsp90 and phenotypic variation (2003) Cell Cycle, 2, pp. 34-35
  • Waddington, C.H., Canalization of development and the inheritance of acquired characters (1942) Nature, 150, pp. 563-565
  • Queitsch, C., Sangster, T.A., Lindquist, S., Hsp90 as a capacitor of phenotypic variation (2002) Nature, 417, pp. 618-624
  • Chen, B., Zhong, D., Monteiro, A., Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms (2006) BMC Genomics, 7, p. 156
  • Gupta, R.S., Phylogenetic analysis of the 90kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species (1995) Mol. Biol. Evol., 12, pp. 1063-1073
  • Hickey, E., Brandon, S.E., Smale, G., Lloyd, D., Weber, L.A., Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein (1989) Mol. Cell. Biol., 9, pp. 2615-2626
  • Borkovich, K.A., Farrelly, F.W., Finkelstein, D.C.B., Taulien, J., Lindquist, S., Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures (1989) Mol. Cell. Biol., 9, pp. 3919-3930
  • Dalley, B.K., Golomb, M., Gene expression in the Caenorhabditis elegans dauer larva: developmental regulation of Hsp90 and other genes (1992) Dev. Biol., 151, pp. 80-90
  • Hackett, R.W., Lis, J.T., Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster (1983) Nucleic Acids Res., 11, pp. 7011-7030
  • Johnson, J.L., Evolution and function of diverse Hsp90 homologs and cochaperone proteins (2012) Biochim. Biophys. Acta, 1823, pp. 607-613
  • Li, W., Sahu, D., Tsen, F., Secreted heat shock protein-90 (Hsp90) in wound healing and cancer (2012) Biochim. Biophys. Acta, 1823, pp. 730-741
  • Welch, W.J., Feramisco, J.R., Purification of the major mammalian heat shock proteins (1982) J. Biol. Chem., 257, pp. 14949-14959
  • Lai, B.T., Chin, N.W., Stanek, A.E., Keh, W., Lanks, K.W., Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies (1984) Mol. Cell. Biol., 4, pp. 2802-2810
  • Nollen, E.A., Morimoto, R.I., Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins (2002) J. Cell Sci., 115, pp. 2809-2816
  • Piwien-Pilipuk, G., Ayala, A., Machado, A., Galigniana, M.D., Impairment of mineralocorticoid receptor (MR)-dependent biological response by oxidative stress and aging: correlation with post-translational modification of MR and decreased ADP-ribosylatable level of elongating factor 2 in kidney cells (2002) J. Biol. Chem., 277, pp. 11896-11903
  • Sawarkar, R., Paro, R., Hsp90@chromatin.nucleus: an emerging hub of a networker (2013) Trends Cell Biol., 23, pp. 193-201
  • Lamoth, F., Juvvadi, P.R., Fortwendel, J.R., Steinbach, W.J., Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus (2012) Eukaryot. Cell, 11, pp. 1324-1332
  • Katschinski, D.M., Le, L., Heinrich, D., Wagner, K.F., Hofer, T., Schindler, S.G., Wenger, R.H., Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity (2002) J. Biol. Chem., 277, pp. 9262-9267
  • van Bergen En Henegouwen, P.M., Berbers, G., Linnemans, W.A., van Wijk, R., Subcellular localization of the 84,000 dalton heat-shock protein in mouse neuroblastoma cells: evidence for a cytoplasmic and nuclear location (1987) Eur. J. Cell Biol., 43, pp. 469-478
  • Tapia, H., Morano, K.A., Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast (2010) Mol. Biol. Cell, 21, pp. 63-72
  • Mollapour, M., Neckers, L., Post-translational modifications of Hsp90 and their contributions to chaperone regulation (2012) Biochim. Biophys. Acta, 1823, pp. 648-655
  • Mimnaugh, E.G., Worland, P.J., Whitesell, L., Neckers, L.M., Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp 60v-src tyrosine kinase (1995) J. Biol. Chem., 270, pp. 28654-28659
  • Garnier, C., Lafitte, D., Jorgensen, T.J., Jensen, O.N., Briand, C., Peyrot, V., Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry (2001) Eur. J. Biochem., 268, pp. 2402-2407
  • Xu, W., Mollapour, M., Prodromou, C., Wang, S., Scroggins, B.T., Palchick, Z., Beebe, K., Neckers, L., Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine (2012) Mol. Cell, 47, pp. 434-443
  • Mollapour, M., Tsutsumi, S., Truman, A.W., Xu, W., Vaughan, C.K., Beebe, K., Konstantinova, A., Neckers, L., Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity (2011) Mol. Cell, 41, pp. 672-681
  • Mollapour, M., Tsutsumi, S., Donnelly, A.C., Beebe, K., Tokita, M.J., Lee, M.J., Lee, S., Neckers, L., Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function (2010) Mol. Cell, 37, pp. 333-343
  • Yu, X., Guo, Z.S., Marcu, M.G., Neckers, L., Nguyen, D.M., Chen, G.A., Schrump, D.S., Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228 (2002) J. Natl. Cancer Inst., 94, pp. 504-513
  • Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Yao, T.P., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor (2005) Mol. Cell, 18, pp. 601-607
  • Martinez-Ruiz, A., Villanueva, L., Gonzalez de Orduna, C., Lopez-Ferrer, D., Higueras, M.A., Tarin, C., Rodriguez-Crespo, I., Lamas, S., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 8525-8530
  • Carbone, D.L., Doorn, J.A., Kiebler, Z., Ickes, B.R., Petersen, D.R., Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease (2005) J. Pharmacol. Exp. Ther., 315, pp. 8-15
  • Blank, M., Mandel, M., Keisari, Y., Meruelo, D., Lavie, G., Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin (2003) Cancer Res., 63, pp. 8241-8247
  • Donlin, L.T., Andresen, C., Just, S., Rudensky, E., Pappas, C.T., Kruger, M., Jacobs, E.Y., Linke, W.A., Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization (2012) Genes Dev., 26, pp. 114-119
  • Pearl, L.H., Prodromou, C., Structure and mechanism of the Hsp90 molecular chaperone machinery (2006) Annu. Rev. Biochem., 75, pp. 271-294
  • Prince, T., Matts, R.L., Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37 (2004) J. Biol. Chem., 279, pp. 39975-39981
  • Pratt, W.B., Morishima, Y., Osawa, Y., The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts (2008) J. Biol. Chem., 283, pp. 22885-22889
  • Hartl, F.U., Hayer-Hartl, M., Molecular chaperones in the cytosol: from nascent chain to folded protein (2002) Science, 295, pp. 1852-1858
  • Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308
  • Galigniana, M.D., Native rat kidney mineralocorticoid receptor is a phosphoprotein whose transformation to a DNA-binding form is induced by phosphatases (1998) Biochem. J., 333 (PART 3), pp. 555-563
  • Chadli, A., Bouhouche, I., Sullivan, W., Stensgard, B., McMahon, N., Catelli, M.G., Toft, D.O., Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90 (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 12524-12529
  • Sullivan, W.P., Owen, B.A., Toft, D.O., The influence of ATP and p23 on the conformation of hsp90 (2002) J. Biol. Chem., 277, pp. 45942-45948
  • Morishima, Y., Kanelakis, K.C., Murphy, P.J., Shewach, D.S., Pratt, W.B., Evidence for iterative ratcheting of receptor-bound hsp70 between its ATP and ADP conformations during assembly of glucocorticoid receptor.hsp90 heterocomplexes (2001) Biochemistry, 40, pp. 1109-1116
  • Pratt, W.B., Toft, D.O., Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery (2003) Exp. Biol. Med. (Maywood), 228, pp. 111-133
  • Kanelakis, K.C., Murphy, P.J., Galigniana, M.D., Morishima, Y., Takayama, S., Reed, J.C., Toft, D.O., Pratt, W.B., Hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1 (2000) Biochemistry, 39, pp. 14314-14321
  • Karagoz, G.E., Duarte, A.M., Ippel, H., Uetrecht, C., Sinnige, T., van Rosmalen, M., Hausmann, J., Rudiger, S.G., N-terminal domain of human Hsp90 triggers binding to the cochaperone p23 (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 580-585
  • Quinta, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., Management of cytoskeleton architecture by molecular chaperones and immunophilins (2011) Cell. Signal., 23, pp. 1907-1920
  • Picard, D., Heat-shock protein 90, a chaperone for folding and regulation (2002) Cell. Mol. Life Sci., 59, pp. 1640-1648
  • Scroggins, B.T., Robzyk, K., Wang, D., Marcu, M.G., Tsutsumi, S., Beebe, K., Cotter, R.J., Neckers, L., An acetylation site in the middle domain of Hsp90 regulates chaperone function (2007) Mol. Cell, 25, pp. 151-159
  • Gaestel, M., Molecular chaperones in signal transduction (2006) Handb. Exp. Pharmacol., pp. 93-109
  • Mollapour, M., Tsutsumi, S., Kim, Y.S., Trepel, J., Neckers, L., Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity (2011) Oncotarget, 2, pp. 407-417
  • Galigniana, M.D., Housley, P.R., DeFranco, D.B., Pratt, W.B., Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton (1999) J. Biol. Chem., 274, pp. 16222-16227
  • Piwien-Pilipuk, G., Galigniana, M.D., Tautomycin inhibits phosphatase-dependent transformation of the rat kidney mineralocorticoid receptor (1998) Mol. Cell. Endocrinol., 144, pp. 119-130
  • Wandinger, S.K., Suhre, M.H., Wegele, H., Buchner, J., The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90 (2006) EMBO J., 25, pp. 367-376
  • Zhang, Y., Leung, D.Y., Nordeen, S.K., Goleva, E., Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation (2009) J. Biol. Chem., 284, pp. 24542-24552
  • Kurokawa, M., Zhao, C., Reya, T., Kornbluth, S., Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias (2008) Mol. Cell. Biol., 28, pp. 5494-5506
  • Lees-Miller, S.P., Anderson, C.W., Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II (1989) J. Biol. Chem., 264, pp. 2431-2437
  • Aligue, R., Akhavan-Niak, H., Russell, P., A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90 (1994) EMBO J., 13, pp. 6099-6106
  • Cheng, C.F., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., Bright, A.M., Li, W., Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing (2008) Mol. Cell. Biol., 28, pp. 3344-3358
  • Lei, H., Venkatakrishnan, A., Yu, S., Kazlauskas, A., Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes (2007) J. Biol. Chem., 282, pp. 9364-9371
  • Old, W.M., Shabb, J.B., Houel, S., Wang, H., Couts, K.L., Yen, C.Y., Litman, E.S., Ahn, N.G., Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma (2009) Mol. Cell, 34, pp. 115-131
  • Barati, M.T., Rane, M.J., Klein, J.B., McLeish, K.R., A proteomic screen identified stress-induced chaperone proteins as targets of Akt phosphorylation in mesangial cells (2006) J. Proteome Res., 5, pp. 1636-1646
  • Lees-Miller, S.P., Anderson, C.W., The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues (1989) J. Biol. Chem., 264, pp. 17275-17280
  • Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., Bakalarski, C.E., Elledge, S.J., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage (2007) Science, 316, pp. 1160-1166
  • Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Bhalla, K., Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors (2005) J. Biol. Chem., 280, pp. 26729-26734
  • Murphy, P.J., Morishima, Y., Kovacs, J.J., Yao, T.P., Pratt, W.B., Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone (2005) J. Biol. Chem., 280, pp. 33792-33799
  • Yang, Y., Rao, R., Shen, J., Tang, Y., Fiskus, W., Nechtman, J., Atadja, P., Bhalla, K., Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion (2008) Cancer Res., 68, pp. 4833-4842
  • Nishioka, C., Ikezoe, T., Yang, J., Takeuchi, S., Koeffler, H.P., Yokoyama, A., MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells (2008) Leuk. Res., 32, pp. 1382-1392
  • Lee, S.M., Bae, J.H., Kim, M.J., Lee, H.S., Lee, M.K., Chung, B.S., Kim, D.W., Kim, S.H., Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors (2007) J. Pharmacol. Exp. Ther., 322, pp. 1084-1092
  • Park, J.H., Kim, S.H., Choi, M.C., Lee, J., Oh, D.Y., Im, S.A., Bang, Y.J., Kim, T.Y., Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors (2008) Biochem. Biophys. Res. Commun., 368, pp. 318-322
  • Zhou, Q., Agoston, A.T., Atadja, P., Nelson, W.G., Davidson, N.E., Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells (2008) Mol. Cancer Res., 6, pp. 873-883
  • Zhang, H.H., Wang, Y.P., Chen, D.B., Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas (2011) Biol. Reprod., 84, pp. 966-975
  • Retzlaff, M., Stahl, M., Eberl, H.C., Lagleder, S., Beck, J., Kessler, H., Buchner, J., Hsp90 is regulated by a switch point in the C-terminal domain (2009) EMBO Rep., 10, pp. 1147-1153
  • Compton, S.A., Elmore, L.W., Haydu, K., Jackson-Cook, C.K., Holt, S.E., Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells (2006) Mol. Cell. Biol., 26, pp. 1452-1462
  • Piwien-Pilipuk, G., Galigniana, M.D., Oxidative stress induced by L-buthionine-(S, R)-sulfoximine, a selective inhibitor of glutathione metabolism, abrogates mouse kidney mineralocorticoid receptor function (2000) Biochim. Biophys. Acta, 1495, pp. 263-280
  • Okamoto, K., Tanaka, H., Ogawa, H., Makino, Y., Eguchi, H., Hayashi, S., Yoshikawa, N., Makino, I., Redox-dependent regulation of nuclear import of the glucocorticoid receptor (1999) J. Biol. Chem., 274, pp. 10363-10371
  • Stancato, L.F., Hutchison, K.A., Chakraborti, P.K., Simons, S.S., Pratt, W.B., Differential effects of the reversible thiol-reactive agents arsenite and methyl methanethiosulfonate on steroid binding by the glucocorticoid receptor (1993) Biochemistry, 32, pp. 3729-3736
  • Chen, W.Y., Chang, F.R., Huang, Z.Y., Chen, J.H., Wu, Y.C., Wu, C.C., Tubocapsenolide A, a novel withanolide, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock proteins (2008) J. Biol. Chem., 283, pp. 17184-17193
  • Spalding, D., Instinct with original observations on young animals (1873) Macmillan's Mag., 27, pp. 282-293
  • Fletcher, T.M., Xiao, N., Mautino, G., Baumann, C.T., Wolford, R., Warren, B.S., Hager, G.L., ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling (2002) Mol. Cell. Biol., 22, pp. 3255-3263
  • Zhao, J., Herrera-Diaz, J., Gross, D.S., Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density (2005) Mol. Cell. Biol., 25, pp. 8985-8999
  • Cheng, M.B., Zhang, Y., Zhong, X., Sutter, B., Cao, C.Y., Chen, X.S., Cheng, X.K., Shen, Y.F., Stat1 mediates an auto-regulation of hsp90beta gene in heat shock response (2010) Cell. Signal., 22, pp. 1206-1213
  • Gould, C.M., Kannan, N., Taylor, S.S., Newton, A.C., The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail (2009) J. Biol. Chem., 284, pp. 4921-4935
  • Marubayashi, S., Koppikar, P., Taldone, T., Abdel-Wahab, O., West, N., Bhagwat, N., Caldas-Lopes, E., Levine, R.L., HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans (2010) J. Clin. Invest., 120, pp. 3578-3593
  • Zhao, R., Houry, W.A., Hsp90: a chaperone for protein folding and gene regulation (2005) Biochem. Cell Biol., 83, pp. 703-710
  • Jenuwein, T., Allis, C.D., Translating the histone code (2001) Science, 293, pp. 1074-1080
  • Deal, R.B., Henikoff, J.G., Henikoff, S., Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones (2010) Science, 328, pp. 1161-1164
  • Deal, R.B., Henikoff, S., Capturing the dynamic epigenome (2010) Genome Biol., 11, p. 218
  • Csermely, P., Kahn, C.R., The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity (1991) J. Biol. Chem., 266, pp. 4943-4950
  • Dingwall, C., Dilworth, S.M., Black, S.J., Kearsey, S.E., Cox, L.S., Laskey, R.A., Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals (1987) EMBO J., 6, pp. 69-74
  • Csermely, P., Kajtar, J., Hollosi, M., Oikarinen, J., Somogyi, J., The 90kDa heat shock protein (hsp90) induces the condensation of the chromatin structure (1994) Biochem. Biophys. Res. Commun., 202, pp. 1657-1663
  • Schnaider, T., Oikarinen, J., Ishiwatari-Hayasaka, H., Yahara, I., Csermely, P., Interactions of Hsp90 with histones and related peptides (1999) Life Sci., 65, pp. 2417-2426
  • Labbadia, J., Cunliffe, H., Weiss, A., Katsyuba, E., Sathasivam, K., Seredenina, T., Woodman, B., Bates, G.P., Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease (2011) J. Clin. Invest., 121, pp. 3306-3319
  • Fukada, M., Hanai, A., Nakayama, A., Suzuki, T., Miyata, N., Rodriguiz, R.M., Wetsel, W.C., Kawaguchi, Y., Loss of deacetylation activity of Hdac6 affects emotional behavior in mice (2012) PLoS One, 7, pp. e30924
  • Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M.D., Ruden, D.M., Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution (2003) Nat. Genet., 33, pp. 70-74
  • Conaway, J.W., Introduction to Theme "Chromatin, Epigenetics, and Transcription" (2012) Annu. Rev. Biochem., 81, pp. 61-64
  • Abu-Farha, M., Lambert, J.P., Al-Madhoun, A.S., Elisma, F., Skerjanc, I.S., Figeys, D., The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase (2008) Mol. Cell. Proteomics, 7, pp. 560-572
  • Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R., Nakamura, Y., SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells (2004) Nat. Cell Biol., 6, pp. 731-740
  • Chuikov, S., Kurash, J.K., Wilson, J.R., Xiao, B., Justin, N., Ivanov, G.S., McKinney, K., Reinberg, D., Regulation of p53 activity through lysine methylation (2004) Nature, 432, pp. 353-360
  • Huang, J., Perez-Burgos, L., Placek, B.J., Sengupta, R., Richter, M., Dorsey, J.A., Kubicek, S., Berger, S.L., Repression of p53 activity by Smyd2-mediated methylation (2006) Nature, 444, pp. 629-632
  • Saddic, L.A., West, L.E., Aslanian, A., Yates, J.R., Rubin, S.M., Gozani, O., Sage, J., Methylation of the retinoblastoma tumor suppressor by SMYD2 (2010) J. Biol. Chem., 285, pp. 37733-37740
  • Abu-Farha, M., Lanouette, S., Elisma, F., Tremblay, V., Butson, J., Figeys, D., Couture, J.F., Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2 (2011) J. Mol. Cell Biol., 3, pp. 301-308
  • Allan, R.K., Ratajczak, T., Versatile TPR domains accommodate different modes of target protein recognition and function (2011) Cell Stress Chaperones, 16, pp. 353-367
  • Pratt, W.B., Galigniana, M.D., Harrell, J.M., DeFranco, D.B., Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement (2004) Cell. Signal., 16, pp. 857-872
  • Jiang, Y., Sirinupong, N., Brunzelle, J., Yang, Z., Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain (2011) PLoS One, 6, pp. e21640
  • Sirinupong, N., Brunzelle, J., Doko, E., Yang, Z., Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3 (2011) J. Mol. Biol., 406, pp. 149-159
  • Lee, D.Y., Teyssier, C., Strahl, B.D., Stallcup, M.R., Role of protein methylation in regulation of transcription (2005) Endocr. Rev., 26, pp. 147-170
  • Johnson, C.N., Adkins, N.L., Georgel, P., Chromatin remodeling complexes: ATP-dependent machines in action (2005) Biochem. Cell Biol., 83, pp. 405-417
  • Roberts, C.W., Orkin, S.H., The SWI/SNF complex-chromatin and cancer (2004) Nat. Rev. Cancer, 4, pp. 133-142
  • Gibbons, R.J., Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes (2005) Hum. Mol. Genet., 14 (1), pp. R85-R92
  • Huang, H., Rambaldi, I., Daniels, E., Featherstone, M., Expression of the Wdr9 gene and protein products during mouse development (2003) Dev. Dyn., 227, pp. 608-614
  • Yang, X.J., Lysine acetylation and the bromodomain: a new partnership for signaling (2004) Bioessays, 26, pp. 1076-1087
  • Hinds, T.D., Sanchez, E.R., Protein phosphatase 5 (2008) Int. J. Biochem. Cell Biol., 40, pp. 2358-2362
  • Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin (1997) J. Biol. Chem., 272, pp. 16224-16230
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46, pp. 14044-14057
  • Yang, J., Roe, S.M., Cliff, M.J., Williams, M.A., Ladbury, J.E., Cohen, P.T., Barford, D., Molecular basis for TPR domain-mediated regulation of protein phosphatase 5 (2005) EMBO J., 24, pp. 1-10
  • Yun, M., Wu, J., Workman, J.L., Li, B., Readers of histone modifications (2011) Cell Res., 21, pp. 564-578
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., Mann, M., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science, 325, pp. 834-840
  • Haberland, M., Montgomery, R.L., Olson, E.N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy (2009) Nat. Rev. Genet., 10, pp. 32-42
  • Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Yao, T.P., HDAC6 is a microtubule-associated deacetylase (2002) Nature, 417, pp. 455-458
  • Verdel, A., Curtet, S., Brocard, M.P., Rousseaux, S., Lemercier, C., Yoshida, M., Khochbin, S., Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm (2000) Curr. Biol., 10, pp. 747-749
  • Liu, Y., Peng, L., Seto, E., Huang, S., Qiu, Y., Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation (2012) J. Biol. Chem., 287, pp. 29168-29174
  • Gao, L., Cueto, M.A., Asselbergs, F., Atadja, P., Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family (2002) J. Biol. Chem., 277, pp. 25748-25755
  • Yoshida, N., Omoto, Y., Inoue, A., Eguchi, H., Kobayashi, Y., Kurosumi, M., Saji, S., Hayashi, S., Prediction of prognosis of estrogen receptor-positive breast cancer with combination of selected estrogen-regulated genes (2004) Cancer Sci., 95, pp. 496-502
  • Caron, C., Boyault, C., Khochbin, S., Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability (2005) Bioessays, 27, pp. 408-415
  • Girdwood, D., Bumpass, D., Vaughan, O.A., Thain, A., Anderson, L.A., Snowden, A.W., Garcia-Wilson, E., Hay, R.T., P300 transcriptional repression is mediated by SUMO modification (2003) Mol. Cell, 11, pp. 1043-1054
  • Fernandes, I., Bastien, Y., Wai, T., Nygard, K., Lin, R., Cormier, O., Lee, H.S., White, J.H., Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms (2003) Mol. Cell, 11, pp. 139-150
  • Amann, J.M., Nip, J., Strom, D.K., Lutterbach, B., Harada, H., Lenny, N., Downing, J.R., Hiebert, S.W., ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain (2001) Mol. Cell. Biol., 21, pp. 6470-6483
  • Westendorf, J.J., Zaidi, S.K., Cascino, J.E., Kahler, R., van Wijnen, A.J., Lian, J.B., Yoshida, M., Li, X., Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter (2002) Mol. Cell. Biol., 22, pp. 7982-7992
  • Zhang, W., Kone, B.C., NF-kappaB inhibits transcription of the H(+)-K(+)-ATPase alpha(2)-subunit gene: role of histone deacetylases (2002) Am. J. Physiol. Renal Physiol., 283, pp. F904-F911
  • Nusinzon, I., Horvath, C.M., Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation (2006) Mol. Cell. Biol., 26, pp. 3106-3113
  • McClellan, A.J., Xia, Y., Deutschbauer, A.M., Davis, R.W., Gerstein, M., Frydman, J., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches (2007) Cell, 131, pp. 121-135
  • Millson, S.H., Truman, A.W., Wolfram, F., King, V., Panaretou, B., Prodromou, C., Pearl, L.H., Piper, P.W., Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach (2004) Cell Stress Chaperones, 9, pp. 359-368
  • Eckert, K., Saliou, J.M., Monlezun, L., Vigouroux, A., Atmane, N., Caillat, C., Quevillon-Cheruel, S., Morera, S., The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity (2010) J. Biol. Chem., 285, pp. 31304-31312
  • Jimenez, B., Ugwu, F., Zhao, R., Orti, L., Makhnevych, T., Pineda-Lucena, A., Houry, W.A., Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90 (2012) J. Biol. Chem., 287, pp. 5698-5709
  • Millson, S.H., Vaughan, C.K., Zhai, C., Ali, M.M., Panaretou, B., Piper, P.W., Pearl, L.H., Prodromou, C., Chaperone ligand-discrimination by the TPR-domain protein Tah1 (2008) Biochem. J., 413, pp. 261-268
  • Boulon, S., Marmier-Gourrier, N., Pradet-Balade, B., Wurth, L., Verheggen, C., Jady, B.E., Rothe, B., Charpentier, B., The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery (2008) J. Cell Biol., 180, pp. 579-595
  • Jha, S., Dutta, A., RVB1/RVB2: running rings around molecular biology (2009) Mol. Cell, 34, pp. 521-533
  • Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Houry, W.A., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727
  • Baron, B.W., Nucifora, G., McCabe, N., Espinosa, R., Le Beau, M.M., McKeithan, T.W., Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 5262-5266
  • Shaffer, A.L., Yu, X., He, Y., Boldrick, J., Chan, E.P., Staudt, L.M., BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control (2000) Immunity, 13, pp. 199-212
  • Ci, W., Polo, J.M., Melnick, A., B-cell lymphoma 6 and the molecular pathogenesis of diffuse large B-cell lymphoma (2008) Curr. Opin. Hematol., 15, pp. 381-390
  • Illidge, T., Tolan, S., Current treatment approaches for diffuse large B-cell lymphoma (2008) Leuk. Lymphoma, 49, pp. 663-676
  • Cerchietti, L.C., Lopes, E.C., Yang, S.N., Hatzi, K., Bunting, K.L., Tsikitas, L.A., Mallik, A., Melnick, A., A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas (2009) Nat. Med., 15, pp. 1369-1376
  • Sasaki, T., Gan, E.C., Wakeham, A., Kornbluth, S., Mak, T.W., Okada, H., HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53 (2007) Genes Dev., 21, pp. 848-861
  • Cerchietti, L.C., Hatzi, K., Caldas-Lopes, E., Yang, S.N., Figueroa, M.E., Morin, R.D., Hirst, M., Melnick, A., BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy (2010) J. Clin. Invest., 120, pp. 4569-4582
  • Erlejman, A.G., Lagadari, M., Galigniana, M.D., Hsp90-binding immunophilins as a potential new platform for drug treatment (2013) Future Med. Chem., 5, pp. 591-607
  • Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol., 21, pp. 91-103
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30, pp. 1285-1298
  • Colo, G.P., Rubio, M.F., Nojek, I.M., Werbajh, S.E., Echeverria, P.C., Alvarado, C.V., Nahmod, V.E., Costas, M.A., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27, pp. 2430-2444
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J. Biol. Chem., 279, pp. 22483-22489
  • Harrell, J.M., Kurek, I., Breiman, A., Radanyi, C., Renoir, J.M., Pratt, W.B., Galigniana, M.D., All of the protein interactions that link steroid receptor.hsp90.immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells (2002) Biochemistry, 41, pp. 5581-5587
  • Vafopoulou, X., Steel, C.G., Cytoplasmic travels of the ecdysteroid receptor in target cells: pathways for both genomic and non-genomic actions (2012) Front. Endocrinol. (Lausanne), 3, p. 43
  • Galigniana, M.D., Morishima, Y., Gallay, P.A., Pratt, W.B., Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex (2004) J. Biol. Chem., 279, pp. 55754-55759
  • Schaller, T., Ocwieja, K.E., Rasaiyaah, J., Price, A.J., Brady, T.L., Roth, S.L., Hue, S., Towers, G.J., HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency (2011) PLoS Pathog., 7, pp. e1002439
  • Zhu, C., Wang, X., Deinum, J., Huang, Z., Gao, J., Modjtahedi, N., Neagu, M.R., Blomgren, K., Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia (2007) J. Exp. Med., 204, pp. 1741-1748
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22, pp. 481-490
  • Yao, Y.L., Liang, Y.C., Huang, H.H., Yang, W.M., FKBPs in chromatin modification and cancer (2011) Curr. Opin. Pharmacol., 11, pp. 301-307
  • Piwien Pilipuk, G., Vinson, G.P., Sanchez, C.G., Galigniana, M.D., Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor (2007) Biochemistry, 46, pp. 1389-1397
  • Echeverria, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol. Cell. Biol., 29, pp. 4788-4797
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr. Opin. Pharmacol., 11, pp. 314-319
  • Liang, J., Hung, D.T., Schreiber, S.L., Clardy, J., Structure of the Human 25kDa FK506 binding protein complexed with rapamycin (1996) J. Am. Chem. Soc., 118, pp. 1231-1232
  • Shan, X., Xue, Z., Melese, T., Yeast NPI46 encodes a novel prolyl cis-trans isomerase that is located in the nucleolus (1994) J. Cell Biol., 126, pp. 853-862
  • Hochwagen, A., Tham, W.H., Brar, G.A., Amon, A., The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity (2005) Cell, 122, pp. 861-873
  • Xiao, H., Jackson, V., Lei, M., The FK506-binding protein, Fpr4, is an acidic histone chaperone (2006) FEBS Lett., 580, pp. 4357-4364
  • Yang, W.M., Yao, Y.L., Seto, E., The FK506-binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1 (2001) EMBO J., 20, pp. 4814-4825
  • Mamane, Y., Sharma, S., Petropoulos, L., Lin, R., Hiscott, J., Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52 (2000) Immunity, 12, pp. 129-140
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734
  • Galigniana, N.M., Ballmer, L.T., Toneatto, J., Erlejman, A.G., Lagadari, M., Galigniana, M.D., Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51 (2012) J. Neurochem., 122, pp. 4-18
  • Elbi, C., Walker, D.A., Romero, G., Sullivan, W.P., Toft, D.O., Hager, G.L., DeFranco, D.B., Molecular chaperones function as steroid receptor nuclear mobility factors (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 2876-2881
  • Romano, S., Staibano, S., Greco, A., Brunetti, A., Nappo, G., Ilardi, G., Martinelli, R., Romano, M.F., FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential (2013) Cell Death Dis., 4, pp. e578
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286, pp. 30152-30160
  • Toneatto, J., Guber, S., Charo, N.L., Schwartz, J., Galigniana, M.D., Piwien Pilipuk, G., Dynamic Mitochondrial-Nuclear Redistribution of the Immunophilin FKBP51 is Regulated by PKA Signaling Pathway in the Process of Adipocyte Differentiation (2013) J. Cell Sci., 126, pp. 5357-5368
  • Lord, C.J., Ashworth, A., The DNA damage response and cancer therapy (2012) Nature, 481, pp. 287-294
  • Sekimoto, T., Oda, T., Pozo, F.M., Murakumo, Y., Masutani, C., Hanaoka, F., Yamashita, T., The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells (2010) Mol. Cell, 37, pp. 79-89
  • Specchia, V., Piacentini, L., Tritto, P., Fanti, L., D'Alessandro, R., Palumbo, G., Pimpinelli, S., Bozzetti, M.P., Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons (2010) Nature, 463, pp. 662-665
  • Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., Hannon, G.J., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila (2007) Cell, 128, pp. 1089-1103
  • Maloney, A., Clarke, P.A., Naaby-Hansen, S., Stein, R., Koopman, J.O., Akpan, A., Yang, A., Workman, P., Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (2007) Cancer Res., 67, pp. 3239-3253
  • Nishida, K.M., Okada, T.N., Kawamura, T., Mituyama, T., Kawamura, Y., Inagaki, S., Huang, H., Siomi, M.C., Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines (2009) EMBO J., 28, pp. 3820-3831
  • Pearl, L.H., Hsp90 and Cdc37-a chaperone cancer conspiracy (2005) Curr. Opin. Genet. Dev., 15, pp. 55-61
  • da Silva, V.C., Ramos, C.H., The network interaction of the human cytosolic 90kDa heat shock protein Hsp90: a target for cancer therapeutics (2012) J. Proteome, 75, pp. 2790-2802
  • Prodromou, C., Pearl, L.H., Structure and functional relationships of Hsp90 (2003) Curr. Cancer Drug Targets, 3, pp. 301-323
  • Brugge, J.S., Erikson, E., Erikson, R.L., The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins (1981) Cell, 25, pp. 363-372
  • Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K.D., Karras, G.I., Lindquist, S., Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition (2012) Cell, 150, pp. 987-1001
  • Neckers, L., Workman, P., Hsp90 molecular chaperone inhibitors: are we there yet? (2012) Clin. Cancer Res., 18, pp. 64-76
  • Jhaveri, K., Taldone, T., Modi, S., Chiosis, G., Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers (2012) Biochim. Biophys. Acta, 1823, pp. 742-755
  • Berger, S.L., Cell signaling and transcriptional regulation via histone phosphorylation (2010) Cold Spring Harb. Symp. Quant. Biol., 75, pp. 23-26
  • Zahnow, C.A., CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases (2009) Expert Rev. Mol. Med., 11, pp. e12
  • Hunter, T., Tyrosine phosphorylation: thirty years and counting (2009) Curr. Opin. Cell Biol., 21, pp. 140-146
  • Brugge, J.S., Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp 50 and pp90 (1986) Curr. Top. Microbiol. Immunol., 123, pp. 1-22
  • Whitelaw, M.L., Hutchison, K., Perdew, G.H., A 50-kDa cytosolic protein complexed with the 90-kDa heat shock protein (hsp90) is the same protein complexed with pp 60v-src hsp90 in cells transformed by the Rous sarcoma virus (1991) J. Biol. Chem., 266, pp. 16436-16440
  • Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone (1997) Cell, 90, pp. 65-75
  • Silverstein, A.M., Grammatikakis, N., Cochran, B.H., Chinkers, M., Pratt, W.B., P50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site (1998) J. Biol. Chem., 273, pp. 20090-20095
  • Hartson, S.D., Irwin, A.D., Shao, J., Scroggins, B.T., Volk, L., Huang, W., Matts, R.L., P50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules (2000) Biochemistry, 39, pp. 7631-7644
  • Shao, J., Hartson, S.D., Matts, R.L., Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase (2002) Biochemistry, 41, pp. 6770-6779
  • Siligardi, G., Hu, B., Panaretou, B., Piper, P.W., Pearl, L.H., Prodromou, C., Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle (2004) J. Biol. Chem., 279, pp. 51989-51998
  • Donze, O., Picard, D., Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected] (1999) Mol. Cell. Biol., 19, pp. 8422-8432
  • Hinnebusch, A.G., (1992) The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Hinnebusch, A.G., Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome (1997) J. Biol. Chem., 272, pp. 21661-21664
  • Wek, R.C., Jiang, H.Y., Anthony, T.G., Coping with stress: eIF2 kinases and translational control (2006) Biochem. Soc. Trans., 34, pp. 7-11
  • Wek, R.C., Cavener, D.R., Translational control and the unfolded protein response (2007) Antioxid. Redox Signal., 9, pp. 2357-2371
  • Lu, P.D., Harding, H.P., Ron, D., Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response (2004) J. Cell Biol., 167, pp. 27-33
  • Izumi, N., Yamashita, A., Ohno, S., Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2 (2012) Nucleus, 3, pp. 29-43
  • Horejsi, Z., Takai, H., Adelman, C.A., Collis, S.J., Flynn, H., Maslen, S., Skehel, J.M., Boulton, S.J., CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability (2010) Mol. Cell, 39, pp. 839-850
  • Takai, H., Xie, Y., de Lange, T., Pavletich, N.P., Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes (2010) Genes Dev., 24, pp. 2019-2030
  • Solier, S., Kohn, K.W., Scroggins, B., Xu, W., Trepel, J., Neckers, L., Pommier, Y., Heat shock protein 90alpha (HSP90alpha), a substrate and chaperone of DNA-PK necessary for the apoptotic response (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 12866-12872
  • Izumi, N., Yamashita, A., Iwamatsu, A., Kurata, R., Nakamura, H., Saari, B., Hirano, H., Ohno, S., AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay (2010) Sci. Signal., 3, pp. ra27
  • Moulick, K., Ahn, J.H., Zong, H., Rodina, A., Cerchietti, L., Gomes DaGama, E.M., Caldas-Lopes, E., Chiosis, G., Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90 (2011) Nat. Chem. Biol., 7, pp. 818-826
  • Boudeau, J., Miranda-Saavedra, D., Barton, G.J., Alessi, D.R., Emerging roles of pseudokinases (2006) Trends Cell Biol., 16, pp. 443-452
  • Izumi, N., Yamashita, A., Hirano, H., Ohno, S., Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex (2012) Cancer Sci., 103, pp. 50-57
  • Takai, H., Wang, R.C., Takai, K.K., Yang, H., de Lange, T., Tel2 regulates the stability of PI3K-related protein kinases (2007) Cell, 131, pp. 1248-1259
  • Kanoh, J., Yanagida, M., Tel2: a common partner of PIK-related kinases and a link between DNA checkpoint and nutritional response? (2007) Genes Cells, 12, pp. 1301-1304
  • Qiu, X.B., Lin, Y.L., Thome, K.C., Pian, P., Schlegel, B.P., Weremowicz, S., Parvin, J.D., Dutta, A., An eukaryotic RuvB-like protein (RUVBL1) essential for growth (1998) J. Biol. Chem., 273, pp. 27786-27793
  • Weiske, J., Huber, O., The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription (2005) J. Cell Sci., 118, pp. 3117-3129
  • Ducat, D., Kawaguchi, S., Liu, H., Yates, J.R., Zheng, Y., Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin (2008) Mol. Biol. Cell, 19, pp. 3097-3110
  • Skop, A.R., Liu, H., Yates, J., Meyer, B.J., Heald, R., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms (2004) Science, 305, pp. 61-66
  • Ruthenburg, A.J., Li, H., Patel, D.J., Allis, C.D., Multivalent engagement of chromatin modifications by linked binding modules (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 983-994
  • Brumbaugh, K.M., Otterness, D.M., Geisen, C., Oliveira, V., Brognard, J., Li, X., Lejeune, F., Abraham, R.T., The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells (2004) Mol. Cell, 14, pp. 585-598
  • Mayer, C., Grummt, I., Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases (2006) Oncogene, 25, pp. 6384-6391
  • Morita, T., Yamashita, A., Kashima, I., Ogata, K., Ishiura, S., Ohno, S., Distant N- and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay (2007) J. Biol. Chem., 282, pp. 7799-7808
  • Shen, X., Mizuguchi, G., Hamiche, A., Wu, C., A chromatin remodelling complex involved in transcription and DNA processing (2000) Nature, 406, pp. 541-544
  • Cooper, L.C., Prinsloo, E., Edkins, A.L., Blatch, G.L., Hsp90alpha/beta associates with the GSK3beta/axin1/phospho-beta-catenin complex in the human MCF-7 epithelial breast cancer model (2011) Biochem. Biophys. Res. Commun., 413, pp. 550-554
  • Kurashina, R., Ohyashiki, J.H., Kobayashi, C., Hamamura, R., Zhang, Y., Hirano, T., Ohyashiki, K., Anti-proliferative activity of heat shock protein (Hsp) 90 inhibitors via beta-catenin/TCF7L2 pathway in adult T cell leukemia cells (2009) Cancer Lett., 284, pp. 62-70
  • Lochhead, P.A., Kinstrie, R., Sibbet, G., Rawjee, T., Morrice, N., Cleghon, V., A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation (2006) Mol. Cell, 24, pp. 627-633
  • Kim, J.H., Kim, B., Cai, L., Choi, H.J., Ohgi, K.A., Tran, C., Chen, C., Baek, S.H., Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes (2005) Nature, 434, pp. 921-926
  • Frank, S.R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H.M., Livingston, D.M., Amati, B., MYC recruits the TIP60 histone acetyltransferase complex to chromatin (2003) EMBO Rep., 4, pp. 575-580
  • Cole, M.D., Cowling, V.H., Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors (2009) Oncogene, 28, pp. 1169-1175
  • Egger, G., Liang, G., Aparicio, A., Jones, P.A., Epigenetics in human disease and prospects for epigenetic therapy (2004) Nature, 429, pp. 457-463
  • Wanczyk, M., Roszczenko, K., Marcinkiewicz, K., Bojarczuk, K., Kowara, M., Winiarska, M., HDACi-going through the mechanisms (2011) Front. Biosci., 16, pp. 340-359
  • George, P., Bali, P., Annavarapu, S., Scuto, A., Fiskus, W., Guo, F., Sigua, C., Bhalla, K., Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3 (2005) Blood, 105, pp. 1768-1776
  • Ocio, E.M., San Miguel, J.F., The DAC system and associations with multiple myeloma (2010) Invest. New Drugs, 28 (SUPPL. 1), pp. S28-S35
  • Lane, A.A., Chabner, B.A., Histone deacetylase inhibitors in cancer therapy (2009) J. Clin. Oncol., 27, pp. 5459-5468
  • Rahmani, M., Yu, C., Dai, Y., Reese, E., Ahmed, W., Dent, P., Grant, S., Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells (2003) Cancer Res., 63, pp. 8420-8427
  • Kampinga, H.H., Chaperones in preventing protein denaturation in living cells and protecting against cellular stress (2006) Handb. Exp. Pharmacol., pp. 1-42
  • Sawarkar, R., Sievers, C., Paro, R., Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli (2012) Cell, 149, pp. 807-818
  • Core, L.J., Lis, J.T., Transcription regulation through promoter-proximal pausing of RNA polymerase II (2008) Science, 319, pp. 1791-1792
  • Cook, A.J., Gurard-Levin, Z.A., Vassias, I., Almouzni, G., A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain (2011) Mol. Cell, 44, pp. 918-927
  • Piper, P.W., Millson, S.H., Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges (2011) Pharmaceuticals, pp. 1400-1422
  • Miyata, Y., Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents (2005) Curr. Pharm. Des., 11, pp. 1131-1138
  • Angelo, G., Lamon-Fava, S., Sonna, L.A., Lindauer, M.L., Wood, R.J., Heat shock protein 90beta: a novel mediator of vitamin D action (2008) Biochem. Biophys. Res. Commun., 367, pp. 578-583
  • Marcinkowska, E., Gocek, E., Heat shock protein 90 interacts with vitamin D receptor in human leukemia cells (2010) J. Steroid Biochem. Mol. Biol., 121, pp. 114-116
  • Pongratz, I., Mason, G.G., Poellinger, L., Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity (1992) J. Biol. Chem., 267, pp. 13728-13734
  • Kazlauskas, A., Sundstrom, S., Poellinger, L., Pongratz, I., The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor (2001) Mol. Cell. Biol., 21, pp. 2594-2607
  • Hahn, A., Bublak, D., Schleiff, E., Scharf, K.D., Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato (2011) Plant Cell, 23, pp. 741-755
  • Zou, J., Guo, Y., Guettouche, T., Smith, D.F., Voellmy, R., Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1 (1998) Cell, 94, pp. 471-480
  • Sumanasekera, W.K., Tien, E.S., Davis, J.W., Turpey, R., Perdew, G.H., Vanden Heuvel, J.P., Heat shock protein-90 (Hsp90) acts as a repressor of peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARbeta activity (2003) Biochemistry, 42, pp. 10726-10735
  • Kobayashi, K., Sueyoshi, T., Inoue, K., Moore, R., Negishi, M., Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells (2003) Mol. Pharmacol., 64, pp. 1069-1075
  • Kanno, Y., Miyama, Y., Ando, M., Inouye, Y., Dependence on the microtubule network and 90-kDa heat shock protein of phenobarbital-induced nuclear translocation of the rat constitutive androstane receptor (2010) Mol. Pharmacol., 77, pp. 311-316
  • Squires, E.J., Sueyoshi, T., Negishi, M., Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver (2004) J. Biol. Chem., 279, pp. 49307-49314
  • Sato, N., Yamamoto, T., Sekine, Y., Yumioka, T., Junicho, A., Fuse, H., Matsuda, T., Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3 (2003) Biochem. Biophys. Res. Commun., 300, pp. 847-852
  • Bradley, E., Bieberich, E., Mivechi, N.F., Tangpisuthipongsa, D., Wang, G., Regulation of embryonic stem cell pluripotency by heat shock protein 90 (2012) Stem Cells, 30, pp. 1624-1633
  • Stechschulte, L.A., Sanchez, E.R., FKBP51-a selective modulator of glucocorticoid and androgen sensitivity (2011) Curr. Opin. Pharmacol., 11, pp. 332-337
  • Shirane, M., Nakayama, K.I., Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis (2003) Nat. Cell Biol., 5, pp. 28-37
  • Barth, S., Nesper, J., Hasgall, P.A., Wirthner, R., Nytko, K.J., Edlich, F., Katschinski, D.M., Camenisch, G., The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability (2007) Mol. Cell. Biol., 27, pp. 3758-3768
  • Ratajczak, T., Ward, B.K., Minchin, R.F., Immunophilin chaperones in steroid receptor signalling (2003) Curr. Top. Med. Chem., 3, pp. 1348-1357
  • Periyasamy, S., Hinds, T., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29, pp. 1691-1701
  • Luu, T.C., Bhattacharya, P., Chan, W.K., Cyclophilin-40 has a cellular role in the aryl hydrocarbon receptor signaling (2008) FEBS Lett., 582, pp. 3167-3173
  • Jascur, T., Brickner, H., Salles-Passador, I., Barbier, V., El Khissiin, A., Smith, B., Fotedar, R., Fotedar, A., Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein (2005) Mol. Cell, 17, pp. 237-249
  • Ramsey, A.J., Chinkers, M., Identification of potential physiological activators of protein phosphatase 5 (2002) Biochemistry, 41, pp. 5625-5632
  • Petrulis, J.R., Perdew, G.H., The role of chaperone proteins in the aryl hydrocarbon receptor core complex (2002) Chem. Biol. Interact., 141, pp. 25-40
  • Price, M.G., Landsverk, M.L., Barral, J.M., Epstein, H.F., Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific functions (2002) J. Cell Sci., 115, pp. 4013-4023
  • Young, J.C., Hoogenraad, N.J., Hartl, F.U., Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70 (2003) Cell, 112, pp. 41-50
  • Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., Patterson, C., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions (1999) Mol. Cell. Biol., 19, pp. 4535-4545
  • Bansal, P.K., Abdulle, R., Kitagawa, K., Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex (2004) Mol. Cell. Biol., 24, pp. 8069-8079
  • Mayor, A., Martinon, F., De Smedt, T., Petrilli, V., Tschopp, J., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses (2007) Nat. Immunol., 8, pp. 497-503
  • Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E., Neckers, L.M., Inhibition of heat shock protein HSP90-pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 8324-8328
  • Grammatikakis, N., Lin, J.H., Grammatikakis, A., Tsichlis, P.N., Cochran, B.H., P50(cdc37) acting in concert with Hsp90 is required for Raf-1 function (1999) Mol. Cell. Biol., 19, pp. 1661-1672
  • Uma, S., Hartson, S.D., Chen, J.J., Matts, R.L., Hsp90 is obligatory for the heme-regulated eIF-2alpha kinase to acquire and maintain an activable conformation (1997) J. Biol. Chem., 272, pp. 11648-11656
  • An, W.G., Schulte, T.W., Neckers, L.M., The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome (2000) Cell Growth Differ., 11, pp. 355-360
  • Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function (2002) J. Biol. Chem., 277, pp. 39858-39866
  • Arlander, S.J., Felts, S.J., Wagner, J.M., Stensgard, B., Toft, D.O., Karnitz, L.M., Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones (2006) J. Biol. Chem., 281, pp. 2989-2998
  • Peng, X., Guo, X., Borkan, S.C., Bharti, A., Kuramochi, Y., Calderwood, S., Sawyer, D.B., Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes (2005) J. Biol. Chem., 280, pp. 13148-13152
  • Citri, A., Gan, J., Mosesson, Y., Vereb, G., Szollosi, J., Yarden, Y., Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation (2004) EMBO Rep., 5, pp. 1165-1170
  • Fujita, N., Sato, S., Ishida, A., Tsuruo, T., Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1 (2002) J. Biol. Chem., 277, pp. 10346-10353
  • Chen, G., Cao, P., Goeddel, D.V., TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90 (2002) Mol. Cell, 9, pp. 401-410
  • Martins, A.S., Ordonez, J.L., Garcia-Sanchez, A., Herrero, D., Sevillano, V., Osuna, D., Mackintosh, C., de Alava, E., A pivotal role for heat shock protein 90 in Ewing sarcoma resistance to anti-insulin-like growth factor 1 receptor treatment: in vitro and in vivo study (2008) Cancer Res., 68, pp. 6260-6270
  • Ramos, R.R., Swanson, A.J., Bass, J., Calreticulin and Hsp90 stabilize the human insulin receptor and promote its mobility in the endoplasmic reticulum (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 10470-10475
  • Imamura, T., Haruta, T., Takata, Y., Usui, I., Iwata, M., Ishihara, H., Ishiki, M., Kobayashi, M., Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome (1998) J. Biol. Chem., 273, pp. 11183-11188
  • Masson-Gadais, B., Houle, F., Laferriere, J., Huot, J., Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF (2003) Cell Stress Chaperones, 8, pp. 37-52
  • Sakagami, M., Morrison, P., Welch, W.J., Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases (1999) Cell Stress Chaperones, 4, pp. 19-28
  • Matei, D., Satpathy, M., Cao, L., Lai, Y.C., Nakshatri, H., Donner, D.B., The platelet-derived growth factor receptor alpha is destabilized by geldanamycins in cancer cells (2007) J. Biol. Chem., 282, pp. 445-453
  • Farina, A.R., Tacconelli, A., Cappabianca, L., Cea, G., Chioda, A., Romanelli, A., Pensato, S., Mackay, A.R., The neuroblastoma tumour-suppressor TrkAI and its oncogenic alternative TrkAIII splice variant exhibit geldanamycin-sensitive interactions with Hsp90 in human neuroblastoma cells (2009) Oncogene, 28, pp. 4075-4094
  • Garcia-Morales, P., Carrasco-Garcia, E., Ruiz-Rico, P., Martinez-Mira, R., Menendez-Gutierrez, M.P., Ferragut, J.A., Saceda, M., Martinez-Lacaci, I., Inhibition of Hsp90 function by ansamycins causes downregulation of cdc2 and cdc25c and G(2)/M arrest in glioblastoma cell lines (2007) Oncogene, 26, pp. 7185-7193
  • Shang, L., Tomasi, T.B., The heat shock protein 90-CDC37 chaperone complex is required for signaling by types I and II interferons (2006) J. Biol. Chem., 281, pp. 1876-1884
  • Ota, A., Zhang, J., Ping, P., Han, J., Wang, Y., Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte (2010) Circ. Res., 106, pp. 1404-1412
  • Adwan, T.S., Ohm, A.M., Jones, D.N., Humphries, M.J., Reyland, M.E., Regulated binding of importin-alpha to protein kinase Cdelta in response to apoptotic signals facilitates nuclear import (2011) J. Biol. Chem., 286, pp. 35716-35724
  • Budas, G.R., Churchill, E.N., Disatnik, M.H., Sun, L., Mochly-Rosen, D., Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury (2010) Cardiovasc. Res., 88, pp. 83-92
  • Knobbe, C.B., Revett, T.J., Bai, Y., Chow, V., Jeon, A.H., Bohm, C., Ehsani, S., Schmitt-Ulms, G., Choice of biological source material supersedes oxidative stress in its influence on DJ-1 in vivo interactions with Hsp90 (2011) J. Proteome Res., 10, pp. 4388-4404
  • Rodriguez-Caban, J., Gonzalez-Velazquez, W., Perez-Sanchez, L., Gonzalez-Mendez, R., Rodriguez-del Valle, N., Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study (2011) BMC Microbiol., 11, p. 162
  • Wang, H., Goode, T., Iakova, P., Albrecht, J.H., Timchenko, N.A., C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest (2002) EMBO J., 21, pp. 930-941
  • Fang, S., Fu, J., Yuan, X., Han, C., Shi, L., Xin, Y., Luo, L., Yin, Z., Heat shock protein 90 regulates the stability of MEKK3 in HEK293 cells (2009) Cell. Immunol., 259, pp. 49-55
  • Ou, W.B., Hubert, C., Corson, J.M., Bueno, R., Flynn, D.L., Sugarbaker, D.J., Fletcher, J.A., Targeted inhibition of multiple receptor tyrosine kinases in mesothelioma (2011) Neoplasia, 13, pp. 12-22
  • Banz, V.M., Medova, M., Keogh, A., Furer, C., Zimmer, Y., Candinas, D., Stroka, D., Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3beta (2009) Biochim. Biophys. Acta, 1793, pp. 1597-1603
  • Schnaider, T., Somogyi, J., Csermely, P., Szamel, M., The Hsp90-specific inhibitor, geldanamycin, blocks CD28-mediated activation of human T lymphocytes (1998) Life Sci., 63, pp. 949-954
  • Koyasu, S., Nishida, E., Kadowaki, T., Matsuzaki, F., Iida, K., Harada, F., Kasuga, M., Yahara, I., Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins (1986) Proc. Natl. Acad. Sci. U. S. A., 83, pp. 8054-8058
  • Srikakulam, R., Winkelmann, D.A., Chaperone-mediated folding and assembly of myosin in striated muscle (2004) J. Cell Sci., 117, pp. 641-652
  • Weis, F., Moullintraffort, L., Heichette, C., Chretien, D., Garnier, C., The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation (2010) J. Biol. Chem., 285, pp. 9525-9534
  • Nakamura, M., Morisawa, H., Imajoh-Ohmi, S., Takamura, C., Fukuda, H., Toda, T., Proteomic analysis of protein complexes in human SH-SY5Y neuroblastoma cells by using blue-native gel electrophoresis: an increase in lamin A/C associated with heat shock protein 90 in response to 6-hydroxydopamine-induced oxidative stress (2009) Exp. Gerontol., 44, pp. 375-382
  • Zhang, M.H., Lee, J.S., Kim, H.J., Jin, D.I., Kim, J.I., Lee, K.J., Seo, J.S., HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis (2006) Mol. Cell. Biochem., 281, pp. 111-121
  • Burcham, P.C., Raso, A., Thompson, C.A., Intermediate filament carbonylation during acute acrolein toxicity in A549 lung cells: functional consequences, chaperone redistribution, and protection by bisulfite (2010) Antioxid. Redox Signal., 12, pp. 337-347
  • Fukuda, T., Shimizu, J., Furuhata, H., Abe, T., Shimizu, K., Oishi, T., Ogihara, M., Umemura, S., Overexpression of heat shock proteins in pallido-nigral axonal spheroids of nonhuman aged primates (2005) Acta Neuropathol., 110, pp. 145-150
  • Tanioka, T., Nakatani, Y., Kobayashi, T., Tsujimoto, M., Oh-ishi, S., Murakami, M., Kudo, I., Regulation of cytosolic prostaglandin E2 synthase by 90-kDa heat shock protein (2003) Biochem. Biophys. Res. Commun., 303, pp. 1018-1023
  • Johnson, J.L., Toft, D.O., Binding of p23 and hsp90 during assembly with the progesterone receptor (1995) Mol. Endocrinol., 9, pp. 670-678
  • Pratt, W.B., Morishima, Y., Peng, H.M., Osawa, Y., Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage (2010) Exp. Biol. Med. (Maywood), 235, pp. 278-289
  • Pratt, W.B., Dittmar, K.D., Studies with purified chaperones advance the understanding of the mechanism of glucocorticoid receptor-hsp90 heterocomplex assembly (1998) Trends Endocrinol. Metab., 9, pp. 244-252
  • Billecke, S.S., Bender, A.T., Kanelakis, K.C., Murphy, P.J., Lowe, E.R., Kamada, Y., Pratt, W.B., Osawa, Y., Hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90 (2002) J. Biol. Chem., 277, pp. 20504-20509
  • Whittier, J.E., Xiong, Y., Rechsteiner, M.C., Squier, T.C., Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome (2004) J. Biol. Chem., 279, pp. 46135-46142
  • Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Millson, S.H., Prodromou, C., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1 (2002) Mol. Cell, 10, pp. 1307-1318
  • Burch, L., Shimizu, H., Smith, A., Patterson, C., Hupp, T.R., Expansion of protein interaction maps by phage peptide display using MDM2 as a prototypical conformationally flexible target protein (2004) J. Mol. Biol., 337, pp. 129-145
  • Blagosklonny, M.V., Toretsky, J., Bohen, S., Neckers, L., Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90 (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 8379-8383
  • Eleuteri, A.M., Cuccioloni, M., Bellesi, J., Lupidi, G., Fioretti, E., Angeletti, M., Interaction of Hsp90 with 20S proteasome: thermodynamic and kinetic characterization (2002) Proteins, 48, pp. 169-177
  • Wagner, B.J., Margolis, J.W., Age-dependent association of isolated bovine lens multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an endogenous inhibitor (1995) Arch. Biochem. Biophys., 323, pp. 455-462
  • Yamaguchi, T., Omatsu, N., Omukae, A., Osumi, T., Analysis of interaction partners for perilipin and ADRP on lipid droplets (2006) Mol. Cell. Biochem., 284, pp. 167-173
  • Miyata, Y., Yahara, I., P53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90 (2000) Oncogene, 19, pp. 1477-1484
  • Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S.M., Kumar, V., Weichselbaum, R., Kharbanda, S., Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90 (2000) EMBO J., 19, pp. 4310-4322
  • Trisciuoglio, D., Gabellini, C., Desideri, M., Ziparo, E., Zupi, G., Del Bufalo, D., Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90 (2010) PLoS One, 5, pp. e11772
  • Keppler, B.R., Grady, A.T., Jarstfer, M.B., The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity (2006) J. Biol. Chem., 281, pp. 19840-19848
  • Echeverria, P.C., Bernthaler, A., Dupuis, P., Mayer, B., Picard, D., An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine (2011) PLoS One, 6, pp. e26044

Citas:

---------- APA ----------
Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G. & Galigniana, M.D. (2014) . Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1839(2), 71-87.
http://dx.doi.org/10.1016/j.bbagrm.2013.12.006
---------- CHICAGO ----------
Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D. "Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression" . Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1839, no. 2 (2014) : 71-87.
http://dx.doi.org/10.1016/j.bbagrm.2013.12.006
---------- MLA ----------
Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D. "Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression" . Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, vol. 1839, no. 2, 2014, pp. 71-87.
http://dx.doi.org/10.1016/j.bbagrm.2013.12.006
---------- VANCOUVER ----------
Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim. Biophys. Acta Gene Regul. Mech. 2014;1839(2):71-87.
http://dx.doi.org/10.1016/j.bbagrm.2013.12.006