Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Changes in the epidermis structure (micro, ultra, and nano), mechanical properties, and surface color of Solanum licopersicum L. fruits (cherry tomatoes) due to hydrogen peroxide (HP) and high-power ultrasound (US) treatments were examined. Both treatments induced small alterations in the epicuticular waxes, the cuticular membrane, and the epidermal and subepidermal cells. Plasmolysis of subepidermal cells, slight epicarp compression, and dense cellulose microfibrils pattern in the non cutinized cellulose layer were documented after US. Looser cellulose microfibrils pattern in the cutinized and non cutinized cellulose layer was detected after HP exposure. Main nanostructure alterations in the cellulose domain affected the morphology and size of cellulose aggregates and nanofractures of cellulose layer in treated fruits. US treatment decreased a*, b*, and chroma values by 10, 5, and 7% and increased L* and hue angle by 2.5 and 3%, respectively, as compared to raw fruits. These small but significant differences were attributed to the disruption of the wax layer; color became brighter, more vivid, and more orange. Treatments slightly affected puncture parameters; the rupture force decreased from 14.8 N to 14.1 N and 13.8 N; the penetration probe at the rupture point increased from 7.6 mm to 7.7 mm and 8.0 mm and the mechanical work decreased from 48.7 mJ to 48.3 mJ and 44.4 mJ in raw fruits and after HP and US exposure, respectively. The mechanical response could be partially explained by the alterations in the micro, ultra, and nanostructure of the tissues. The low impact of US and HP treatments on mechanical and color characteristics would indicate their potential for cherry tomatoes decontamination. © 2017, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound
Autor:Fava, J.; Nieto, A.; Hodara, K.; Alzamora, S.M.; Castro, M.A.
Filiación:Grupo de trabajo sobre Conservación de la Biodiversidad, Subsecretaría de Planificación y Política Ambiental, Secretaría de Ambiente y Desarrollo Sustentable, San Martín 4511004, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria1428, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Godoy Cruz 22901425, Argentina
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 44531417, Argentina
Anatomía Vegetal Aplicada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria1428, Argentina
Palabras clave:Cherry tomatoes; Color; Epidermis structure; Hydrogen peroxide; Mechanical properties; Ultrasound; Biomechanics; Cellulose; Cellulose derivatives; Color; Hydrogen peroxide; Mechanical properties; Nanostructures; Oxidation; Peroxides; Ultrasonics; Cellulose microfibrils; Cherry tomatoes; Color characteristics; High power ultrasound; Mechanical response; Morphology and size; Solanum licopersicum; Solanum lycopersicum; Fruits; Color; Hydrogen Peroxide; Mechanical Properties; Tomatoes; Ultrasonic Frequencies
Año:2017
Volumen:10
Número:7
Página de inicio:1324
Página de fin:1336
DOI: http://dx.doi.org/10.1007/s11947-017-1905-4
Título revista:Food and Bioprocess Technology
Título revista abreviado:Food. Bioprocess Technol.
ISSN:19355130
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v10_n7_p1324_Fava

Referencias:

  • Aguilera, J.M., Stanley, D.W., (1999) Microstructural principles of food processing and engineering. 2nd Ed (chapter 6), , An Aspen Publication, Gaithersburg
  • Allende, A., Tomás-Barberán, F.A., Gil, M.I., Minimal processing for healthy traditional foods (2006) Trends in Food Science and Technology, 17, pp. 513-519. , COI: 1:CAS:528:DC%2BD28Xmslyqtbg%3D
  • Alzamora, S.M., Castro, M.A., Nieto, A.B., Vidales, S.L., Salvatori, D.M., The role of tissue microstructure in the textural characteristics of minimally processed fruits (2000) Minimally processed fruits and vegetables, pp. 153-171. , Alzamora SM, Tapia MS, López-Malo A, (eds), Aspen Publishers Inc., Gaithersburg
  • Alzamora, S.M., Viollaz, P.E., Martínez, V.Y., Nieto, A.B., Salvatori, D.M., Exploring the linear viscoelastic properties structure relationship in processed fruit tissues (2008) Food engineering: integrated approaches, pp. 133-214. , Gutiérrez-López GE, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, (eds), Springer, New York
  • Baker, E.A., Chemistry and morphology of plant epicuticular waxes. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 139–165) (1982) Linnean Society Symposium Series, , London: Academic Press
  • Balasundram, N., Sundram, K., Samman, S., Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence, and potential uses (2006) Food Chemistry, 99, pp. 191-203. , COI: 1:CAS:528:DC%2BD28XjslygsLc%3D
  • Bargel, H., Neinhuis, C., Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle (2005) Journal of Experimental Botany, 56, pp. 1049-1060. , COI: 1:CAS:528:DC%2BD2MXit1Knu7o%3D
  • Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth (1993) Plant Journal, 3, pp. 1-30. , COI: 1:CAS:528:DyaK3sXitV2gtLk%3D
  • Chaib, J., Devaux, M.F., Grotte, M.G., Robini, K., Causse, M., Lahaye, M., Physiological relationship among physical, sensory, and morphological attributes of texture in tomato fruits (2007) Journal of Experimental Botany, 8, pp. 1915-1925
  • Cosgrove, D.J., Wall structure and wall loosening. A look backwards and forwards (2001) Plant Physiology, 125, pp. 131-134. , COI: 1:CAS:528:DC%2BD3MXjslymtbc%3D
  • Cotner, S.D., Burns, E.E., Leeper, P.W., Pericarp anatomy of crack-resistant and susceptible tomato fruits (1969) Journal of American Society of Horticultural Science, 94, pp. 136-137
  • Desmet, M., Lammertyn, J., Scheerlinck, N., Verlinden, B.E., Nicolai, B.M., Determination of puncture injury susceptibility of tomatoes (2003) Postharvest Biology and Technology, 27, pp. 293-303
  • Domínguez, D., Cuartero, J., Heredia, A., An overview on plant cuticle biomechanics (2011) Plant Science, 181, pp. 77-84
  • Esau, K., (1977) Anatomy of seed plants, , Wiley, New York
  • Fava, J., Hodara, K., Nieto, A.B., Guerrero, S.N., Alzamora, S.M., Castro, M.A., Structure (micro, ultra, nano), colour and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound (2011) Food Research International, 44, pp. 2938-2948. , COI: 1:CAS:528:DC%2BC3MXht1Oiu7zP
  • George, B., Kaur, C., Khurdiya, D.S., Kapoor, H.C., Antioxidants in tomato (Lycopersium esculentum) as a function of genotype (2004) Food Chemistry, 84, pp. 45-51. , COI: 1:CAS:528:DC%2BD3sXot1Srsrw%3D
  • Guerrero, S.N., López-Malo, A., Alzamora, S.M., Effect of ultrasound on the survival of Saccharomyces cerevisiae. Influence of temperature, pH and amplitude (2001) Innovative Food Science and Emerging Technologies, 2, pp. 31-39
  • Holloway, P.J., The chemical constitution of plant cutins. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 45–85) (1982) Linnean Society Symposium Series, , London: Academic Press
  • Jackman, R.L., Stanley, D.W., Influence of the skin on puncture properties of chilled and nonchilled tomato fruit (1994) Journal of Texture Studies, 25, pp. 221-230
  • Jackman, R., Stanley, D., Perspectives in the textural evaluation of plant foods (1995) Trends in Food Science and Technology, 6, pp. 187-194. , COI: 1:CAS:528:DyaK2MXmslOjsbs%3D
  • Jeffree, C.E., Baker, E.A., Holloway, P.J., Origins of the fine structure of plant epicuticular waxes (1976) Microbiology of aerial plant surface, pp. 119-158. , Dickinson CH, Preece TF, (eds), Academic Press, London
  • Juven, B.J., Pierson, M.D., Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation (1996) Journal of Food Protection, 59, pp. 1233-1241. , COI: 1:CAS:528:DyaK2sXivFegsg%3D%3D
  • Kabas, O., Ozmerzi, A., Determining the mechanical properties of cherry tomato varieties for handling (2008) Journal of Texture Studies, 39, pp. 199-209
  • Lara, I., Belge, B., Goulao, L.F., The fruit cuticle as a modulator of postharvest quality (2014) Postharvest Biology and Technology, 87, pp. 103-112. , COI: 1:CAS:528:DC%2BC3sXhslaitLfJ
  • López-Malo, A., Guerrero, S., Alzamora, S.M., Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound (1999) Journal of Food Protection, 62, pp. 1215-1217
  • Martínez-Valverde, I., Periago, M.J., Provan, G., Chesson, A., Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum) (2002) Journal of the Science of Food and Agriculture, 82, pp. 323-330
  • Mason, T.J., (1990) Sonochemistry: the uses of ultrasound in chemistry, , Royal Society of Chemistry, Cambridge
  • Matas, A.J., Cobb, E.D., Bartsch, J.A., Paolillo, D.J., Niklas, K.J., Biomechanics and anatomy of Lycopersicum esculentum fruit peels and enzyme-treated samples (2004) American Journal of Botany, 91, pp. 352-360
  • Maury, C., Madieta, E., Le Moigne, M., Mehinagic, E., Siret, R., Jourjon, F., Development of a mechanical texture test to evaluate the ripening process of cabernet franc grapes (2009) Journal of Texture Studies, 40, pp. 511-535
  • McGarigal, K., Cushman, S., Stafford, S., (2000) Multivariate statistics for wildlife and ecology research, , Springer-Verlag, New York
  • Miller, R.A., Oxidation of cell wall polysaccharides by hydrogen peroxide: a potential mechanism for cell wall breakdown in plants (1986) Biochemical and Biophysical Research Communications, 141, pp. 238-244. , COI: 1:CAS:528:DyaL2sXkslenug%3D%3D
  • Pagliarini, E., Monteleone, E., Ratti, S., Sensory profile of eight tomato cultivars (Lycopersicon esculentum) and its relationship to consumer preference (2001) Italian Journal of Food Science, 13, pp. 285-296
  • Petracek, P.D., Bukovac, M.J., Rheological properties of enzymatically isolated tomato fruit cuticle (1995) Plant Physiology, 109, pp. 675-679. , COI: 1:CAS:528:DyaK2MXoslOqtLs%3D
  • Pinelo, M., Arnous, A., Meyer, A.S., Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release (2006) Trends in Food Science and Technology, 17, pp. 579-590. , COI: 1:CAS:528:DC%2BD28XhtVCrtLjN
  • Quinn, G.P., Keough, M.J., (2002) Experimental design and data analysis for biologists, , Cambridge University Press, New York
  • Raffellini, S., Schenk, M., Guerrero, S.N., Alzamora, S.M., Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations (2011) Food Control, 22, pp. 920-932. , COI: 1:CAS:528:DC%2BC3MXhtlSqtL8%3D
  • Rao, A.V., Agarwal, S., Role of antioxidant lycopene in cancer and heart disease (2000) Journal of the American College of Nutrition, 19, pp. 563-569. , COI: 1:CAS:528:DC%2BD3cXnsVKqsLk%3D
  • Reynolds, E.S., The use of lead citrate at high pH as an electron opaque stain in electron microscopy (1963) Journal of Cell Biology, 17, pp. 208-212. , COI: 1:CAS:528:DyaF3sXktVClu70%3D
  • Sao José, J.F.B., Vanetti, M.C.D., Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes (2012) Food Control, 24, pp. 95-99
  • Sharoni, Y., Levi, Y., Cancer prevention by dietary tomato lycopene and its molecular mechanisms (2006) Tomatoes, lycopene & human health, pp. 111-125. , Rao AV, (ed), Caledonian Science Press Ltd., Barcelona
  • Sila, D.N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G.K., Texture changes of processed fruits and vegetables: potential use of high-pressure processing (2008) Trends in Food Science and Technology, 19, pp. 309-319. , COI: 1:CAS:528:DC%2BD1cXms1Wjtrs%3D
  • Sirisomboon, P., Tanaka, M., Akinaga, T., Kojima, T., Evaluation of the texture properties of Japanese pear (2000) Journal of Texture Studies, 31, pp. 665-677
  • Spurr, A.R., Low-viscosity epoxy resin embedding medium for electron microscopy (1969) Journal of Ultrastructure Research, 26, pp. 31-43. , COI: 1:CAS:528:DyaF1MXkvVahsLc%3D
  • Thompson, R.L., Fleming, H.P., Hamann, D.D., Delineation of puncture forces for exocarp and mesocarp tissues in cucumber fruit (1992) Journal of Texture Studies, 23, pp. 169-184
  • Waldron, K.W., Parker, M.L., Smith, A.C., Plant cell walls and food quality (2003) Comprehensive Reviews in Food Science and Food Safety, 4, pp. 101-119
  • Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes (2015) Journal of Food Science, 80, pp. C2117-C2126. , COI: 1:CAS:528:DC%2BC2MXhsFSksrrN
  • Wattendorff, J., Holloway, P.J., Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ (1980) Annals of Botany, 46, pp. 13-28. , COI: 1:CAS:528:DyaL3MXislemsw%3D%3D
  • Wilcox, J.K., Catignani, G.L., Lazarus, S., Tomatoes and cardiovascular health (2003) Critical Reviews in Food Science and Nutrition, 43, pp. 1-18

Citas:

---------- APA ----------
Fava, J., Nieto, A., Hodara, K., Alzamora, S.M. & Castro, M.A. (2017) . A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound. Food and Bioprocess Technology, 10(7), 1324-1336.
http://dx.doi.org/10.1007/s11947-017-1905-4
---------- CHICAGO ----------
Fava, J., Nieto, A., Hodara, K., Alzamora, S.M., Castro, M.A. "A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound" . Food and Bioprocess Technology 10, no. 7 (2017) : 1324-1336.
http://dx.doi.org/10.1007/s11947-017-1905-4
---------- MLA ----------
Fava, J., Nieto, A., Hodara, K., Alzamora, S.M., Castro, M.A. "A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound" . Food and Bioprocess Technology, vol. 10, no. 7, 2017, pp. 1324-1336.
http://dx.doi.org/10.1007/s11947-017-1905-4
---------- VANCOUVER ----------
Fava, J., Nieto, A., Hodara, K., Alzamora, S.M., Castro, M.A. A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound. Food. Bioprocess Technol. 2017;10(7):1324-1336.
http://dx.doi.org/10.1007/s11947-017-1905-4