Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Consolidated memories can persist from a single day to years, and persistence is improved by retraining or retrieval-mediated plasticity. One retrieval-based way to strengthen memory is the reconsolidation process. Strengthening occurs simply by the presentation of specific cues associated with the original learning. This enhancement function has a fundamental role in the maintenance of memory relevance in animals everyday life. In the present study, we made a step forward in the identification of brain correlates imprinted by the reconsolidation process studying the long-term neural consequences when the strengthened memory is stable again. To reach such a goal, we compared the retention of paired-associate memories that went through retraining process or were labilizated-reconsolidated. Using functional magnetic resonance imaging (fMRI), we studied the specific areas activated during retrieval and analyzed the functional connectivity of the whole brain associated with the event-related design. We used Graph Theory tools to analyze the global features of the network. We show that reconsolidated memories imprint a more locally efficient network that is better at exchanging information, compared with memories that were retrained or untreated. For the first time, we report a method to elucidate the neural footprints associated with a relevant function of memory reconsolidation. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:Retrieval of retrained and reconsolidated memories are associated with a distinct neural network
Autor:Bavassi, L.; Forcato, C.; Fernández, R.S.; De Pino, G.; Pedreira, M.E.; Villarreal, M.F.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad de Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad de Buenos Aires, Argentina
Unidad Ejecutora de Estudios de Neurociencias y Sistemas Complejos, CONICET, Universidad Nacional Arturo Jauretche Hospital de Alta Complejidad en Red El Cruce “Néstor Kirchner”, Av. Calchaqui 6200, Florencio Varela, 1888, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad de Buenos Aires, Argentina
Laboratorio de Neuroimágenes, Departamento de Imágenes, FLENI, Montañeses 2325, Ciudad de Buenos Aires, C1428AQK, Argentina
Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
INAAC, FLENI, Montañeses 2325, Ciudad de Buenos Aires, C1428AQK, Argentina
CONICET, Ciudad de Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Ciudad de Buenos Aires, Argentina
Palabras clave:article; controlled study; functional connectivity; functional magnetic resonance imaging; information retrieval; memory reconsolidation
Año:2019
Volumen:9
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-37089-2
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v9_n1_p_Bavassi

Referencias:

  • Bekinschtein, P., BDNF is essential to promote persistence of long-term memory storage (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 2711-2716. , COI: 1:CAS:528:DC%2BD1cXis1yitLk%3D
  • Bailey, C.H., Kandel, E.R., Si, K., The persistence of long-term memory: A molecular approach to self-sustaining changes in learning-induced synaptic growth (2004) Neuron, 44, pp. 49-57. , COI: 1:CAS:528:DC%2BD2cXovVOksr8%3D
  • Dudai, Y., Eisenberg, M., Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis (2004) Neuron, 44, pp. 93-100. , COI: 1:CAS:528:DC%2BD2cXovVOksro%3D
  • Exton-McGuinness, M.T.J., Lee, J.L.C., Reichelt, A.C., Updating memories—The role of prediction errors in memory reconsolidation (2015) Behav. Brain Res., 278, pp. 375-384
  • McGaugh, J.L., Memory–a century of consolidation (2000) Science, 287, pp. 248-251. , COI: 1:CAS:528:DC%2BD3cXlvVSnsQ%3D%3D
  • Nadel, L., Land, C., Commentary—reconsolidation: memory traces revisited (2000) Nat. Rev. Neurosci., 1, p. 209. , COI: 1:CAS:528:DC%2BD3MXivVSjs7g%3D
  • Gisquet-Verrier, P., Riccio, D.C., Memory reactivation effects independent of reconsolidation (2012) Learn. Mem., 19, pp. 401-409
  • Dudai, Y., The restless engram: consolidations never end (2012) Annu. Rev. Neurosci., 35, pp. 227-247. , COI: 1:CAS:528:DC%2BC38XhtFegsbvI
  • Nader, K., Schafe, G.E., LeDoux, J.E., The labile nature of consolidation theory (2000) Nat. Rev. Neurosci., 1, pp. 216-219. , COI: 1:CAS:528:DC%2BD3MXivVSjsLs%3D
  • Sara, S.J., Retrieval and Reconsolidation: Toward a Neurobiology of Remembering (2000) Learn. Mem., 7, pp. 73-84. , COI: 1:STN:280:DC%2BD3c3hvFOnsw%3D%3D
  • Lee, J.L.C., (2009) Reconsolidation:Maintaining Memory Relevance, , https://doi.org/10.1016/j.tins.2009.05.002
  • De Oliveira Alvares, L., Reactivation enables memory updating, precision-keeping and strengthening: Exploring the possible biological roles of reconsolidation (2013) Neuroscience, 244, pp. 42-48
  • Forcato, C., Reconsolidation of declarative memory in humans (2007) Learn. Mem., 14, pp. 295-303
  • Inda, M.C., Muravieva, E.V., Alberini, C.M., Memory Retrieval and the Passage of Time: From Reconsolidation and Strengthening to Extinction (2011) J. Neurosci., 31, pp. 1635-1643. , COI: 1:CAS:528:DC%2BC3MXhvFGkur4%3D
  • Pedreira, M.E., Pérez-Cuesta, L.M., Maldonado, H., Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors (2002) J. Neurosci. Off. J. Soc. Neurosci., 22, pp. 8305-8311. , COI: 1:CAS:528:DC%2BD38Xnt12rtrg%3D
  • Schwabe, L., Nader, K., Pruessner, J.C., Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance (2014) Biol. Psychiatry, 76, pp. 274-280
  • Lee, J.L.C., Nader, K., Schiller, D., An Update on Memory Reconsolidation Updating (2017) Trends Cogn. Sci., 21, pp. 531-545
  • Fernández, R.S., Boccia, M.M., Pedreira, M.E., The fate of memory: Reconsolidation and the case of Prediction Error (2016) Neurosci. Biobehav. Rev., , https://doi.org/10.1016/j.neubiorev.2016.06.004
  • Sinclair, A.H., Barense, M.D., Surprise and Destabilize: Prediction Error Influences Episodic Memory Reconsolidation, , https://doi.org/10.1101/lm.046912
  • Forcato, C., Argibay, P.F., Pedreira, M.E., Maldonado, H., Human reconsolidation does not always occur when a memory is retrieved: the relevance of the reminder structure (2009) Neurobiol. Learn. Mem., 91, pp. 50-57. , COI: 1:STN:280:DC%2BD1M7gtFCrug%3D%3D
  • Forcato, C., Rodríguez, M.L.C., Pedreira, M.E., Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans (2011) PLoS ONE, 6. , COI: 1:CAS:528:DC%2BC3MXhtFajt7fL
  • Schiller, D., Kanen, J.W., LeDoux, J.E., Monfils, M.-H., Phelps, E.A., Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 20040-20045. , COI: 1:CAS:528:DC%2BC3sXhvFKms7bK
  • St Jacques, P.L., Olm, C., Schacter, D.L., Neural mechanisms of reactivation-induced updating that enhance and distort memory (2013) Proc. Natl. Acad. Sci. USA, 110
  • Agren, T., Disruption of Reconsolidation Erases a Fear Memory Trace in the Human Amygdala (2012) Science, 337, pp. 1550-1552. , COI: 1:CAS:528:DC%2BC38XhtlGrur7I
  • Feng, P., Zheng, Y., Feng, T., Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI (2015) Sci.Rep., 5, p. 16701. , COI: 1:CAS:528:DC%2BC2MXhvVOrurnN
  • Forcato, C., Differential left hippocampal activation during retrieval with different types of reminders: An fMRI study of the reconsolidation process (2016) PLoS ONE, 11
  • Bekinschtein, P., Persistence of Long-Term Memory Storage Requires a Late Protein Synthesis- and BDNF- Dependent Phase in the Hippocampus (2007) Neuron, 53, pp. 261-277. , COI: 1:CAS:528:DC%2BD2sXhsVWns7s%3D
  • Mcintosh, A.R., Mapping Cognition to the Brain Through Neural Interactions (1999) Memory, 7, pp. 523-548. , COI: 1:STN:280:DC%2BD3c7isVeisg%3D%3D
  • (2016) Network Science, , Cambridge University Press
  • Rubinov, M., Sporns, O., Complex network measures of brain connectivity: Uses and interpretations (2010) NeuroImage, 52, pp. 1059-1069
  • Bullmore, E.T., Bassett, D.S., Brain Graphs: Graphical Models of the Human Brain Connectome (2011) Annu. Rev. Clin. Psychol., 7, pp. 113-140
  • Bullmore, E.T., Sporns, O., Solla, S.A., Complex brain networks: graph theoretical analysis of structural and functional systems (2009) Nat. Rev. Neurosci., 10, pp. 186-198. , COI: 1:CAS:528:DC%2BD1MXhtlygtrg%3D
  • Schwabe, L., Nader, K., Wolf, O.T., Beaudry, T., Pruessner, J.C., Neural signature of reconsolidation impairments by propranolol in humans (2012) Biol. Psychiatry, 71, pp. 380-386. , COI: 1:CAS:528:DC%2BC38Xht1Oiu7c%3D
  • Geib, B.R., Stanley, M.L., Dennis, N.A., Woldorff, M.G., Cabeza, R., From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval (2017) Hum. Brain Mapp., 38, pp. 2242-2259
  • Spaniol, J., Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation (2009) Neuropsychologia, 47, pp. 1765-1779
  • van den Broek, G., Neurocognitive mechanisms of the ‘testing effect’: A review (2016) Trends Neurosci. Educ., 5, pp. 52-66
  • Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., Buckner, R.L., Functional-Anatomic Fractionation of the Brain’s Default Network (2010) Neuron, 65, pp. 550-562. , COI: 1:CAS:528:DC%2BC3cXltlWku78%3D
  • Leech, R., Sharp, D.J., The role of the posterior cingulate cortex in cognition and disease (2014) Brain, 137, pp. 12-32
  • McKenzie, S., Eichenbaum, H., Consolidation and Reconsolidation: Two Lives of Memories? (2011) Neuron, 71, pp. 224-233. , COI: 1:CAS:528:DC%2BC3MXps1OgsLs%3D
  • Fraiman, D., Balenzuela, P., Foss, J., Chialvo, D.R., Ising-like dynamics in large-scale functional brain networks (2009) Phys. Rev. E - Stat. Nonlinear Soft Matter Phys., 79, pp. 1-10
  • Tononi, G., Cirelli, C., Sleep and synaptic homeostasis: A hypothesis (2003) Brain Res. Bull., 62, pp. 143-150
  • Tononi, G., Cirelli, C., Sleep function and synaptic homeostasis (2006) Sleep Med. Rev., 10, pp. 49-62
  • Nadel, L., Hupbach, A., Gomez, R., Newman-Smith, K., Memory formation, consolidation and transformation (2012) Neurosci. Biobehav. Rev., 36, pp. 1640-1645. , COI: 1:STN:280:DC%2BC38rht1SmtA%3D%3D
  • Milekic, M.H., Pollonini, G., Alberini, C.M., Temporal requirement of C/EBPbeta in the amygdala following reactivation but not acquisition of inhibitory avoidance (2007) Learn. Mem. Cold Spring Harb. N, 14, pp. 504-511. , COI: 1:CAS:528:DC%2BD1cXmsFCgsr4%3D
  • Alberini, C.M., Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? (2005) Trends Neurosci., 28, pp. 51-56. , COI: 1:CAS:528:DC%2BD2MXktVyl
  • Wichert, S., Wolf, O.T., Schwabe, L., Reactivation, interference, and reconsolidation: Are recent and remote memories likewise susceptible? (2011) Behav. Neurosci., 125, pp. 699-704
  • Cantarero, G., Lloyd, A., Celnik, P., Reversal of Long-Term Potentiation-Like Plasticity Processes after Motor Learning Disrupts Skill Retention (2013) J. Neurosci., 33, pp. 12862-12869. , COI: 1:CAS:528:DC%2BC3sXht1Cltr7E
  • Forcato, C., Fernandez, R.S., Pedreira, M.E., The Role and Dynamic of Strengthening in the Reconsolidation Process in a Human Declarative Memory: What Decides the Fate of Recent and Older Memories? (2013) PLoS ONE, 8. , &
  • Cantarero, G., Tang, B., O’Malley, R., Salas, R., Celnik, P., Motor Learning Interference Is Proportional to Occlusion of LTP-Like Plasticity (2013) J. Neurosci., 33, pp. 4634-4641. , COI: 1:CAS:528:DC%2BC3sXhtlOjs73P
  • Wichert, S., Wolf, O.T., Schwabe, L., Changing memories after reactivation: A one-time opportunity? (2013) Neurobiol. Learn. Mem., 99, pp. 38-49
  • Schiller, E.A., Daniela and Phelps. Does Reconsolidation Occur in Humans: A Reply (2011) Front. Behav. Neurosci., 5, pp. 1-12
  • Wymbs, N.F., Bastian, A.J., Celnik, P.A., Motor skills are strengthened through reconsolidation (2016) Curr. Biol., 26, pp. 338-343. , COI: 1:CAS:528:DC%2BC28Xhs12gtLg%3D
  • Roediger, H.L., Karpicke, J.D., Test-enhanced learning (2006) Psychol. Sci., 17, pp. 249-255
  • Roediger, H.L., III, Butler, A.C., The critical role of retrieval practice in long-term retention (2011) Trends Cogn. Sci., 15, pp. 20-27
  • Finn, B., Roediger, H.L., Enhancing retention through reconsolidation: Negative emotional arousal following retrieval enhances later recall (2011) Psychol. Sci., 22, pp. 781-786
  • Nader, K., Hardt, O., A single standard for memory: The case for reconsolidation (2009) Nat. Rev. Neurosci., 10, pp. 224-234. , COI: 1:CAS:528:DC%2BD1MXitFKksr8%3D
  • Norman, K., Newman, E.L., Detre, G.J., A neural network model of retrieval-induced forgetting (2007) Psychol. Rev., 114, pp. 887-953
  • Storm, B.C., Bjork, E.L., Bjork, R.A., (2012) On the Durability of Retrieval-Induced Forgetting, p. 5911
  • Byrne, J.H., (2009) Concise Learning and Memory
  • Forcato, C., Fernandez, R.S., Pedreira, M.E., Strengthening a consolidated memory: The key role of the reconsolidation process (2014) J. Physiol. Paris, 108, pp. 323-333
  • Brainard, D.H., Barbara, S., The Psychophysics Toolbox (1997) Spat. Vis., 10, pp. 433-436. , COI: 1:STN:280:DyaK2szitVSlug%3D%3D
  • Ashburner, J., Friston, K.J., Nonlinear spatial normalization using basis functions (1999) Hum. Brain Mapp., 7, pp. 254-266. , COI: 1:STN:280:DyaK1MzjsFamtg%3D%3D
  • Friston, K.J., To Smooth or Not to Smooth? (2000) NeuroImage, 12, pp. 196-208. , COI: 1:STN:280:DC%2BD3cvotFKjsQ%3D%3D
  • Tzourio-Mazoyer, N., Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain (2002) NeuroImage, 15, pp. 273-289. , COI: 1:STN:280:DC%2BD38%2FltFCntw%3D%3D
  • Brett, M., Anton, J.L., Valabregue, R., Poline, J.B., Region of interest analysis using the MarsBar toolbox for SPM 99 (2002) Neuroimage, 16, p. s497
  • Mäki-Marttunen, V., Villarreal, M., Leiguarda, R.C., Lateralization of brain activity during motor planning of proximal and distal gestures (2014) Behav. Brain Res., 272, pp. 226-237
  • Rissman, J., Gazzaley, A., D’Esposito, M., Measuring functional connectivity during distinct stages of a cognitive task (2004) NeuroImage, 23, pp. 752-763
  • Song, X.W., REST: A Toolkit for resting-state functional magnetic resonance imaging data processing (2011) PLoS ONE, 6

Citas:

---------- APA ----------
Bavassi, L., Forcato, C., Fernández, R.S., De Pino, G., Pedreira, M.E. & Villarreal, M.F. (2019) . Retrieval of retrained and reconsolidated memories are associated with a distinct neural network. Scientific Reports, 9(1).
http://dx.doi.org/10.1038/s41598-018-37089-2
---------- CHICAGO ----------
Bavassi, L., Forcato, C., Fernández, R.S., De Pino, G., Pedreira, M.E., Villarreal, M.F. "Retrieval of retrained and reconsolidated memories are associated with a distinct neural network" . Scientific Reports 9, no. 1 (2019).
http://dx.doi.org/10.1038/s41598-018-37089-2
---------- MLA ----------
Bavassi, L., Forcato, C., Fernández, R.S., De Pino, G., Pedreira, M.E., Villarreal, M.F. "Retrieval of retrained and reconsolidated memories are associated with a distinct neural network" . Scientific Reports, vol. 9, no. 1, 2019.
http://dx.doi.org/10.1038/s41598-018-37089-2
---------- VANCOUVER ----------
Bavassi, L., Forcato, C., Fernández, R.S., De Pino, G., Pedreira, M.E., Villarreal, M.F. Retrieval of retrained and reconsolidated memories are associated with a distinct neural network. Sci. Rep. 2019;9(1).
http://dx.doi.org/10.1038/s41598-018-37089-2