Artículo

Boccardo, N.A.; Segretin, M.E.; Hernandez, I.; Mirkin, F.G.; Chacón, O.; Lopez, Y.; Borrás-Hidalgo, O.; Bravo-Almonacid, F.F. "Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials" (2019) Scientific Reports. 9(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and β-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and β-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co- expression of PR proteins AP24 and β-1,3-glucanase resulted in enhanced resistance against filamentous pathogens. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials
Autor:Boccardo, N.A.; Segretin, M.E.; Hernandez, I.; Mirkin, F.G.; Chacón, O.; Lopez, Y.; Borrás-Hidalgo, O.; Bravo-Almonacid, F.F.
Filiación:Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, (C1428ADN), Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, (C1428EGA), Argentina
Centro de Ingeniería Genética y Biotecnología (CIGB), La Habana, (10600), Cuba
Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, (250353), China
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, (B1876BXD), Argentina
Año:2019
Volumen:9
Número:1
DOI: http://dx.doi.org/10.1038/s41598-019-39568-6
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v9_n1_p_Boccardo

Referencias:

  • Oerke, E.C., Crop losses to pests (2005) The Journal of Agricultural Science, 144, pp. 31-43
  • Strange, R.N., Scott, P.R., Plant disease: a threat to global food security (2005) Annu Rev Phytopathol, 43, pp. 83-116. , COI: 1:CAS:528:DC%2BD2MXhtVOksr3O
  • Savary, S., Ficke, A., Aubertot, J.-N., Hollier, C., Crop losses due to diseases and their implications for global food production losses and food security (2012) Food Security, 4, pp. 519-537
  • Goodwin, S.B., Sujkowski, L.S., Fry, W.E., Widespread Distribution and Probable Origin of Resistance to Metalaxyl in Clonal Genotypes of Phytophthora infestans in the United States and Western Canada (1996) Phytopathology, 86, pp. 793-800. , COI: 1:CAS:528:DyaK28XksFektLs%3D
  • Day, J.P., Shattock, R.C., Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales (1997) European Journal of Plant Pathology, 103, pp. 379-391
  • Dixon, G.R., Climate change – impact on crop growth and food production, and plant pathogens (2012) Canadian Journal of Plant Pathology, 34, pp. 362-379
  • Jones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444, pp. 323-329. , COI: 1:CAS:528:DC%2BD28Xht1SgtbzO
  • Takken, F.L., Goverse, A., How to build a pathogen detector: structural basis of NB-LRR function (2012) Curr Opin Plant Biol, 15, pp. 375-384. , COI: 1:CAS:528:DC%2BC38XotVSrtb4%3D
  • Win, J., Effector biology of plant-associated organisms: concepts and perspectives (2012) Cold Spring Harbor symposia on quantitative biology, 77, pp. 235-247. , COI: 1:STN:280:DC%2BC3s7pvFSjsw%3D%3D
  • van Loon, L.C., Rep, M., Pieterse, C.M.J., Significance of Inducible Defense-related Proteins in Infected Plants (2006) Annual Review of Phytopathology, 44, pp. 135-162
  • Coll, N.S., Epple, P., Dangl, J.L., Programmed cell death in the plant immune system (2011) Cell Death and Differentiation, 18, pp. 1247-1256. , COI: 1:CAS:528:DC%2BC3MXos1Gkurg%3D
  • Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens (2005) Annu Rev Phytopathol, 43, pp. 205-227. , COI: 1:CAS:528:DC%2BD2MXhtVOksrrN
  • Shigenaga, A.M., Berens, M.L., Tsuda, K., Argueso, C.T., Towards engineering of hormonal crosstalk in plant immunity (2017) Curr Opin Plant Biol, 38, pp. 164-172. , COI: 1:CAS:528:DC%2BC2sXptlShu74%3D
  • Dong, X., NPR1, all things considered (2004) Current Opinion in Plant Biology, 7, pp. 547-552. , COI: 1:CAS:528:DC%2BD2cXntV2msLs%3D
  • Liu, L., Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xhs1GnurnL
  • Linthorst, H.J.M., Van Loon, L.C., Pathogenesis‐related proteins of plants (1991) Critical Reviews in Plant Sciences, 10, pp. 123-150. , COI: 1:CAS:528:DyaK3MXmtVehsbo%3D
  • Edreva, A., Pathogenesis-related proteins: research progress in the last 15 years (2005) Gen Appl Plant Physiol, 31, pp. 105-124. , COI: 1:CAS:528:DC%2BD2sXks1ant78%3D
  • Moscou, M.J., van Esse, H.P., The quest for durable resistance (2017) Science, 358, p. 1541. , COI: 1:CAS:528:DC%2BC1cXmsVKgsw%3D%3D
  • Mundt, C.C., Durable resistance: a key to sustainable management of pathogens and pests. Infection, genetics and evolution (2014) Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 27, pp. 446-455
  • Wiesner-Hanks, T., Nelson, R., Multiple Disease Resistance in Plants (2016) Annual Review of Phytopathology, 54, pp. 229-252. , COI: 1:CAS:528:DC%2BC28XpvV2ks7s%3D
  • Rodriguez-Moreno, L., Song, Y., Thomma, B.P., Transfer and engineering of immune receptors to improve recognition capacities in crops (2017) Curr Opin Plant Biol, 38, pp. 42-49. , COI: 1:CAS:528:DC%2BC2sXms12lt7s%3D
  • Vleeshouwers, V.G.A.A., Oliver, R.P., Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens (2014) Molecular Plant-Microbe Interactions, 27, pp. 196-206. , COI: 1:CAS:528:DC%2BC2cXjtlSlsr8%3D
  • Zhang, M., Coaker, G., Harnessing Effector-Triggered Immunity for Durable Disease Resistance (2017) Phytopathology, 107, pp. 912-919
  • Jach, G., Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco (1995) The Plant Journal, 8, pp. 97-109. , COI: 1:CAS:528:DyaK2MXnslSltL8%3D
  • Punja, Z.K., Genetic engineering of plants to enhance resistance to fungal pathogens: a review of progress and future prospects (2001) Canadian Journal of Plant Pathology, 23, pp. 216-235. , COI: 1:CAS:528:DC%2BD3MXnvVCrsrw%3D
  • Veronese, P., In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy (2003) Plant Physiology, 131, pp. 1580-1590. , COI: 1:CAS:528:DC%2BD3sXjt1Sqs78%3D
  • Christou, P., Twyman, R.M., The potential of genetically enhanced plants to address food insecurity (2004) Nutrition Research Reviews, 17, pp. 23-42
  • Nandi, A.K., Application of Antimicrobial Proteins and Peptides in Developing Disease‐Resistant Plants. In Plant Pathogen Resistance (2016) Biotechnology, 3, pp. 51-70
  • Moosa, A., Farzand, A., Sahi, S.T., Khan, S.A., Transgenic expression of antifungal pathogenesis-related proteins against phytopathogenic fungi – 15 years of success (2017) Israel Journal of Plant Sciences, pp. 1-17. , &
  • Broglie, R., Broglie, K., The production and uses of genetically transformed plants - Chitinase gene expression in transgenic plants: A molecular approach to understanding plant defence responses (1993) Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 342 (265)
  • Mittler, R., Rizhsky, L., Transgene-induced lesion mimic (2000) Plant Molecular Biology, 44, pp. 335-344. , COI: 1:CAS:528:DC%2BD3MXmtFajsA%3D%3D
  • Anand, A., Schmelz, E.A., Muthukrishnan, S., Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration (2003) Molecular Plant-Microbe Interactions: MPMI, 16, pp. 916-925. , COI: 1:CAS:528:DC%2BD3sXnsFyktbw%3D
  • Nishizawa, Y., Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1 (2003) Plant Molecular Biology, 51, pp. 143-152. , COI: 1:CAS:528:DC%2BD38XnvFOit7c%3D
  • Collinge, D.B., Jorgensen, H.J., Lund, O.S., Lyngkjaer, M.F., Engineering pathogen resistance in crop plants: current trends and future prospects (2010) Annu Rev Phytopathol, 48, pp. 269-291. , COI: 1:CAS:528:DC%2BC3cXht1Wgt7%2FI
  • Oey, M., Lohse, M., Kreikemeyer, B., Bock, R., Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic (2009) The Plant Journal, 57, pp. 436-445. , COI: 1:CAS:528:DC%2BD1MXit1Kitb8%3D
  • Lentz, E.M., High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants (2010) Planta, 231, pp. 387-395. , COI: 1:CAS:528:DC%2BC3cXisVSnsQ%3D%3D
  • Daniell, H., Varma, S., Chloroplast-transgenic plants: panacea–no! Gene containment–yes! (1998) Nature Biotechnology, 16, p. 602. , COI: 1:CAS:528:DyaK1cXkt1GhsLY%3D
  • Bock, R., Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology (2015) Annual Review of Plant Biology, 66, pp. 211-241. , COI: 1:CAS:528:DC%2BC2MXhtVajtbvF
  • Wani, S.H., Sah, S.K., Sági, L., Solymosi, K., Transplastomic plants for innovations in agriculture. A review (2015) Agronomy for Sustainable Development, 35, pp. 1391-1430. , COI: 1:CAS:528:DC%2BC2MXhtVKqt73O
  • Zhang, J., Khan, S.A., Heckel, D.G., Bock, R., Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection (2017) Trends in Biotechnology, 35, pp. 871-882. , COI: 1:CAS:528:DC%2BC2sXhtlCltr3O
  • DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., Daniell, H., Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi (2001) Plant Physiology, 127, pp. 852-862. , COI: 1:CAS:528:DC%2BD3MXos1Knurg%3D
  • Wang, Y.P., Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus (2015) International Journal of Molecular Sciences, 16, pp. 4628-4641. , COI: 1:CAS:528:DC%2BC2MXlvVKrur4%3D
  • Ruhlman, T.A., Rajasekaran, K., Cary, J.W., Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance (2014) Plant Science, 228, pp. 98-106. , COI: 1:CAS:528:DC%2BC2cXkt1Wjsrk%3D
  • Haas, B.J., Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans (2009) Nature, 461, pp. 393-398. , COI: 1:CAS:528:DC%2BD1MXhtFSnt7vM
  • Feau, N., Genome sequences of six Phytophthora species threatening forest ecosystems. Genomics (2016) Data, 10, pp. 85-88
  • Rivero, M., Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens (2012) Journal of Biotechnology, 157, pp. 334-343. , COI: 1:CAS:528:DC%2BC38XpsFahuw%3D%3D
  • Segretin, M.E., Lentz, E.M., Wirth, S.A., Morgenfeld, M.M., Bravo-Almonacid, F.F., Transformation of Solanum tuberosum plastids allows high expression levels of beta-glucuronidase both in leaves and microtubers developed in vitro (2012) Planta, 235, pp. 807-818. , COI: 1:CAS:528:DC%2BC38XksFWnurg%3D
  • Kuroda, H., Maliga, P., Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs (2001) Nucleic Acids Research, 29, pp. 970-975. , COI: 1:CAS:528:DC%2BD3MXhs1Gjtrg%3D
  • Borras-Hidalgo, O., Caprari, C., Hernandez-Estevez, I., De Lorenzo, G., Cervone, F., A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes (2012) Front. Plant Sci., 3, p. 268
  • Shew, H.D., Lucas, G.B., Compendium of tobacco diseases. (APS Press (1991) The American Phytopathological Society
  • Silva, H., Yoshioka, K., Dooner, H.K., Klessig, D.F., Characterization of a New Arabidopsis Mutant Exhibiting Enhanced Disease Resistance (1999) Molecular Plant-Microbe Interactions, 12, pp. 1053-1063. , COI: 1:CAS:528:DyaK1MXnsFSisrk%3D
  • Datta, K., Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease (1999) Theoretical and Applied Genetics, 98, pp. 1138-1145. , COI: 1:CAS:528:DyaK1MXktFSmsLc%3D
  • Xue, X., Overexpression of OsOSM1 Enhances Resistance to Rice Sheath Blight (2016) Plant Disease, 100, pp. 1634-1642. , COI: 1:CAS:528:DC%2BC28XitFeqsbnP
  • Veronese, P., Pathogenesis-related proteins for the control of fungal diseases of tomato. In Genetics and Breeding for Crop Quality and Resistance (1999) Developments in Plant Breeding, 8, pp. 15-24. , COI: 1:CAS:528:DC%2BD3cXit1CmtQ%3D%3D
  • Chen, W., Punja, Z., Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation (2002) Plant Cell Reports, 20, pp. 929-935. , COI: 1:CAS:528:DC%2BD38Xhs1yru7g%3D
  • Das, M., Chauhan, H., Chhibbar, A., Rizwanul Haq, Q.M., Khurana, P., High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin (2011) Transgenic Research, 20, pp. 231-246. , COI: 1:CAS:528:DC%2BC3MXivVGhs7w%3D
  • Dong, S., Resistance of transgenic tall fescue to two major fungal diseases (2007) Plant Science, 173, pp. 501-509. , COI: 1:CAS:528:DC%2BD2sXhtFSlsr7P
  • Borkowska, M., Transgenic potato plants expressing soybean beta-1,3-endoglucanase gene exhibit an increased resistance to Phytophthora infestans (1998) Z Naturforsch C., 53, pp. 1012-1016. , COI: 1:CAS:528:DyaK1MXmsFKjsg%3D%3D
  • Wróbel-Kwiatkowskaa, M., Expression of β-1,3-glucanase in flax causes increased resistance to fungi (2004) Physiological and Molecular Plant Pathology, 65, pp. 245-256
  • Sundaresha, S., Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase (2010) Eur J Plant Pathol, 126, pp. 497-508. , COI: 1:CAS:528:DC%2BC3cXis1yhs7c%3D
  • Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A., Lamb, C.J., Enhanced Protection Against Fungal Attack by Constitutive Co–expression of Chitinase and Glucanase Genes in Transgenic Tobacco (1994) Bio/Technology, 12, pp. 807-812. , COI: 1:CAS:528:DyaK2cXmt1Kmu78%3D
  • Balasubramanian, V., Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi (2012) Biotechnology Letters, 34, pp. 1983-1990. , COI: 1:CAS:528:DC%2BC38XhsVCjs73J
  • Wawra, S., The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28XhslKntrzK
  • Leubner-Metzger, G., Meins, F., Functions and regulation of plant ß-1,3-glucanases (PR-2) (1999) Pathogenesis-Related Proteins in Plants. P. 49–76 (CRC Press LLC, , Datta, S. K., Muthukrishnan, S., Boca Raton, Florida
  • Anil Kumar, S., Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin (2015) Front Plant Sci., 6, p. 163. , COI: 1:STN:280:DC%2BC2MjitFyhsw%3D%3D
  • Fabro, G., Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis (2004) Mol Plant Microbe Interact., 17, pp. 343-350. , COI: 1:CAS:528:DC%2BD2cXisFCrtLg%3D
  • Tian, M., A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease (2007) Plant Physiology, 143, pp. 364-377. , COI: 1:CAS:528:DC%2BD2sXpt1Omtw%3D%3D
  • Rose, J.K.C., Ham, K.-S., Darvill, A.G., Albersheim, P., Molecular Cloning and Characterization of Glucanase Inhibitor Proteins (2002) The Plant Cell, 14, pp. 1329-1345. , COI: 1:CAS:528:DC%2BD38Xlt1als7Y%3D
  • Szabo, L.J., Bushnell, W.R., Hidden robbers: The role of fungal haustoria in parasitism of plants (2001) Proceedings of the National Academy of Sciences, 98, pp. 7654-7655. , &,., -
  • Hanson, M.R., Hines, K.M., Stromules: Probing Formation and Function (2018) Plant physiology., 176, pp. 128-137. , COI: 1:CAS:528:DC%2BC1cXhsF2rurzE
  • Caplan, J.L., Chloroplast Stromules Function during Innate Immunity (2015) Developmental Cell., 34, pp. 45-57. , COI: 1:CAS:528:DC%2BC2MXhtV2itbjJ
  • Bobik, K., Burch-Smith, T.M., Chloroplast signaling within, between and beyond cells (2015) Front Plant Sci., 6, p. 781
  • Schippers, J.H.M., Schmidt, R., Wagstaff, C., Jing, H.-C., Living to Die and Dying to Live: The Survival Strategy behind Leaf Senescence (2015) Plant Physiology, 169, pp. 914-930. , COI: 1:CAS:528:DC%2BC28XhsFSlsrw%3D
  • Wang, X., Chung, K.P., Lin, W., Jiang, L., Protein secretion in plants: conventional and unconventional pathways and new techniques (2017) J Exp Bot., 69, pp. 21-37. , COI: 1:CAS:528:DC%2BC1cXitlKgt7rL
  • Svab, Z., Hajdukiewicz, P., Maliga, P., Stable transformation of plastids in higher plants (1990) Proc Natl Acad Sci USA, 87, pp. 8526-8530. , COI: 1:CAS:528:DyaK3MXhslWn
  • Alfano, E.F., Expression of the Multimeric and Highly Immunogenic Brucella spp. Lumazine Synthase Fused to Bovine Rotavirus VP8d as a Scaffold for Antigen Production in Tobacco Chloroplasts (2015) Frontiers in Plant Science, 6, p. 1170
  • Church, G.M., Gilbert, W., Genomic sequencing (1984) Proceedings of the National Academy of Sciences of the United States of America, 81, pp. 1991-1995
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685. , COI: 1:CAS:528:DC%2BD3MXlsFags7s%3D
  • Wang, K.D., Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses (2015) Mol Plant Pathol., 16, pp. 435-448. , COI: 1:CAS:528:DC%2BC2MXotVektb0%3D
  • Vellicce, G.R., Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry (2006) Transgenic Res., 15, pp. 57-68. , COI: 1:CAS:528:DC%2BD28XhtlSqtr0%3D
  • Elliott, P.E., Lewis, R.S., Shew, H.D., Gutierrez, W.A., Nicholson, J.S., Evaluation of Tobacco Germplasm for Seedling Resistance to Stem Rot and Target Spot Caused by Thanatephorus cucumeris (2008) Plant Disease, 92, pp. 425-430. , COI: 1:STN:280:DC%2BB3cfktVWrtQ%3D%3D
  • Portieles, R., NmEXT Extensin Gene: a Positive Regulator of Resistance Response Against the Oomycete Phytophthora nicotianae (2018) Plant Molecular Biology Reporter, 36
  • Csinos, A.S., Stem and Root Resistance to Tobacco Black Shank (1999) Plant Disease, 83, pp. 777-780
  • Canales, E., Candidatus Liberibacter asiaticus (2016) Is Reduced by Treatment with Brassinosteroids. Plos One., 11. , Causal Agent of Citrus Huanglongbing
  • Muller, P.Y., Janovjak, H., Miserez, A.R., Dobbie, Z., Processing of gene expression data generated by quantitative real-time RT-PCR (2002) BioTechniques, 32, pp. 1372-1380. , COI: 1:CAS:528:DC%2BD38XksVyqur4%3D, PID: 12074169

Citas:

---------- APA ----------
Boccardo, N.A., Segretin, M.E., Hernandez, I., Mirkin, F.G., Chacón, O., Lopez, Y., Borrás-Hidalgo, O.,..., Bravo-Almonacid, F.F. (2019) . Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Scientific Reports, 9(1).
http://dx.doi.org/10.1038/s41598-019-39568-6
---------- CHICAGO ----------
Boccardo, N.A., Segretin, M.E., Hernandez, I., Mirkin, F.G., Chacón, O., Lopez, Y., et al. "Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials" . Scientific Reports 9, no. 1 (2019).
http://dx.doi.org/10.1038/s41598-019-39568-6
---------- MLA ----------
Boccardo, N.A., Segretin, M.E., Hernandez, I., Mirkin, F.G., Chacón, O., Lopez, Y., et al. "Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials" . Scientific Reports, vol. 9, no. 1, 2019.
http://dx.doi.org/10.1038/s41598-019-39568-6
---------- VANCOUVER ----------
Boccardo, N.A., Segretin, M.E., Hernandez, I., Mirkin, F.G., Chacón, O., Lopez, Y., et al. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci. Rep. 2019;9(1).
http://dx.doi.org/10.1038/s41598-019-39568-6