Artículo

Zaza, C.; Violi, I.L.; Gargiulo, J.; Chiarelli, G.; Schumacher, L.; Jakobi, J.; Olmos-Trigo, J.; Cortes, E.; König, M.; Barcikowski, S.; Schlücker, S.; Saénz, J.J.; Maier, S.A.; Stefani, F.D. "Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance" (2019) ACS Photonics
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Silicon nanoparticles possess unique size-dependent optical properties due to their strong electric and magnetic resonances in the visible range. However, their widespread application has been limited, in comparison with other (e.g., metallic) nanoparticles, because their preparation on monodisperse colloids remains challenging. Exploiting the unique properties of Si nanoparticles in nano- A nd microdevices calls for methods able to sort and organize them from a colloidal suspension onto specific positions of solid substrates with nanometric precision. We demonstrate that surfactant-free silicon nanoparticles of a predefined and narrow (σ < 10 nm) size range can be selectively immobilized on a substrate by optical printing from a polydisperse colloidal suspension. The size selectivity is based on differential optical forces that can be applied on nanoparticles of different sizes by tuning the light wavelength to the size-dependent magnetic dipolar resonance of the nanoparticles. © 2019 American Chemical Society.

Registro:

Documento: Artículo
Título:Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance
Autor:Zaza, C.; Violi, I.L.; Gargiulo, J.; Chiarelli, G.; Schumacher, L.; Jakobi, J.; Olmos-Trigo, J.; Cortes, E.; König, M.; Barcikowski, S.; Schlücker, S.; Saénz, J.J.; Maier, S.A.; Stefani, F.D.
Filiación:Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Ciudad Autonoma de Buenos Aires, 2390, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Guïraldes, Ciudad Autonoma de Buenos Aires, 2620, Argentina
Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
Physical Chemistry I, Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, 45141, Germany
Technical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, 45141, Germany
Donostia International Physics Center (DIPC), San Sebastián, 20018, Spain
Department in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, München, 80539, Germany
IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
Palabras clave:all-dielectric metamaterials; colloidal silicon; magnetic dipole; optical manipulation; radiation pressure; sorting; Magnetic resonance; Nanoparticles; Optical properties; Silicon; Sols; Sorting; Substrates; Suspensions (fluids); Colloidal suspensions; Dipolar resonances; Magnetic dipole; Monodisperse colloids; Optical manipulation; Radiation pressure; Silicon nanoparticles; Size-dependent optical properties; Nanomagnetics
Año:2019
DOI: http://dx.doi.org/10.1021/acsphotonics.8b01619
Título revista:ACS Photonics
Título revista abreviado:ACS Photonics
ISSN:23304022
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23304022_v_n_p_Zaza

Referencias:

  • Maier, S.A., (2007) Plasmonics: Fundamentals and Applications, , Springer Science+Business Media
  • Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., Plasmons in Strongly Coupled Metallic Nanostructures (2011) Chem. Rev., 111 (6), pp. 3913-3961
  • Mayer, K.M., Hafner, J.H., Localized Surface Plasmon Resonance Sensors (2011) Chem. Rev., 111 (6), pp. 3828-3857
  • Bakker, R.M., Permyakov, D., Yu, Y.F., Markovich, D., Paniagua-Domínguez, R., Gonzaga, L., Samusev, A., Kuznetsov, A.I., Magnetic and Electric Hotspots with Silicon Nanodimers (2015) Nano Lett., 15 (3), pp. 2137-2142
  • Caldarola, M., Albella, P., Cortés, E., Rahmani, M., Roschuk, T., Grinblat, G., Oulton, R.F., Maier, S.A., Non-Plasmonic Nanoantennas for Surface Enhanced Spectroscopies with Ultra-Low Heat Conversion (2015) Nat. Commun., 6, p. 7915
  • Albella, P., Alcaraz De La Osa, R., Moreno, F., Maier, S.A., Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies (2014) ACS Photonics, 1 (6), pp. 524-529
  • Regmi, R., Berthelot, J., Winkler, P.M., Mivelle, M., Proust, J., Bedu, F., Ozerov, I., Rigneault, H., All-Dielectric Silicon Nanogap Antennas to Enhance the Fluorescence of Single Molecules (2016) Nano Lett., 16 (8), pp. 5143-5151
  • Bakker, R.M., Yu, Y.F., Paniagua-Domínguez, R., Luk'Yanchuk, B., Kuznetsov, A.I., Resonant Light Guiding Along a Chain of Silicon Nanoparticles (2017) Nano Lett., 17 (6), pp. 3458-3464
  • Sanz-Paz, M., Ernandes, C., Esparza, J.U., Burr, G.W., Van Hulst, N.F., Maitre, A., Aigouy, L., Garcia-Parajo, M.F., Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas (2018) Nano Lett., 18 (6), pp. 3481-3487
  • Garciá-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L.S., López, C., Chantada, L., Scheffold, F., Aizpurua, J., Saénz, J.J., Strong Magnetic Response of Submicron Silicon Particles in the Infrared (2011) Opt. Express, 19 (6), pp. 4815-4826
  • Schmidt, M.K., Esteban, R., Saénz, J.J., Suárez-Lacalle, I., Mackowski, S., Aizpurua, J., Dielectric Antennas- A Suitable Platform for Controlling Magnetic Dipolar Emission (2012) Opt. Express, 20 (13), p. 13636
  • Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk'yanchuk, B., Optically Resonant Dielectric Nanostructures (2016) Science (Washington, DC, U. S.), 354 (6314), p. aag2472
  • Albella, P., Poyli, M.A., Schmidt, M.K., Maier, S.A., Moreno, F., Saénz, J.J., Aizpurua, J., Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers (2013) J. Phys. Chem. C, 117 (26), pp. 13573-13584
  • Evlyukhin, A.B., Novikov, S.M., Zywietz, U., Eriksen, R.L., Reinhardt, C., Bozhevolnyi, S.I., Chichkov, B.N., Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region (2012) Nano Lett., 12 (7), pp. 3749-3755
  • Staude, I., Schilling, J., Metamaterial-Inspired Silicon Nanophotonics (2017) Nat. Photonics, 11, p. 274
  • Rodriguez, I., Shi, L., Lu, X., Korgel, B.A., Alvarez-Puebla, R.A., Meseguer, F., Silicon Nanoparticles as Raman Scattering Enhancers (2014) Nanoscale, 6 (11), pp. 5666-5670
  • Cambiasso, J., König, M., Cortés, E., Schlücker, S., Maier, S.A., Surface-Enhanced Spectroscopies of a Molecular Monolayer in an All-Dielectric Nanoantenna (2018) ACS Photonics, 5 (4), pp. 1546-1557
  • Shi, L., Harris, J.T., Fenollosa, R., Rodriguez, I., Lu, X., Korgel, B.A., Meseguer, F., Monodisperse Silicon Nanocavities and Photonic Crystals with Magnetic Response in the Optical Region (2013) Nat. Commun., 4 (1), p. 1904
  • Zywietz, U., Evlyukhin, A.B., Reinhardt, C., Chichkov, B.N., Laser Printing of Silicon Nanoparticles with Resonant Optical Electric and Magnetic Responses (2014) Nat. Commun., 5, p. 3402
  • Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk'yanchuk, B., Directional Visible Light Scattering by Silicon Nanoparticles (2013) Nat. Commun., 4, p. 1527
  • Zywietz, U., Reinhardt, C., Evlyukhin, A.B., Birr, T., Chichkov, B.N., Generation and Patterning of Si Nanoparticles by Femtosecond Laser Pulses (2014) Appl. Phys. A: Mater. Sci. Process., 114 (1), pp. 45-50
  • Shi, L., Tuzer, T.U., Fenollosa, R., Meseguer, F., A New Dielectric Metamaterial Building Block with a Strong Magnetic Response in the Sub-1.5-Micrometer Region: Silicon Colloid Nanocavities (2012) Adv. Mater., 24 (44), pp. 5934-5938
  • Abderrafi, K., Garciá Calzada, R., Gongalsky, M.B., Suárez, I., Abarques, R., Chirvony, V.S., Timoshenko, V.Y., Martínez-Pastor, J.P., Silicon Nanocrystals Produced by Nanosecond Laser Ablation in an Organic Liquid (2011) J. Phys. Chem. C, 115 (12), pp. 5147-5151
  • Fenollosa, R., Meseguer, F., Tymczenko, M., Silicon Colloids: From Microcavities to Photonic Sponges (2008) Adv. Mater., 20 (1), pp. 95-98
  • Shavel, A., Guerrini, L., Alvarez-Puebla, R.A., Colloidal Synthesis of Silicon Nanoparticles in Molten Salts (2017) Nanoscale, 9 (24), pp. 8157-8163
  • Zhang, D., Gökce, B., Barcikowski, S., Laser Synthesis and Processing of Colloids: Fundamentals and Applications (2017) Chem. Rev., 117 (5), pp. 3990-4103
  • Blandin, P., Maximova, K.A., Gongalsky, M.B., Sanchez-Royo, J.F., Chirvony, V.S., Sentis, M., Timoshenko, V.Y., Kabashin, A.V., Femtosecond Laser Fragmentation from Water-Dispersed Microcolloids: Toward Fast Controllable Growth of Ultrapure Si-Based Nanomaterials for Biological Applications (2013) J. Mater. Chem. B, 1 (19), p. 2489
  • Intartaglia, R., Bagga, K., Brandi, F., Study on the Productivity of Silicon Nanoparticles by Picosecond Laser Ablation in Water: Towards Gram per Hour Yield (2014) Opt. Express, 22 (3), pp. 3117-3127
  • Kuzmin, P.G., Shafeev, G.A., Bukin, V.V., Garnov, S.V., Farcau, C., Carles, R., Warot-Fontrose, B., Viau, G., Silicon Nanoparticles Produced by Femtosecond Laser Ablation in Ethanol: Size Control, Structural Characterization, and Optical Properties (2010) J. Phys. Chem. C, 114 (36), pp. 15266-15273
  • Evlyukhin, A.B., Reinhardt, C., Seidel, A., Luk'yanchuk, B.S., Chichkov, B.N., Optical Response Features of Si-Nanoparticle Arrays (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 82 (4), p. 045404
  • Fenollosa, R., Garcia-Rico, E., Alvarez, S., Alvarez, R., Yu, X., Rodriguez, I., Carregal-Romero, S., Rivera-Gil, P., Silicon Particles as Trojan Horses for Potential Cancer Therapy (2014) J. Nanobiotechnol., 12 (1), pp. 1-10
  • Ploschner, M., Čižmár, T., Mazilu, M., Di Falco, A., Dholakia, K., Bidirectional Optical Sorting of Gold Nanoparticles (2012) Nano Lett., 12 (4), pp. 1923-1927
  • Skelton Spesyvtseva, S.E., Shoji, S., Kawata, S., Chirality-Selective Optical Scattering Force on Single-Walled Carbon Nanotubes (2015) Phys. Rev. Appl., 3 (4), p. 044003
  • Urban, A.S., Lutich, A.A., Stefani, F.D.F.D., Feldmann, J., Laser Printing Single Gold Nanoparticles (2010) Nano Lett., 10, pp. 4794-4798
  • Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., Diaz, F., Stefani, F.D., Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles (2017) ACS Nano, 11 (10), pp. 9678-9688
  • Huergo, M.A., Maier, C.M., Castez, M.F., Vericat, C., Nedev, S., Salvarezza, R.C., Urban, A.S., Feldmann, J., Optical Nanoparticle Sorting Elucidates Synthesis of Plasmonic Nanotriangles (2016) ACS Nano, 10 (3), pp. 3614-3621
  • Donato, M.G., Messina, E., Foti, A., Smart, T.J., Jones, P.H., Iatì, M.A., Saija, R., Maragò, O.M., Optical Trapping and Optical Force Positioning of Two-Dimensional Materials (2018) Nanoscale, 10 (3), pp. 1245-1255
  • Guffey, M.J., Scherer, N.F., All-Optical Patterning of Au Nanoparticles on Surfaces Using Optical Traps (2010) Nano Lett., 10 (11), pp. 4302-4308
  • Pauzauskie, P.J., Radenovic, A., Trepagnier, E., Shroff, H., Yang, P., Liphardt, J., Optical Trapping and Integration of Semiconductor Nanowire Assemblies in Water (2006) Nat. Mater., 5 (2), pp. 97-101
  • Lin, L., Wang, M., Peng, X., Lissek, E.N., Mao, Z., Scarabelli, L., Adkins, E., Korgel, B.A., Opto-Thermoelectric Nanotweezers (2018) Nat. Photonics, 12 (4), pp. 195-201
  • Gargiulo, J., Cerrota, S., Cortés, E., Violi, I.L., Stefani, F.D., Connecting Metallic Nanoparticles by Optical Printing (2016) Nano Lett., 16 (2), pp. 1224-1229
  • Do, J., Fedoruk, M., Jäckel, F., Feldmann, J., Two-Color Laser Printing of Individual Gold Nanorods (2013) Nano Lett., 13 (9), pp. 4164-4168
  • Babynina, A., Fedoruk, M., Kühler, P., Meledin, A., Döblinger, M., Lohmüller, T., Bending Gold Nanorods with Light (2016) Nano Lett., 16 (10), pp. 6485-6490
  • Gargiulo, J., Brick, T., Violi, I.L., Herrera, F.C., Shibanuma, T., Albella, P., Requejo, F.G., Stefani, F.D., Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing (2017) Nano Lett., 17 (9), pp. 5747-5755
  • Andres-Arroyo, A., Gupta, B., Wang, F., Gooding, J.J., Reece, P.J., Optical Manipulation and Spectroscopy Of Silicon Nanoparticles Exhibiting Dielectric Resonances (2016) Nano Lett., 16 (3), pp. 1903-1910
  • Shilkin, D.A., Lyubin, E.V., Shcherbakov, M.R., Lapine, M., Fedyanin, A.A., Directional Optical Sorting of Silicon Nanoparticles (2017) ACS Photonics, 4 (9), pp. 2312-2319
  • Mojarad, N.M., Sandoghdar, V., Agio, M., Plasmon Spectra of Nanospheres under a Tightly Focused Beam (2008) J. Opt. Soc. Am. B, 25 (4), pp. 651-658
  • Zambrana-Puyalto, X., Vidal, X., Molina-Terriza, G., Excitation of Single Multipolar Modes with Engineered Cylindrically Symmetric Fields (2012) Opt. Express, 20 (22), pp. 24536-24544
  • Jackson, J.D., (1999) Classical Electrodynamics, , 3 rd ed. Wiley: New York
  • Gouesbet, G., Maheu, B., Gréhan, G., Light Scattering from a Sphere Arbitrarily Located in a Gaussian Beam, Using a Bromwich Formulation (1988) J. Opt. Soc. Am. A, 5 (9), pp. 1427-1443
  • Lock, J.A., Calculation of the Radiation Trapping Force for Laser Tweezers by Use of Generalized Lorenz-Mie Theory. II. On-Axis Trapping Force (2004) Appl. Opt., 43 (12), pp. 2545-2554
  • Nieto-Vesperinas, M., Saénz, J.J., Gómez-Medina, R., Chantada, L., Optical Forces on Small Magnetodielectric Particles (2010) Opt. Express, 18 (11), pp. 11428-11443
  • Kuznetsov, A.I., Miroshnichenko, A.E., Fu, Y.H., Zhang, J., Luk'yanchukl, B., Magnetic Light (2012) Sci. Rep., 2, p. 492
  • Zhao, Q., Zhou, J., Zhang, F., Lippens, D., Mie Resonance-Based Dielectric Metamaterials (2009) Mater. Today, 12 (12), pp. 60-69

Citas:

---------- APA ----------
Zaza, C., Violi, I.L., Gargiulo, J., Chiarelli, G., Schumacher, L., Jakobi, J., Olmos-Trigo, J.,..., Stefani, F.D. (2019) . Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. ACS Photonics.
http://dx.doi.org/10.1021/acsphotonics.8b01619
---------- CHICAGO ----------
Zaza, C., Violi, I.L., Gargiulo, J., Chiarelli, G., Schumacher, L., Jakobi, J., et al. "Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance" . ACS Photonics (2019).
http://dx.doi.org/10.1021/acsphotonics.8b01619
---------- MLA ----------
Zaza, C., Violi, I.L., Gargiulo, J., Chiarelli, G., Schumacher, L., Jakobi, J., et al. "Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance" . ACS Photonics, 2019.
http://dx.doi.org/10.1021/acsphotonics.8b01619
---------- VANCOUVER ----------
Zaza, C., Violi, I.L., Gargiulo, J., Chiarelli, G., Schumacher, L., Jakobi, J., et al. Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. ACS Photonics. 2019.
http://dx.doi.org/10.1021/acsphotonics.8b01619