Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study photon creation in a cavity with two perfectly conducting moving mirrors. We derive the dynamic equations of the modes and study different situations concerning various movements of the walls, such as translational or breathing modes. We can even apply our approach to one- or three-dimensional cavities and reobtain well-known results of cavities with one moving mirror. We compare the numerical results with analytical predictions and discuss the effects of the intermode coupling in detail as well as the nonperturbative regime. We also study the time evolution of the energy density and provide analytic justifications for the different results found numerically. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors
Autor:Villar, P.I.; Soba, A.; Lombardo, F.C.
Filiación:Departamento de Física Juan José Giambiagi, FCEyN UBA, IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
CNEA-CONICET Centro Atómico Constituyentes, Avenida General Paz 1499, San-Martín, Argentina
Palabras clave:Mathematical models; Physics; Analytical predictions; Dynamic equations; Interference phenomena; Intermode couplings; Numerical approaches; Numerical results; Oscillating mirrors; Three dimensional cavity; Mirrors
Año:2017
Volumen:95
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevA.95.032115
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v95_n3_p_Villar

Referencias:

  • Dalvit, D.A.R., Maia Neto, P.A., Mazzitelli, F.D., (2011) Casimir Physics, Lecture Notes in Physics, 834, p. 419. , edited by D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa (Springer, Berlin)
  • Dodonov, V.V., (2001) Adv. Chem. Phys., 119, p. 309
  • Dodonov, V.V., (2010) Phys. Scr., 82, p. 038105
  • Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F., (2012) Rev. Mod. Phys., 84, p. 1
  • Law, C.K., (1994) Phys. Rev. A, 49, p. 433
  • Fulling, S.A., Davies, C.W., (1976) Proc. R. Soc. London, Ser. A, 348, p. 393
  • Dodonov, V.V., Klimov, A.B., (1996) Phys. Rev. A, 53, p. 2664
  • Mundarain, D.F., Maia Neto, P.A., (1998) Phys. Rev. A, 57, p. 1379
  • Dodonov, V.V., (1998) Phys. Lett. A, 244, p. 517
  • Ruser, M., (2006) J. Phys. A, 39, p. 6711
  • Alves, D.T., Granhen, E.R., (2014) Comput. Phys. Commun., 185, p. 2101
  • Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D., (2001) Phys. Rev. A, 64, p. 013808
  • Dodonov, A.V., Dodonov, V.V., (2001) Phys. Lett. A, 289, p. 291
  • Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P., (2011) Nature (London), 479, p. 376
  • Lhteenmaki, P., Paraoanu, G.S., Hassel, J., Hakonen, P.J., (2013) Proc. Natl. Acad. Sci. USA, 110, p. 4234
  • Felicetti, S., Sabín, C., Fuentes, I., Lamata, L., Romero, G., Solano, E., (2015) Phys. Rev. B, 92, p. 064501
  • Benenti, G., D'Arrigo, A., Siccardi, S., Strini, G., (2014) Phys. Rev. A, 90, p. 052313
  • Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F., (2013) Phys. Rev. A, 87, p. 043804
  • Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E., (2014) Phys. Rev. Lett., 113, p. 093602
  • Stassi, R., De Liberato, S., Garziano, L., Spagnolo, B., Savasta, S., (2015) Phys. Rev. A, 92, p. 013830
  • Agnesi, A., Braggio, C., Bressi, G., Carugno, G., Galeazzi, G., Pirzio, F., Reali, G., Zanello, D., (2008) J. Phys. A: Math. Theor., 41, p. 164024
  • Crocce, M., Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., (2004) Phys. Rev. A, 70, p. 033811. , For a model with time dependent conductivity, see
  • Kim, W.-J., Brownell, J.H., Onofrio, R., (2006) Phys. Rev. Lett., 96, p. 200402
  • Dodonov, A.V., (2009) J. Phys. Conf. Ser., 161, p. 012029
  • De Liberato, S., Gerace, D., Carusotto, I., Ciuti, C., (2009) Phys. Rev. A, 80, p. 053810
  • Dodonov, A.V., (2014) J. Phys. A, 47, p. 285303
  • De Sousa, I.M., Dodonov, A.V., (2015) J. Phys. A, 48, p. 245302
  • Veloso, D.S., Dodonov, A.V., (2015) J. Phys. B, 48, p. 165503
  • Vacanti, G., Pugnetti, S., Didier, N., Paternostro, M., Palma, G.M., Fazio, R., Vedral, V., (2012) Phys. Rev. Lett., 108, p. 093603
  • Ji, J.-Y., Jung, H.-H., Soh, K.-S., (1998) Phys. Rev. A, 57, p. 4952
  • Dalvit, D.A.R., Mazzitelli, F.D., (1999) Phys. Rev. A, 59, p. 3049
  • Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I., (2016) Phys. Rev. A, 93, p. 032501
  • Bender, C.M., Orszag, S.A., (1978) Advanced Mathematical Methods for Scientists and Engineers, , (McGraw-Hill, New York)
  • Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I., (unpublished)

Citas:

---------- APA ----------
Villar, P.I., Soba, A. & Lombardo, F.C. (2017) . Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors. Physical Review A, 95(3).
http://dx.doi.org/10.1103/PhysRevA.95.032115
---------- CHICAGO ----------
Villar, P.I., Soba, A., Lombardo, F.C. "Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors" . Physical Review A 95, no. 3 (2017).
http://dx.doi.org/10.1103/PhysRevA.95.032115
---------- MLA ----------
Villar, P.I., Soba, A., Lombardo, F.C. "Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors" . Physical Review A, vol. 95, no. 3, 2017.
http://dx.doi.org/10.1103/PhysRevA.95.032115
---------- VANCOUVER ----------
Villar, P.I., Soba, A., Lombardo, F.C. Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors. Phys. Rev. A. 2017;95(3).
http://dx.doi.org/10.1103/PhysRevA.95.032115