Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the spatial interference effects appearing during the ionization of atoms (H, He, Ne, and Ar) by few-cycle laser pulses using single-electron ab initio calculations. The spatial interference is the result of the coherent superposition of the electronic wave packets created during one half cycle of the driving field following different spatial paths. This spatial interference pattern may be interpreted as the hologram of the target atom. With the help of a wave-function analysis (splitting) technique and approximate (strong-field and Coulomb-Volkov) calculations, we directly show that the hologram is the result of the electronic-wave-packet scattering on the parent ion. On the He target we demonstrate the usefulness of the wave-function splitting technique in the disentanglement of different interference patterns. Further, by performing calculations for the different targets, we show that the pattern of the hologram does not depend on the angular symmetry of the initial state and it is strongly influenced by the atomic species of the target: A deeper bounding potential leads to a denser pattern. © 2019 American Physical Society.

Registro:

Documento: Artículo
Título:Photoelectron holography of atomic targets
Autor:Borbély, S.; Tóth, A.; Arbó, D.G.; Tokési, K.; Nagy, L.
Filiación:Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, 400084, Romania
ELI-ALPS, ELI-HU Nonprofit Ltd., Dugonics tér 13, Szeged, H-6720, Hungary
Institute for Astronomy and Space Physics IAFE (CONICET-UBA), Buenos Aires, 1428, Argentina
Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, Debrecen, H-4001, Hungary
Palabras clave:Argon lasers; Atom lasers; Atoms; Calculations; Wave functions; Wave packets; Ab initio calculations; Coherent superpositions; Electronic wave packets; Few-cycle laser pulse; Interference patterns; Photoelectron holographies; Spatial interference; Spatial interference patterns; Holograms
Año:2019
Volumen:99
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevA.99.013413
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v99_n1_p_Borbely

Referencias:

  • Keldysh, L.V., (1964) Zh. Eksp. Teor. Fiz., 47, p. 1945
  • Keldysh, L.V., (1965) Sov. Phys. JETP, 20, p. 1307
  • Bian, X.-B., Huismans, Y., Smirnova, O., Yuan, K.-J., Vrakking, M.J.J., Bandrauk, A.D., (2011) Phys. Rev. A, 84, p. 043420
  • Lindner, F., Schätzel, M.G., Walther, H., Baltuška, A., Goulielmakis, E., Krausz, F., Milošević, D.B., Paulus, G.G., (2005) Phys. Rev. Lett., 95, p. 040401
  • Gopal, R., Simeonidis, K., Moshammer, R., Ergler, T., Dürr, M., Kurka, M., Kühnel, K.-U., Kling, M.F., (2009) Phys. Rev. Lett., 103, p. 053001
  • Arbó, D.G., Persson, E., Burgdörfer, J., (2006) Phys. Rev. A, 74, p. 063407
  • Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 81, p. 021403
  • Arbó, D.G., Ishikawa, K.L., Schiessl, K., Persson, E., Burgdörfer, J., (2010) Phys. Rev. A, 82, p. 043426
  • Arbó, D.G., Ishikawa, K.L., Persson, E., Burgdörfer, J., (2012) Nucl. Instrum. Methods Phys. Res. Sect. B, 279, p. 24
  • Marchenko, T., Huismans, Y., Schafer, K.J., Vrakking, M.J.J., (2011) Phys. Rev. A, 84, p. 053427
  • Huismans, Y., (2011) Science, 331, p. 61
  • Huismans, Y., Gijsbertsen, A., Smolkowska, A.S., Jungmann, J.H., Rouzée, A., Logman, P.S.W.M., Lépine, F., Vrakking, M.J.J., (2012) Phys. Rev. Lett., 109, p. 013002
  • Hickstein, D.D., Ranitovic, P., Witte, S., Tong, X.-M., Huismans, Y., Arpin, P., Zhou, X., Kapteyn, H.C., (2012) Phys. Rev. Lett., 109, p. 073004
  • Borbély, S., Tóth, A., Tokési, K., Nagy, L., (2013) Phys. Rev. A, 87, p. 013405
  • Porat, G., Alon, G., Rozen, S., Pedatzur, O., Krüger, M., Azoury, D., Natan, A., Dudovich, N., (2018) Nat. Commun., 9, p. 2805
  • Agueny, H., Hansen, J.P., (2018) Phys. Rev. A, 98, p. 023414
  • Okunishi, M., Morishita, T., Prümper, G., Shimada, K., Lin, C.D., Watanabe, S., Ueda, K., (2008) Phys. Rev. Lett., 100, p. 143001
  • Micheau, S., Chen, Z., Le, A.T., Rauschenberger, J., Kling, M.F., Lin, C.D., (2009) Phys. Rev. Lett., 102, p. 073001
  • Xu, J., Chen, Z., Le, A.-T., Lin, C.D., (2010) Phys. Rev. A, 82, p. 033403
  • Lin, C.D., Le, A.-T., Chen, Z., Morishita, T., Lucchese, R., (2010) J. Phys. B, 43, p. 122001
  • Blaga, C.I., Xu, J., Dichiara, A.D., Sistrunk, E., Zhang, K., Agostini, P., Miller, T.A., Lin, C.D., (2012) Nature (London), 483, p. 194
  • Meckel, M., Comtois, D., Zeidler, D., Staudte, A., Pavicic, D., Bandulet, H.C., Pepin, H., Corkum, P.B., (2008) Science, 320, p. 1478
  • Bian, X.-B., Bandrauk, A.D., (2012) Phys. Rev. Lett., 108, p. 263003
  • Meckel, M., Staudte, A., Patchkovskii, S., Villeneuve, D.M., Corkum, P.B., Doerner, R., Spanner, M., (2014) Nat. Phys., 10, p. 594
  • Borbély, S., Tóth, A., Tokési, K., Nagy, L., (2013) Phys. Scr., T156, p. 014066
  • Tóth, A., Borbély, S., Tokési, K., Nagy, L., (2014) Eur. Phys. J. D, 68, p. 339
  • Tong, X.M., Lin, C.D., (2005) J. Phys. B, 38, p. 2593
  • Schneider, B.I., Collins, L.A., (2005) J. Non-Cryst. Solids, 351, p. 1551
  • Feist, J., Nagele, S., Pazourek, R., Persson, E., Schneider, B.I., Collins, L.A., Burgdörfer, J., (2008) Phys. Rev. A, 77, p. 043420
  • Borbély, S., Feist, J., Tokési, K., Nagele, S., Nagy, L., Burgdörfer, J., (2014) Phys. Rev. A, 90, p. 052706
  • Park, T.J., Light, J.C., (1986) J. Chem. Phys., 85, p. 5870
  • Schneider, B.I., Feist, J., Nagele, S., Pazourek, R., Hu, S., Collins, L.A., Burgdörfer, J., (2011) Quantum Dynamic Imaging, , edited by A. D. Bandrauk and M. Ivanov, CRM Series in Mathematical Physics (Springer, New York)
  • Noumerov, B.V., (1924) Mon. Not. R. Astron. Soc., 84, p. 592
  • Faisal, F.H.M., (1973) J. Phys. B, 6, p. L89
  • Reiss, H.R., (1980) Phys. Rev. A, 22, p. 1786
  • Faisal, F.H.M., Schlegel, G., (2005) J. Phys. B, 38, p. L223
  • Dewangan, D., Eichler, J., (1994) Phys. Rep., 247, p. 59
  • Arbó, D.G., Miraglia, J.E., Gravielle, M.S., Schiessl, K., Persson, E., Burgdörfer, J., (2008) Phys. Rev. A, 77, p. 013401
  • Volkov, D.M., (1935) Z. Phys., 94, p. 250
  • Arbó, D.G., Yoshida, S., Persson, E., Dimitriou, K.I., Burgdörfer, J., (2006) Phys. Rev. Lett., 96, p. 143003
  • Jain, M., Tzoar, N., (1978) Phys. Rev. A, 18, p. 538
  • Basile, S., Trombetta, F., Ferrante, G., Burlon, R., Leone, C., (1988) Phys. Rev. A, 37, p. 1050
  • Milošević, D.B., Ehlotzky, F., (1998) Phys. Rev. A, 58, p. 3124
  • Kamiński, J.Z., Jaroń, A., Ehlotzky, F., (1996) Phys. Rev. A, 53, p. 1756
  • De Morisson Faria, C.F., Schomerus, H., Becker, W., (2002) Phys. Rev. A, 66, p. 043413
  • Macri, P.A., Miraglia, J.E., Gravielle, M.S., (2003) J. Opt. Soc. Am. B, 20, p. 1801
  • Rodríguez, V.D., Cormier, E., Gayet, R., (2004) Phys. Rev. A, 69, p. 053402
  • Xie, X., Roither, S., Gräfe, S., Kartashov, D., Persson, E., Lemell, C., Zhang, L., Kitzler, M., (2013) New J. Phys., 15, p. 043050
  • Arbó, D.G., Gravielle, M.S., Dimitriou, K.I., Tokési, K., Borbély, S., Miraglia, J.E., (2010) Eur. Phys. J. D, 59, p. 193

Citas:

---------- APA ----------
Borbély, S., Tóth, A., Arbó, D.G., Tokési, K. & Nagy, L. (2019) . Photoelectron holography of atomic targets. Physical Review A, 99(1).
http://dx.doi.org/10.1103/PhysRevA.99.013413
---------- CHICAGO ----------
Borbély, S., Tóth, A., Arbó, D.G., Tokési, K., Nagy, L. "Photoelectron holography of atomic targets" . Physical Review A 99, no. 1 (2019).
http://dx.doi.org/10.1103/PhysRevA.99.013413
---------- MLA ----------
Borbély, S., Tóth, A., Arbó, D.G., Tokési, K., Nagy, L. "Photoelectron holography of atomic targets" . Physical Review A, vol. 99, no. 1, 2019.
http://dx.doi.org/10.1103/PhysRevA.99.013413
---------- VANCOUVER ----------
Borbély, S., Tóth, A., Arbó, D.G., Tokési, K., Nagy, L. Photoelectron holography of atomic targets. Phys. Rev. A. 2019;99(1).
http://dx.doi.org/10.1103/PhysRevA.99.013413