Tesis > Documento


Ver el documento (formato PDF)   Dimant, Verónica.  "Bases de Schauder en espacios de polinomios"  (1996)
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
URL:
     
Resumen:
Dados espacios de Banach E1,...,Em con bases de Schauder, se dan condiciones equivalentes a que el espacio de formas m-lineales continuas sobre ellos definido, L(m E1x...xEm), tenga base monomial, relacionándose esto con la reflexividad del espacio. En el caso en que las bases de E1,...,Em sean incondicionales y achicantes, se prueba que la existencia de base monomial en L(m E1x...x Em) equivale a su separabiidad. A partir de los índices inferiores y superiores de los espacios se dan condiciones que permiten generar numerosos ejemplos. En el espacio de polinomios m-homogéneos continuos sobre el espacio de Banach E, P(mE), se estudia la existencia de base monomial (cuando E tiene base de Schauder) o de descomposición monomial (cuando E tiene descomposición de Schauder de dimensión finita). Se relacionan estos hechos con la reflexividad y separabilidad de P(mE) y se construyen variados ejemplos. Por último, se estudia la incondicionalidad de las bases monomiales en Lwsc(mE1 x...x Em) y Pwsc(mE), los espacios de formas m-lineales secuencialmente débil continuas y de polinomios m-homogéneos secuencialmente débil continuos.

Abstract:
Let E1,..., Em be Banach spaces with Schauder bases and L( mE1 x...x Em) the space of continuous m-linear forms over them. Conditions equivalent to the existence of monomial basis in L(mE1 x...x Em) are given and its relationship with the reflexivity of L(mEl x...x Em) is shown. When the bases of E1,..., Em are unconditional and shrinking, it is proved that the existence of monomial basis in L(mE1 x...x Em) is equivalent to its separability. By means of lower and upper indexes of spaces, many examples are constructed. For the space of continuous m-homogeneous polynomials over the Banach space E, P(mE), the existence of monomial basis (when E has Schauder basis) or monomial decomposition (when E has finite dimensional Schauder decomposition) is studied. These facts are related with the reflexivity and separability of P(mE) and some examples are given. Finally, the unconditionality of monomial bases of Lwsc(m E1 x...x Em) and Pwsc(m E), the spaces of weak sequentially continuous m-linear forms and weak sequentially continuous m-homogeneous polynomials, is studied.

* A este resumen le pueden faltar caracteres especiales. Consulte la versión completa en el documento en formato PDF

Registro:
Título : Bases de Schauder en espacios de polinomios     =    Schauder bases in spaces of polynomials
Autor : Dimant, Verónica
Director : Zalduendo, Ignacio
Año : 1996
Editor : Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
Filiación : Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Departamento de Matemática
Universidad de San Andrés (UdeSA). Departamento de Economía y Matemática
Grado obtenido : Doctor en Ciencias Matemáticas
Ubicación : Preservación - http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_2872_Dimant
Idioma : Español
Area Temática : Matemática / Análisis Funcional
Palabras claves : BASES DE SCHAUDER; ESPACIOS DE POLINOMIOS HOMOGENEOS; ESPACIOS DE FORMAS MULTILINEALES; REFLEXIVIDAD; SEPARABILIDAD; SCHAUDER BASES; SPACES OF HOMOGENEOUS POLYNOMIALS; SPACES OF MULTILINEAR FORMS; REFLEXIVITY; SEPARABILITY
URL al Documento : 
URL al Registro : 
hola chau _gs.DocumentHeader_ chau2 _documentheader_ chau3
Estadísticas:
     http://digital.bl.fcen.uba.ar
Biblioteca Central Dr. Luis Federico Leloir - Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires
Intendente Güiraldes 2160 - Ciudad Universitaria - Pabellón II - C1428EGA - Tel. (54 11) 4789-9293 int 34