Tesis > Documento


Ver el documento (formato PDF)   Acosta Rodríguez, Gabriel.  "Estimaciones para el Error de Interpolación en elementos finitos Anisitrópicos"  (1998)
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
URL:
     
Resumen:
En este trabajo estudiamos diferentes tipos de operadores de interpolación sobre elementos finitos anisotrópicos. Obtenemos estimaciones óptimas para el error, en la interpolación de Lagrange sobre P1 y en W(1,P) con p > 2, para tetraedros bajo la asi llamada condición del ángulo máximo. Para la interpolación de Lagrange sobre Q1, en cuadriláteros, hallamos una condición geométrica muy poco restrictiva bajo la cual obtenemos estimaciones óptimas para el error en H1. Esta condición admite elementos anisotrópicos y generaliza todos los resultados conocidos. También presentamos un nuevo interpolador de promedios sobre P1 y probamos que posee orden óptimo en W(1,2), en 3D, para tetraedros bajo la condición del ángulo máximo. En particular, posee un comportamiento mejor que el de Lagrange. Finalmente demostramos que la condición del ángulo máximo para tetraedros es necesaria y suficiente para obtener cotas óptimas del error en L2 para la interpolación de Raviart-Thomas. Damos además algunas aplicaciones de este resultado para ciertos métodos mixtos y no-conformes, tanto para problemas escalares elipticos como para las ecuaciones de Stokes.

Abstract:
In this work we study different kind of interpolant operators over anisotropic finite elements. We obtain Optimal order error estimates in W(1,p) with p > 2, for the P1-Lagrange interpolation, under the so called maximum angle condition for tetraedra. For Q1-isoparametric quadrilateral elements, we define a weak geometric condition which ensures optimal order error in H1. This condition allows anisotropic elements and generalize all the previously known results. We present, also, a new P1-average interpolant operator which has optimal order in W(1,2), in 3D, for tetraedra under the maximum angle condition. In particular, this operator, has a better behaviour than the Lagrange interpolation. Finally we prove that the maximum angle condition for tetraedra gives neccesary and sufficient conditions to obtain optimal order error, in L(2), for the Raviart-Thomas interpolation. We show some applications of this result for certain mixed and nonconforming methods, both, for scalar elliptic problems, and the Stokes equations.

* A este resumen le pueden faltar caracteres especiales. Consulte la versión completa en el documento en formato PDF

Registro:
Título : Estimaciones para el Error de Interpolación en elementos finitos Anisitrópicos    
Autor : Acosta Rodríguez, Gabriel
Director : Durán, Ricardo G.
Año : 1998
Editor : Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
Filiación : Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Departamento de Matemática
Grado obtenido : Doctor en Ciencias Matemáticas
Ubicación : Preservación - http://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_3130_AcostaRodriguez
Idioma : Español
Area Temática : 
Palabras claves : ELEMENTOS FINITOS; INTERPOLACION DE LAGRANGE; CONDICION DEL ANGULO MAXIMO; INTERPOLACION DE RAVIART-THOMAS; INTERPOLACION DE PROMEDIOS; ELEMENTOS ISOPARAMETRICOS; FINITE ELEMENTS; LAGRANGE INTERPOLATION; MAXIMUM ANGLE CONDITION; RAVIART-THOMAS INTERPOLATION; AVERAGE-INTERPOLATION; ISOPARAMETRIC ELEMENTS
URL al Documento : 
URL al Registro : 
hola chau _gs.DocumentHeader_ chau2 _documentheader_ chau3
Estadísticas:
     http://digital.bl.fcen.uba.ar
Biblioteca Central Dr. Luis Federico Leloir - Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires
Intendente Güiraldes 2160 - Ciudad Universitaria - Pabellón II - C1428EGA - Tel. (54 11) 4789-9293 int 34